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Third Eye: Context-Aware Detection for Hidden

Terminal Emulation Attacks in Cognitive
Radio-Enabled IoT Networks

Moinul Hossain

Abstract—Recently, the Internet of Things (IoT) technology
has been drawing increasing attention because it has a great
potential to positively impact human life in a broad range of
applications. Nonetheless, the dense deployment of multiple co-
located IoT networks that may follow different wireless protocols
will essentially bring new network vulnerabilities. In this paper,
we introduce a novel attack scenario in co-located cognitive radio
(CR) enabled IoT networks, where a reactive attacker can emu-
late the radiation pattern of a hidden terminal (the attacker is
from a different network) and can interfere with the transmis-
sions from its hidden counterparts, namely the hidden terminal
emulation (HTE) attack. As the dense deployment of IoT nodes—
from different networks and technologies—will naturally create
such hidden terminal scenarios among IoT devices of different
networks, it provides the HTE attacker plausible deniability to
reactively interfere with its hidden counterparts; hence, the state-
of-the-art reactive attack detection techniques are infeasible in
this scenario where benign hidden terminals could be flagged
as reactive attackers. In this paper, we capture the behavior
of a benign hidden terminal and an HTE attacker via parsi-
monious Markov models and propose a context-aware detection
solution using the Markov chain hypothesis testing, namely the
Third Eye. Though there has been extensive research on malicious
interference detection, to the best of our knowledge, this work is
the first that considers hidden terminals as benign interference
sources, foresees this unique attack scenario, and leverages the
existing carrier sensing technique as a natural and effective way
to detect HTE attacks.

Index Terms—IoT security, context-aware detection, Markov
chain, hidden Markov model.

I. INTRODUCTION

HE INTERNET of Things (IoT) [1] is a ubiquitous tech-
Tnology that can intricately integrate devices (or things)
that surround us. These devices communicate within them-
selves by forming a closed connected network to intelligently
solve real-life problems. Such a broad vision requires an
enormous amount of IoT deployments at our homes, offices,
transportation systems, health-care, and industries.

Manuscript received June 16, 2019; revised November 8, 2019; accepted
January 8, 2020. Date of publication January 21, 2020; date of current ver-
sion March 6, 2020. This work was supported in part by the US National
Science Foundation (NSF) under Grant No. 1718666, 1731675, 1910667,
and 1910891. The associate editor coordinating the review of this article and
approving it for publication was L. Wang. (Corresponding author: Jiang Xie.)

The authors are with the Department of Electrical and Computer
Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223
USA (e-mail: mhossai4 @uncc.edu; linda.xie @uncc.edu).

Digital Object Identifier 10.1109/TCCN.2020.2968324

, Member, IEEE, and Jiang Xie

, Fellow, IEEE

However, the rapid and dense deployment of IoT engen-
ders a new set of challenges; spectrum scarcity is one of
the most important open research challenges among these.
Currently, different wireless technologies that operate on the
licensed spectrum are vying for the utilization of the unli-
censed spectrum [2]-[7]. Therefore, the unlicensed spectrum
is becoming less hospitable for resource sharing and more
susceptible to interference. The dense deployment of IoT
devices—using such wireless technologies as WiFi, ZigBee,
and Bluetooth—in overpopulated unlicensed bands will aggra-
vate these interference issues further; hence, FCC (Federal
Communication Commission) proposes to reconsider the way
we use spectrum resources and to devise strategies to allow
resource sharing in the licensed spectrum in order to increase
the overall spectrum utilization.

Cognitive radio (CR) offers an intelligent solution to off-
set this issue [8], [9], where a CR-enabled IoT device can
opportunistically access a licensed channel and utilize it until
a licensed user (or primary user, PU) reappears to avoid
interference with other co-located IoT devices. Spectrum sens-
ing helps CR-enabled IoT devices to be aware of and to be
sensitive to the changes in its network environment [10]. Here,
IoT devices utilize this real-time spectrum sensing information
to help them in finding spectrum holes (i.e., underutilized
licensed channels) and to avoid interference with PUs and
other co-located IoT devices. Therefore, CR technology offers
a feasible and compelling way to enable the dense deploy-
ment of IoT devices and to increase the spectrum utilization.
Nonetheless, such an unprecedented deployment of numerous
IoT devices in comparatively small physical spaces will likely
bring unforeseen security implications.

Motivations: The dense deployment of IoT devices may
bring a new vulnerability where attackers can exploit a natural
interference scenario to corrupt transmissions or receptions of
particular victim IoT devices, i.e., interference from hidden
terminal devices of a different IoT network. Fig. 1 provides
an illustration of this vulnerability, where nodes B2 and B4
are hidden terminals to nodes Al, A3, and A5, and vice
versa. Note that these two sets of nodes are from two different
networks (they may even follow different wireless technolo-
gies), and under the given scenario, each of these two sets
has no idea about the transmissions of the other set (because
there is no resolution technique to solve the hidden terminal
issue among different networks and different technologies).
Therefore, it is probable that, as these two sets of nodes are
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Network B

Network A

Fig. 1. Interference between coexisting IoT networks.

out of each other’s radio range, nodes of these two sets may
utilize the same radio channel and create interference at nodes
that are exposed to both of these sets, i.e., A2 and A4.

The concurrent transmission from these hidden sets acts as
an interference signal at the corresponding receiver or exposed
node. Using state-of-the-art techniques, it is likely impossible
to differentiate between a benign node (i.e., a hidden terminal)
and a reactive attacker because hidden terminal interference
bears the signature of reactive attack; hence, infeasible to
deploy in the given scenario. Therefore, if an attacker can
impersonate a hidden terminal to a particular IoT device, the
attacker can hide behind the curtain of this natural interference
scenario to corrupt the transmission intended for a particu-
lar receiver or the transmission generated from a particular
transmitter. This creates an unsought challenge to differentiate
between benign and malicious interference.

Challenges: In security research, a detection or defense
strategy is as strong as the attack model. Therefore, the pri-
mary challenge to devise an effective detection technique is to
devise a strong attack strategy. Unlike conventional jamming
attackers, HTE attackers try to attack a particular network
device; therefore, the straightforward approach of transmit-
ting a constant noise signal in victim’s operating channel
is not ideal for the objective because it will also impact
other network devices. A better approach is to attack only
when a transmission to the victim is heard (i.e., receiver or
exposed node is the victim), namely the reactive approach.
Successful impersonation of a hidden terminal—by manip-
ulating the antenna radiation pattern—helps the attacker to
interfere with the reception of the victim reactively.

However, a naive reactive attacker may try to attack each
time it hears a transmission to the victim device. Though it is
the most damaging strategy against the victim and provides the
highest attack efficiency, it increases the risk of being detected.
Even if a detector can somehow manage to identify the mali-
cious interference, a random strategy with uncertainty in the
attacker’s behavior would make conventional detection tech-
niques futile against it. Therefore, the reactive attack must
introduce randomness—as close as possible to the behavior
of a benign hidden terminal—to trade-off between the attack
objective (e.g., degrading victim’s throughput) and the risk of
exposure.

Prior works on detecting jamming attacks are mostly based
on network performance measurements, such as the packet

delivery rate (PDR), the received signal strength (RSS), the
channel busy ratio, and the number of retransmission attempts.
Although these detection methods are effective, they always
considered the jammer as an outsider who creates only noise
signal; hence, these are inapplicable in the illustrated sce-
nario where the attacker is intelligently creating malicious
interference using regular data packets. In addition, prior
techniques may falsely categorize benign hidden terminals
as reactive attackers. Therefore, we require a context-aware
detection strategy that considers hidden terminals as benign
interference sources and that can counteract the randomness
in the attacker’s behavior.

Contributions: In this paper, we study these challenges and
propose solutions. The novel contributions of this paper are
summarized in the following:

1. We propose a randomized reactive attack model by
exploiting the hidden terminal scenario, namely the HTE
attack. In the proposed model, the attacker poses as a hid-
den terminal by manipulating its antenna radiation pattern
and interferes with the reception of the victim.

2. We propose a context-aware HTE attack detection method
based on a five-state Markov model that detects an HTE
attacker by its violation of the benign behavior of a
hidden terminal, namely the Third Eye. We solve the
detection problem by converting it into a hypothesis
testing problem.

The rest of this paper is organized as follows. In Section II,
prior jamming attacks and their detection techniques are
reviewed briefly. Then in Section III, the system model that
is considered in this paper is explained. We provide a brief
overview of the proposed attack model in Section IV and
followed by the mathematical formulation of the benign hid-
den terminal behavior in Section V. We further discuss the
rationale behind the proposed attack strategy, as compared to
other strategies, in Section VI and then formulate the detec-
tion problem in Section VII. Simulation results are shown and
discussed in Section VIII, followed by the concluding remarks.

II. RELATED WORK

Unlike traditional jamming attacks, the HTE attack does not
rely on a strong noise signal to corrupt the wireless reception
of the victim. Instead, it exploits the proximity to the vic-
tim and utilizes regular data transmissions to corrupt victim’s
reception. Though HTE is not a jamming attack, in this paper,
we compare it to the jamming attack because of the close
resemblance between these two attacks from the perspective
of denial-of-service (DoS) attacks.

Discussion on Prior Work: In wireless networks, jamming is
one of the well-researched attacks. The detection of traditional
jamming attacks has been extensively studied in [11]-[22].
In [11], the influence of different jamming strategies on the
PDR and the RSS of network links is analyzed and a thresh-
olding algorithm is proposed. In addition to the PDR and the
RSS, the channel busy ratio and the number of retransmission
attempts are employed in [13], [14], and a machine learn-
ing based technique is proposed to detect jamming attacks.
Jamming attacks in time-critical networks are studied in [15],
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and numerical results on the impact of jamming on the network
message invalidation ratio is presented. Moreover, in [23],
an anomaly-based detection technique is proposed to detect
anomalous behaviors of external neighboring nodes in dense
IoT scenarios. An approach based on group testing to identify
which node triggers the reactive attack is proposed in [16],
in wireless sensor networks. In [24]-[27], the impact of jam-
ming attacks on the theoretical performance of IEEE 802.11
networks is presented and analyzed for different types of
jamming strategies; these theoretical analyses are based on
Bianchi’s Markov chain model of 802.11 distributed coordi-
nation function (DCF) [28]. In CR-enabled networks, DoS
attacks are studied in [29]-[33], where the attacker attacks in
the off-sensing interval and creates an illusion of PU reappear-
ance to force the victim out of its current operating channel.
In [18], a mathematical model of an optimal jamming strat-
egy is proposed, where an attacker can regulate its jamming
probability to trade-off between the reward of jamming and
the penalty of exposure.

Differences From Prior Work: Although there is no direct
comparable work to compare HTE with (except an earlier
work [23]), differences between existing work on jamming and
our proposed work can be noted as follows. Interestingly, [18]
considers the slotted Aloha protocol, which does not incorpo-
rate the carrier sensing multiple access (CSMA)—an essential
tool in modern wireless networks; in contrast, our work is
based on the widely accepted CSMA approach. While the
influence of in network hidden terminal interference is consid-
ered in [34], it did not explain how a reactive attacker can listen
to the transmission of its hidden counterparts; in contrast, we
capture the impact of hidden terminal interference from exter-
nal networks, based on the carrier sensing, and we propose
how an HTE attacker can listen to its hidden counterparts
via antenna manipulation. Moreover, though an anomaly-based
detection technique is proposed in [23], it fails to efficiently
identify HTE attacks when there are multiple anomalies in
the network. In summary, compared to all these prior works,
we address the hidden terminal interference issue among dif-
ferent co-located networks/technologies, and we devise an
attack model based on this. As prior work on attack detec-
tion mostly depends on the network performance and does
not consider hidden terminals as benign interference sources
(except [23], [34]), they may mis-categorize hidden terminals
as reactive attackers. In this work, we consider hidden termi-
nals as benign interference sources, address the way attackers
can inappropriately use it for malice intentions, and propose
a signature-based context aware detection model to uniquely
identify HTE attacks.

III. SYSTEM MODEL

We consider a benign IoT network with multiple CR-
enabled IoT devices that are trying to communicate among
themselves in an ad-hoc mode; we name it the internal
network. These benign IoT devices are surrounded by other
co-located CR-enabled IoT devices from a different network;
we name the network as external network. To successfully per-
petrate the attack, the external network must have at least two

T p. X
P
1-Ps, (| ON OFF | ) 1-Py,
 Pw
(a) The ON-OFF model.

Fine-sensing Fast-sensing
_ | i
: RTS/ S RTS/ s
Fine-Sen Transmission |F ast-Seru‘ | Transmission
CTS CTS T
E— — e —>
Slot Transmission interval

(b) The channel access schedule.

Fig. 2. System model.

IoT devices. We will explain the reason in Section IV. In the
following, we explain our system model.

Channel Model: We consider the presence of M homoge-
neous channels, each with equal bandwidth, and M PUs using
these channels. Here, time is divided into equal slots and trans-
missions are packet-based. A packet starts at the beginning of
a slot and finishes at the end of a slot. Each PU randomly
selects a channel to access and alternates between the ON and
the OFF states, according to an ON-OFF model that follows
the Poisson packet arrival process (with an average arrival rate
Ap) and the exponentially distributed packet length (with an
average length 1p). In Fig. 2(a), Py, and P, denote the tran-
sition probabilities from the ON to OFF state and from the
OFF to ON state, respectively.

IoT Node Model: We consider that the defending (or
victim) IoT device has k — 1 neighbors, and they use
omni-directional antennas for communications. These k nodes
(including the defender) have an available channel list (ACL)
m; € {1,2,..., M}, where i € k, based on the spectrum sens-
ing result. Each internal IoT device is equipped with one radio
for wide-band spectrum sensing [35] and one radio for control
information exchange and data transmission. We consider that
channel conditions are ideal and that a transmission failure
results from interference among hidden terminals only. In the
following, we use interference and collision interchangeably.

Channel Access: Each transmission attempt of an IoT device
must be preceded by a sensing interval. As shown in Fig. 2(b),
IoT devices employ their sensing antenna to sense the current
channel before initiating a transmission, and they continue
to sense the channel periodically during the transmission to
minimize the collision between PUs and IoT devices. An IoT
device is allowed to access a channel when it finds the sensing
result is suitable to transmit (e.g., senses that no PU is present).
After sensing that the channel is available, two IoT devices
exchange request-to-send/clear-to-send (RTS/CTS) messages
to reserve the channel. IoT devices initiate a new data packet
transmission with the longer fine-sensing and employ the
shorter fast-sensing for each successive frame.

During a sensing interval, if an IoT device senses that the
current channel is busy, it pauses the communication attempt
on the current channel, performs a spectrum handoff to a new
channel (from the current ACL) in the next-slot, and resumes
the communication attempt on the new channel.

Network Coordination Scheme: Here, we consider that a
common control channel is unavailable and that two IoT
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devices must find a common available channel between them
to initiate communication. The rendezvous technique works as
the process to find a common available channel [36]. However,
the choice of a specific rendezvous scheme does not impact
the performance of our work, as long as attackers have no
prior knowledge of the victim’s channel hopping sequence.
Hence, we assume that IoT devices have already successfully
performed rendezvous with each other using any existing ren-
dezvous scheme, and they share a time-seeded pseudo-random
channel hopping sequence for future communications.

Wireless Activity Monitoring: We considered a multi-
channel spectrum band (similar to IEEE 802.11) for cognitive
communications. Like IEEE 802.11, in the system model,
wireless devices can monitor activities on other channels
through spectrum sensing, i.e., the listen-before-talk mech-
anism. Moreover, an IoT node can learn the identity of
neighboring out-of-network wireless nodes from the broad-
cast messages. For instance, every wireless node—such as
Bluetooth, WLAN, ZigBee—broadcasts their identity for com-
munication.

IV. OVERVIEW OF THE PROPOSED HIDDEN TERMINAL
EMULATION ATTACK

In this section, we briefly discuss how an attacker can
exploit its antenna radiation pattern to impersonate a hid-
den terminal, which is essentially a form of location forging
attack. In prior work, location forging is considered a local-
ization problem, and anchor devices—specially equipped to
locate any device—play an important role in detecting loca-
tion forging attacks. However, in most IoT applications, IoT
devices are highly unlikely to be equipped with sophisticated
localization capabilities, and it is unrealistic to deploy anchor
devices in dense IoT networks; hence, in dense IoT scenarios,
off-the-shelf location spoofing detection methods are inappli-
cable. Therefore, we take a different approach in designing
the HTE attack where we emphasize how an attacker must
behave and reactively interfere after successfully emulating
a hidden terminal. The attacker perpetrates the HTE attack in
two sequential phases: the reconnaissance and emulation phase
and the reactive interference phase.

A. HTE Attack Phases

In this subsection, we briefly enumerate different attack
phases of the proposed HTE attack.

Reconnaissance and Emulation Phase: The primary task of
an HTE attacker in this phase is to successfully emulate the
radiation characteristics of a hidden terminal at the neighbors
of the victim(s). In this paper, we consider the exposed node(s)
as victim(s) (e.g., A2 and A4 in Fig. 3), and the attacker is
motivated to reactively interfere with transmissions originating
from the hidden nodes that are destined for the victim node(s).

To achieve its goal, the attacker first obtains the geometric
locations of the IoT devices by wardriving [37] and other off-
the-shelf techniques, such as the angle of arrival and distance
to the transmitter [38], i.e., the reconnaissance phase. Now,
depending on the objective of the attacker and its physical
limitations, the attacker may try to pose as a hidden terminal to
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Fig. 3. The hidden terminal emulation attack.

all neighbors or selected neighbors of the victim. In Fig. 3(a),
attackers try to pose themselves as hidden terminals to nodes
Al, A3, and AS5; they limit their transmissions only to nodes
A2, A4, and A6. The intelligent utilization of antennas enables
attackers to emulate a different physical scenario, which is
represented in Fig. 3(b), i.e., the emulation phase.

However, with conventional omnidirectional radios, realiz-
ing HTE attack is not possible because the path loss vector
is the same at each direction. An attacker, nonetheless, can
use the smart antenna beamforming capability to solve this
problem [39] and mimic the signal characteristics of the
spoofed location. Please note that, as complex localization
schemes are highly unlikely to be present in general IoT
devices, an attacker does not mimic the exact RSS signature
of the spoofed location; instead, it maintains an average signal
strength equal to or above the receiver sensitivity threshold at
the exposed node(s) and an average signal strength lower than
the carrier sensing threshold at the hidden nodes.

Reactive Interference Phase: In this phase, the HTE attacker
continues to sense the operating band through the wide-band
sensing and sniffs the band for RTS and CTS messages
addressed to or from the victim node, respectively. It tries to
deliberately interfere with transmissions from nodes Al, A3,
and A5 that are destined to the victim node (i.e., A4). However,
the choice of the interference rate depends on the strategy of
the attacker; it may interfere with each transmission, interfere
randomly, or take an intermittent strategy between acting
benignly or maliciously. In this paper, we discuss these differ-
ent attack strategies and their ability to stay immune against a
context-aware HTE detection approach. Such a detection tech-
nique will create a contextual model to differentiate between
benign and malicious behavior. Therefore, an attacker will try
to mimic the behavior of the benign model closely to stay
undetected but to maintain its attack performance. We con-
sider that the attacker (i.e., HTE-1) takes a subtle random
approach where it poses as a legitimate node by continuing
regular communications with its neighbors in its own network
(i.e., HTE-2), and the attacker intelligently interferes with the
victim’s reception only when the attacker is idle (i.e., not
in communication with HTE-2). Hence, it offers a different
detection challenge in contrast to conventional reactive jam-
ming attacks. A comprehensive analysis on different attack
strategies is discussed in Section VI.
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TABLE I
STATE DESCRIPTION OF THE PROPOSED CONTEXTUAL MODEL

Z(t) | Y(t) X(t) E@)
0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 X X

B. Summary

The HTE attacker utilizes array antenna techniques that are
widely available for communication purposes and weaponizes
these to impersonate a legitimate hidden terminal. Different
types of distinct reactive interference strategies can be stud-
ied given that the attacker successfully impersonates a hidden
terminal. As traditional location spoofing detection techniques
(i.e., pertaining to the emulation phase) are inapplicable in
the given scenario, we argue that behavioral detection mod-
els make an appropriate design choice (i.e., pertaining to the
reactive interference phase). In this paper, we propose an
attack model to work better against the proposed context-aware
detection technique. In the subsequent sections, we first for-
mulate the contextual model of a benign hidden terminal and
then discuss different attack strategies.

V. MATHEMATICAL MODELING OF HIDDEN TERMINALS

The reception behavior of the defending (or victim) IoT
device is considered as an ON-OFF process: (X(#); t > 0) with
state space {0, 1}, where 0 and 1 correspond to the idle and
the receiving state, respectively. Let A4 denote the IoT device
that is evaluating abnormal interference, hereafter referred as
the node under test (NUT), and the hidden terminal from
the external network (i.e., HTE-1) is named as the external
node (EX).

A. Proposed Markov Model

In this subsection, we formulate different components nec-
essary to capture the benign behavior of a co-located hidden
terminal of an external network, using a five-state Markov
process that captures the key aspects of the interaction among
PUs, NUT, and EX.

Markov States: We define X(t), E(t), and Y(¢) as the state
of the NUT, the EX, and the PU in the current channel at
time-slot ¢, respectively. Note that E(¢)) and Y(r) are ON-OFF
processes with state space {0, 1}, where 0 and 1 correspond to
the idle and the transmitting state, respectively. The interaction
between X(f), E(t), and Y (¢)- is captured in a five-state discrete-
time Markov model, which is represented in Table 1.

The Markov state Z(t) = {Y (¢), X(t), E(¢)} denotes the
state of the proposed contextual model in NUT’s current oper-
ating channel at the end of a time-slot. The brief descriptions
of the states are:

0: The current channel is free (i.e., PU is idle), the NUT
is idle (i.e., not receiving), and the EX is either idle or
transmitting on another channel.

1: The current channel is free, the NUT is idle, and the EX
is transmitting.

P41 Pa3
P20 <
P21

-»Po2
Po3

~»Pia P34 <+
1 PPz P P3o< 3
Fig. 4. The proposed Markov model.
TABLE II

NOTATIONS USED IN THE MARKOV MODEL

[ Symbol | Definition |

Pa, Pr{a PU packet arrival in a slot}
Py, Pr{a PU packet ending in a slot}
Pa, Pr{an internal packet arrival in a slot for the NUT}
Py, Pr{an internal packet ending in a slot}
Ao x Pr{an external packet arrival in a slot}
Pucy Pr{an external packet ending in a slot}

2: The current channel is free, the NUT is receiving, and
the EX is either idle or transmitting on another channel.

3: The current channel is free, the NUT is receiving, and
the EX is transmitting. This state represents the collision or
interference.

4: The current channel is busy (i.e., PU is active).

The state transition diagram of the proposed Markov model
is shown in Fig. 4, which depicts the interaction between
the PU, the NUT, and the EX. Transitions between non-
neighboring states are presented by dashed arrows.

Transition Probabilities: We consider that each neighbor of
the NUT has a packet arrival rate A\ that is destined for the
NUT and A;, = (K — 1)\. We capture the effect of hidden
terminals by the parameter kj, € {0, ...,k — 1}, which repre-
sents the number of internal nodes that are hidden terminals to
the EX. In addition, we define the parameter o = ky, /(k — 1)
as the fraction of internal IoT devices that are hidden to the
EX. We assume that each IoT device broadcasts its iden-
tity periodically, and IoT devices sniff the wireless medium
to discover the presence of other IoT devices—from external
networks—within their radio range. In Fig. 3, though Al, A3,
and AS cannot listen to the transmission of the node HTE-1
(or EX), A2, A4, and A6 can listen to its transmission. Hence,
each device maintains a list of external nodes that are hid-
den to them (by exchanging information within internal IoT
devices), and it helps them to deduce the value of «. Table II
summarizes the notations used in the proposed Markov model.

To derive steady-state probabilities, we first deduce the
single-step transition probabilities. We use P;; to denote
Pr(Z(t+1) = j|Z(t) = i), i.e., the probability of transition-
ing to state j at the next slot from the current state i. We capture
the feature of the random channel-hopping process in our
model, where an IoT device can start a new transmission only
when there is a channel available. In the following discussion,
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we use the terms states in the proposed Markov model and
the status of the NUT in a time-slot interchangeably.

The transition from state ‘0’ depends on PU activities
(P, and 1I}), internal traffic parameter (Py,, ), external traf-
fic parameter (P)_,), and collision probability (Pb ). Now,
transitions from the idle state (i.e., Z(¢) = 0):

M—-2

POOZZHb(lfpz\)(l )( Pcol)
b=0
+ HM_1<1 - P)\p> (1—Py )(1=Py.), ()
M-2

Pop= 3" Hb(l—P)\ )(1 Py )PY,
b=0
+ a1 (1 — Py ) — Py,.) P, 2
M—2

Py = Hb(l — Py )me(l _Pé)ol)
b=0
+ (1= Py, ) P, (1= Po), 3)

5 = i Hb(lfPA )P rt

b=0
+ M1 (1= Py, ) Pa P )
M-1

Poy= Yy TPy, S
b=0

where II;, = the steady-state probability that exactly b chan-
nels are busy by PUs, Pé’ol = (1=pez) Py, Prl;mtch’ pe:r = the
steady-state probability that the EX is active, and Pm atch =

1/(M —b). Similarly, the transition from state ‘1’ depends on
PU activities (P, and IIp), internal traffic parameter (Py,,),

and external traffic parameter (P, ). Now, transitions from
the EX active state (i.e., Z(r) = 1):

M-2
Po= ) Hb(l—P/\,,)(l ~ Py,)
b=0
+ a1 (1= Py ) (1= Pay) Puss (6)
Py :HM—1<1*PA,,)(1*PMI), @)
M-2
Pig = Z 10 (1 - P,\p)P,\m
b=0
+ HM_1(1 _ PAP)P)\WP,M, (8)
M—-1
Py = Z I, P, . )
b=0

Now, the transition from state ‘2° depends on PU activi-
ties (P)\ and II}), internal traffic parameter (P,,,), external
traffic parameter (P, ), and collision probability (P, ol)
However, the collision probablllty (Pb ;) changes in this sce-
nario because the NUT is already transmitting and a collision
can only happen from hidden terminals. Therefore, the model
must account the hidden terminal factor («r). Now, transitions

from the NUT’s receiving state (i.e., Z(¢) = 2):

M-2
Pao = 31, (1= Py, ) Py, (1= P2

+1pr 1 (1_P>\p)PMin (I—P)\m), (10)
M—2

Py = 1L (1 - P)\p)PHm(l ~ pex) Pr, Priaten
b=0
+ Hprq (1 - P)\p)PumPAez’ (11
M—2

Py =Y I, (1 - P,\p) (1— Pu,,) (1 Pé’ol>
b=0
+ My (1= Py, ) (1= Pu) (1= aPy,,), (12)
M—2

Py =Y Hb(l —P/\p>(1 Ppuin) Pooy
b=0
+ Iy (1 - PAP) (1= Py, )aPy,., (13)
M-1

Py =Y TPy, (14)
b=0

where Pé’ol =(1- pex)ozP)\mPgmtch and o = ky, /(k — 1).

Now, the NUT immediately tries to avoid a collision after
detecting it, and the transition from state ‘3’ depends on PU
activities (P, and 1I}), internal traffic parameter (P),,), and
external traffic parameter (P, ). Hence, transitions from the
collision state (i.e., Z(t) = 3):

M-2

Pyo= Y Hb(l —P/\p)(l —P,)
b=0
TN IV (1 - P)\p)PMEZ7 (15)

P3y =TIy (1 - PAp) (1-Pyu,.,), (16)
M-2

Py = 30 10,(1= Py, ) Py, (17)
vl

P3q = Z Hp Py, - (18)
b=0

After experiencing the channel busy by a PU, the NUT hops
to another available channel. The transition from state ‘4’
depends on PU activities (P, and IIy), internal traffic param-
eter (P, ), external traffic parameter (P,,,), and collision
probability (Pé’ol). Now, transitions from the channel busy
state (i.e., Z(t) = 4):

M-2

Pio= 3 1,(1= Py, ) (1= Py, ) (1- PLy)
b=0
+ Ty (1= Py, ) (1= Pa,,) Pree + Tag Pyf19)
M—-1
Py = Z 1T, (1 - P,\p> (1- Py, )P,
b=0

+ Ty (1 - Pkp)pem(l ~Pu.), (20)
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Fig. 5. The transition diagram of the number of busy channels in a time-slot.

M—2

Py =3 10,(1= Py, ) Py, (1 PL)
b=0
+'fhw71(1—-fkp)kaf?me7 (21)
M—2

Py = 3" 10,(1= Py, ) Py, Pl
b=0
Iy, (1 - PAP)P,\W(l — pex)Pr... 22)
M—-1

Py =Y TPy, +1y(1-Py,), (23)
b=0

where Ppree = pexPu,, + (1 = pex)(1 = Py,,) and Pfol =
(1- pex)P)\engwtch'

Note that all transition probabilities except the ones from the
channel busy state (i.e., Z(#) = 4) are conditioned on the fact
that at least one channel is available. Therefore, we must trans-
form (1)-(18) and P;; « P;;/(1—-1I37), where ¢ € {0, 1,2, 3}
and j € {0,1,2,3,4}.

Calculation of Iy, 11} represents the probability that, at a
given time, b PUs are active, where b € {0, ..., M }. Here, we
consider that PU traffic is homogeneous on each channel, the
buffer in each PU can store at most one packet at a time, and a
packet is kept in the buffer until it is transmitted successfully;
hence, the PU traffic follows the M/M/1/1 queuing model.

Let us consider that A(t) = b represents the number of
active PUs at time-slot 7. The process {A(¢),t = 0,1,...}
forms a Markov chain whose state transition diagram is given
in Fig. 5. To characterize the behavior of PU channels, we
define F7 as the event that f PUs will finish their transmission
in the next slot, given that v PUs are transmitting. In addition,
we define Sg as the event that s PUs will start new transmis-
sions in the next slot, given that § PUs are idle. Hence, the

probabilities of events ]F? and Sg are:

_ (7 —f
F}y_ (f)Pﬁp(l_Pﬂp)’y )
S8 =

- )

Therefore, the state transition probability from state {A(¢) =
i} to state {A(t+ 1) = j} can be written as:

o Pr(F}) Prs ),
Y Pr(F}) Pr(SjA{;j_';f), for j < i.
Hence, we deduce the steady-state probability of the number
of active PUs (or busy channels) in a time-slot, denoted as
I = [[Iy,II,...,IT,], where IT; denotes the steady-state
probability that b channels are busy in a time-slot.

(24)

(25)

forj >4

P = (26)

(1-u)+uPx,

(1-Pap)Pex

(1-Pp)(1-Pex)
(1-Pap)(1-Ppex)

(1-P2p)Pper

Fig. 6. The transition diagram of activities of the EX.

Calculation of pex: As mentioned, p., represents the
steady-state probability of an external node in the active state.
To calculate this, we design a separate Markov model without
the influence of internal nodes. Hence, the model character-
izes only the interaction between PUs and the EX. The state
transition diagram is given in Fig. 6; the state PU represents
the ON (i.e., 1) or OFF (i.e., 0) state of a PU on the current
channel, and the ON and the OFF states represent the activ-
ity of EX on its current operating channel. The corresponding
steady-state probabilities are given:

(1_}3p>{1_(1_}3p)(1—Pﬁm)—uPAwfﬁp}

H _ )
(27
it {1-P (10} P, Tlog (28)
on = 7
1_ (1_P)\p> (1_PM61) _UPAQT’ PAp
B P)\p (Hoﬁ“"HOR)
Hpu — ﬁa (29)

where I, + op + 1lpy = 1, u = 22161 Iy, and pey =
IIon.

B. Proposed Parameter Estimation

In the earlier subsection, we formulated the proposed con-
textual model using traffic characteristics of all entities in
the network. Though the NUT knows its own traffic parame-
ters, traffic parameters of other entities are unknown to it. In
this subsection, we propose a Hidden Markov Model (HMM)
based parameter estimation technique to extract the required
parameters (i.e., Aez, flex, Ap,and pup) from the interaction
(i.e., statistics from the wide-band sensing) with other entities.
In the following, we first present the structure of the HMM,
then we give a brief introduction of the forward-backward pro-
cedure in the Baum-Welch (BW) algorithm [40]. Finally, by
analyzing the algorithm, we estimate the required parameters.

Hidden Markov Model: A hidden Markov process is a
Markov process consisting of two different processes, where
X is the hidden process that is never observable and Z is
the observable process that is perceivable to the agent (i.e.,
the NUT). X; and Z; denote the hidden state and observation
state at time ¢, respectively. Here, the hidden process follows a
Markov process with a finite number of states and the observ-
able process is a probabilistic function that generates symbols
based on the hidden states. The set of symbols comes from a
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Hidden states

© X~ X — Xt

| | |
Ziy Z Zi+

Observable states

Fig. 7. The hidden Markov model.

defined alphabet A. In our case,
and 1 = ON).

The general concept of an HMM is illustrated in Fig. 7.
A system of discrete time changes randomly from one state
to another, within a finite state space S. In our case, the
finite space S = {0, 1}. The evolution of the hidden sequence
X1, Xo,..., X7 is unknown, which represents PU or EX
states. However, it can be expressed by a sequence of observed
symbols from the alphabet A (i.e., Z; € A), which represents
the sensing decision on PU or EX activity. However, the sens-
ing result is mixed with measurement errors and differs from
the actual states of the PU or EX. To model the HMM, let us
define the parameters first:

e Number of hidden states, s = 2.

e Number of symbols, a = 2.

o Initial state distribution, Hf =

0,...,s—1 and f ={PU, EX}.
e One-step state transition probabilities, Pt = pi] where
1,7 =0,...,5s—1.
o Symbol emission probability, Bf = bjf (k), where j =
0,...,s—1land k=0,...,a— 1.
The one-step state transition probability is:

f . f .
,X2 = 227X1 = Zl)

A = {0,1} (ie., 0 = OFF

{f}, where i =

Pr(th —jXF =i, Xyo = o, ...

P (xf =it )

= pjj, (30)
where, i1,%,...,%-2,%—1,%,7 € {0,1} and ¢t > 1.
Therefore, the joint distribution of X{ XI ... X[ is

expressed as:

Pr(le:il,XQf:ig,...,th:it)—7r pf. ... pf

1122 10t

€Y

The emission probability, which represents the probability of

observing Zf = k when X[ = j, ie, Bf = bjf-(k),j =
0,...,s—1and £k =0,...,a— 1. Therefore,
bE(k) = Pr<Z{ = k| xf :j). (32)

Now, as the sensing process is mixed with measurement
errors, the sensing mechanism may experience misdetection
and false-alarms. The probability of inferring a PU (or EX)
idle while it is actually active is called the probability of
misdetection. Similarly, the probability of inferring a PU (or
EX) active while it is actually idle is called the probability of
false-alarm. These are mathematically expressed as:

Pr(th = 0|xf = 0) = bE(0),

Pr(th = 1)xf = 0) = bf(1),
Pr(Zt = 0|xf = 1) b (0),
f
1

Pr(Zt —1)xf = 1) bE(1). (33)

The BW algorithm proposes an iterative approach to esti-
mate the HMM parameters nf = [Hf ,Pf,Bf], such that the
Pr(Zf|nf) is maximized. For simplicity, we discard the nota-
tion f from the following calculations. Now, to estimate the
parameters, we define the following:

e Forward probability, a;(i) = Pr(Z1, Z2,..., 24, Xy =
S;|n), for i € {0,1}

e Backward probability, Be(7) =
Pr(Zys1, Zit2, -y Zr—1, Z7,Xe = Sin), for
i€{0,1}

e State transition estimation, v¢(i,j) = Pr(Xy = 1,

Xi41 =J|Z,m), for i,j € {0,1}. It represents the prob-
ability of being in state S; at instant ¢ and in state .S; at
instant ¢ + 1, given the observation sequence Z and the
model parameters n = [, P, B]

o Estimate of the state at each observation, 6;(i) =
Pr(X; = i|Z,n), for i € {0,1}. It represents the
probability of being in state S; at instant ¢, given the
observation sequence Z and the model parameters n =
1. P, B]

The estimation variables for the HMM parameters are

expressed in terms of v (,7) and §;(4):

t=T—=1_ /. -
=1 (7, 5)
Bl E— (34)
b Szl F=16,3)
bi (k) = Zt tl_Z}a i )(J)’ (35)
t(j
mi = 61(4). (36)

In (34), the numerator represents the expected number of
transitions from state i to state j over the interval 7 — 1, while
the denominator represents the expected number of times a
transition happens from state i. The numerator in (35) rep-
resents the expected number of transitions from state j at
which symbol & is observed. In (34)-(36), ~+(i,7) and d¢(%)
are calculated as follows:

at(1)pijbj (Zt41)Be+1(7)
Pr(Z|n) '
>

’Yt(luj)
all S;€{0,1}

(37

P)/t(ivj) =

d¢(1) = (38)

The forward and backward probabilities in the above equa-
tions are calculated recursively as follows:

Initialization:
ar(i) =mbi(1), 0<i<s—1. 39
pr(i)=1, 0<i<s—1. (40)
Recursion:
apr1(j [Z a(i pwl (Zt41). (41)
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Z ij

The recursion process terminates when Pr(Z|n) maximizes,
which is the probability of observing the sequence Z given the
parameter n = [[[, P, B]:

i(Zt41)Br41(7)- (42)

s—1 T

> o).

1=0t=1

Pr(Zln) = (43)

Extraction of Traffic Parameters: Here, we extract traffic
parameters of the PU and EX from the estimated HMM param-
eters ot = [[]%, Pf, BE], such that the Pr(Z%|nf) is maximized.
To do this, let us recall the parameters, 6 = [Ag, pg], where A
means the traffic arrival rate, p means the packet service rate,
and f = {PU, EX}. From the network model, the length of
the ON and OFF state are exponentially distributed. In [41], a
useful method to compute the state transition rate matrix from
the state transition probability matrix is provided. We denote
the transition rate matrix as Q¢ and

—Ar Ar

O ( pe —HE >

As described in 7, P is the one-step state transition probabil-
ity matrix. We know that P = exp(QA) and @ = log(P)/A,
where A is the sensing period. However, the computational
procedure is cumbersome and log(-) has a limitation when P
has a non-positive eigenvalue. Therefore, we adopt the map-
ping approach introduced in [41], which provides an easier
computational approach and provides a sufficient degree of
accuracy. If the two-dimensional transition rate matrix is the
form shown in (44), then the transition probability matrix is:

exp AA 1-— (}Xp*/\A 45)
exp HA )

_ (Poo po1\ _ B
P10 P11 1 —exp M4
In (45), we can calculate Q from P inversely. In other words,
the relation between IP and Q unfolds the relationship between
7 and 6.

(44)

C. Summary

In this section, we explained the mathematical structure to
formulate the building blocks of the proposed context-aware
detection strategy. The calculations in this section helps to
identify the accepted behavior of a benign hidden terminal of
an external network. Though many parameters to deduce the
context-aware model are unknown, we proposed an HMM-
based estimation strategy to estimate the required parameters.
Again, we utilized only the in-hand sensing statistics to com-
pute the estimation without any hardware and networking
overhead. The required probabilities can be expressed in terms
of the estimated parameters (i.e., A¢ and jig) as follows:

et (46)

(47)

Py, =1—exp
Py =1- exp b
Here, t represents the length of a time-slot. Next, we will dis-

cuss the strengths and weaknesses of different attack strategies
against the proposed context-aware detection model.

1 --» P4
“»Pr Psi

P34 <
P3o < 3

Fig. 8. Markov chain between a naive attacker and the NUT.

VI. THE REACTIVE INTERFERENCE MODELS

As discussed earlier in this paper, a strong detection strategy
requires a strong attack model. In this section, we discuss
different attack models and their efficacy against the proposed
context-aware detection strategy.

A. Attack Models

Though an aggressive attack strategy that constantly inter-
feres with the reception of the victim results in better attack
performance, it deviates significantly from benign behaviors
and to an reactive attacker. A context-aware detection strat-
egy, which regularly monitors external nodes, can identify this
malicious interference; hence, an attacker must haggle between
the attack objective and the risk of exposure. In the following,
we discuss three different attack strategies.

Naive Reactive Attacker: The interaction between the NUT
and the EX is modeled as the Markov chain illustrated in
Fig. 8, when the EX is a naive reactive attacker. The behav-
ioral difference between a benign hidden terminal and a naive
reactive attacker is that a benign hidden terminal transmits
irrespective of the transmission from its hidden counterparts,
whereas a naive reactive attacker transmits only when it senses
transmissions from its hidden counterparts on the wireless
channel (i.e., Po3 = 1). Thereby, the transition rates of the cor-
responding discrete time Markov chain (DTMC) from states
0, 1, and 4 to state 1 is zero. Now, if we observe Fig. 4 and
Fig. 8, the state transition structures are distinct. It means that
the Neyman-Pearson test of differentiating these two Markov
chains is degenerate, i.e., it becomes a singular detection
problem [42], meaning that the test results in an arbitrarily
small error [43].

Naive Random Attacker: The only difference between a
naive random attacker and a naive reactive attacker is that
the naive random attacker does not interfere with each recep-
tion of the victim, i.e., Pog # 1. Instead, it randomly chooses
its attack window to interfere. Nonetheless, both of these
attack models follow the similar state transition structures
(i.e., Pp1 = P11 = P41 = 0) and yield a singular detection
problem. Therefore, though this attack strategy introduces ran-
domness in its behavior, it still remains ineffective against the
context-aware detection model.

Intelligent HTE Attacker: To avoid the singular detec-
tion problem, we propose a more advanced random reactive
attacker, called the intelligent HTE attacker, that better
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disguises its malicious behavior by mimicking characteris-
tics of benign hidden terminals. In this attack model, the
HTE attacker generates regular data packets and communi-
cates with its neighbor (i.e., the passive attacker, HTE-2)
regardless of the state of the PU and the victim, meaning that
Pg1 = P11 = P41 # 0. This attack model increses the detec-
tion difficulty since the incorporation of random behaviors
makes the HTE attacker similar to a benign hidden terminal.
Therefore, an attacker acts benignly by performing regular
communications with its neighbor, and—if in its idle period
(when the attacker is not transmitting to its neighbor) it finds
the victim is receiving—it interferes with the reception of the
victim (i.e., interference rate = 1). We can make the strategy
more random by changing the interference rate; nonetheless,
without loss of generality, in this work, we assume interference
rate = 1. Hence, unlike the benign model, the transition
probability from state 2 is:

M—-2

Poo = Y (1= Py, ) P e (48)
b=0
M—-2

P21: an(l_PAp>P zn(l_pex)
b=0
Iy (1 - PAP)PM", 49)
M—2

Pay= 3 M,(1- Py, ) (1~ Pum)( - Ply)
b=0
Iy (1 - P/\p) ~ Py, )1 —a), (50
M—2

Pog = » Hb(l - P/\p)(l — Py, ) Pl
b=0
-I—HM_l(l—P)\p)(l—PMm)a (51)
M-—1

Py =Y TP, (52)
b=0

where Pcol = (1= pexy)a and a = ky /(k — 1).
B. Summary

Three different attack traits, including naive, naive-random,
and intelligent, are discussed. Though a naive behavior yields
a better attack performance, it increases the risk of exposure
because of its distinct state transition structures. In contrast,
the proposed intelligent HTE attack model that closely imitates
a benign hidden terminal offers a different attack detection
challenge. In Section VIII, we will illustrate the detection
performance of our proposed context-aware detection strategy
against these attack models. Next, we formulate the detec-
tion challenge as a binary hypothesis test to differentiate an
observed behavior between benign and malicious.

VII. DETECTION OF THE HIDDEN TERMINAL
EMULATION ATTACK

The proposed detection approach is comprised of two steps:
i) designing a contextual model to characterize the behavior

of benign hidden terminals and ii) formulating the detection
problem as a binary hypothesis testing problem to identify
whether a sequence of observed behaviors is likely to be pro-
duced from the established benign model or attack model. In
Section V, we comprehensively illustrated the first step, and
now, we shed light on the second one.

A. Binary Hypothesis Test

The NUT monitors activities on all channels and collects
transmission patterns of all wireless nodes in its surroundings
over a time window of d = w/t equal-length slots, where w
is the observation time length and t is the length of a time-
slot. To test whether or not the NUT is experiencing HTE
attacks, we collect the sequence of observations of the NUT’s
status zq = {7 (t)}‘ti‘:"l1 called a sample path of the dis-
crete time Markov chain that is generated by the influence of
either a benign hidden terminal or by an HTE attacker. Now,
let us denote transition probability matrices that characterizes
a benign hidden terminal as PO, that characterizes an HTE
attacker as P4, and that is generated from the observations as
P. Thus, a binary hypothesis testing problem can be formed:

Hp:P=P° Hy : P=P" (53)

Though most binary hypothesis testing problems require super-
vised learning, the proposed detection model does not require
supervised training as we have formulated closed-form expres-
sions to characterize benign and malicious behaviors. It is
reasonable to assume that the initial-state probability distri-
bution is similar to the steady-state probabilities of the states.
However, as indicated in [15], the initial distribution has an
effect on the detection threshold, which decreases to O in d as
1/d. Hence, it is insignificant when d is large.

Let us define the number of transitions from state i to state j
of zq as Ny = Zt 11— =i} where z; denotes the 7-th
element of the sequence zq and 4,75 € {0,1,2,3,4}. Now, the
counts N; = Zj _oNij = Zt 11 z=i) The log-likelihood
of zq under hypothesis Hy, is (where b € {0, A}):

log Pr(zq|Hy,) = log H H PZqu-H

:m@+22%m%jm>
i=05=0
Therefore, the log-likelihood ratio between H 4 and Hy is:
pPA
Pr(zd|HA) z
1 =1 - ilog =L (55
%8 Pr(zg[Hy)  °II 0 +ZZ g 5o - (33
1=035=0 1,J
The log—likelihood ratio test with threshold 7:
A Ha
lo Ny log 0’] z T. (56)
1=037=0 1,7 Ho

We can further fine-tune the threshold by dynamically adjust-
ing it to compensate for the observation window size d:

A Ha HA
ZZ j log 0’] i 7(d) —log Ho ’
= 0] 0 7] HO
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TABLE III
SIMULATION PARAMETERS

Parameter

[ Value |

Simulation time 100 seconds

SU sensing range 50

The number of channels (or PUs) 10

PU traffic rate (in pkts/sec) Ap =50; up =100
Bandwidth 2 Mbps

The size of (RTS+CTS) 160 + 112 bits (802.11b/g)
Fast and fine sensing duration 1 ms (802.22) and 2 ms
IoT traffic rate (in pkts/sec) A =120, 30,40, 50, 60;

p =100
SU packet size 1024 bytes
Hidden terminal factor, a 5/7
HA
P Hy (d) log HO
ZZ Nojpgtd 2= o ()
P d

1=075=0 ,J HO

Here, 7(d) varies with the observation window size d to
balance the trade-off between the false alarm rate and mis-
detection rate. The educated approach is 7(d) = 7gd for which
7! = 73 as d increases. The test statistics of the log-likelihood
ratio test is:

(58)

Z= ZZ ” 1 POJ’

1=07=0

where d, PO > and PAj are constants, and to derive the dis-
tribution of Z under Hj,, we must know the distribution of
Njj. According to [44], N;; are asymptotically Gaussian dis-
tributed; hence, as a linear combination of N, the test statistic
Z is also asymptotically Gaussian.

B. Summary

The detection model captures the interference pattern an IoT
device experiences under the influence of a hidden terminal
and flags the HTE attack when observations deviate towards
the established attack model. The proposed Markov model
accumulates all required information into five states, and the
binary hypothesis test verifies how well the observed sequence
fits with the established benign or malicious behavior model.
Our proposed detection technique requires only the carrier
sensing information, which is readily available for channel
access purposes.

VIII. PERFORMANCE ANALYSIS

In this section, we present numerical and simulation results
to evaluate the performance of our proposed work. Our work
employs a five-state Markov model that is a tractable model,
and it can capture the key characteristics of the network trans-
mission patterns. Here, we consider that all CR-enabled IoT
devices physically reside within the proximity of each other
and share the same ACL at a given time. The simulation
parameters are listed in Table III.

During the simulation, we assume that the NUT is able to
capture the transmission pattern of all adjacent IoT devices,
and it knows the number of IoT devices in its vicinity (via

wireless sniffing). The objective of the NUT (which is receiv-
ing) is to determine if the observed interference maintains the
pattern set by the mathematical model. During the HMM train-
ing phase, [oT devices may estimate the traffic parameters in
a long enough training time, so that the estimated values are
close to the true values. In contrast, the attacker tries to main-
tain a stable data packet rate to avoid suspicious behaviors and
attacks in its inactive intervals.

A. Hidden Terminal Emulation Attack

This subsection shows the impact of the proposed HTE
attack on the network performance of the NUT.

Impact of \in, on the HTE Attack: A higher rate of incoming
traffic (i.e., Ay, = (k—1)) to the NUT increases the opportu-
nity for the attacker to interfere with the NUT’s reception. As
the attacker tries to interfere each time it is inactive and the
victim is receiving, in Fig. 9(a), we can observe that the effect
of the attack increases with the increase of the incoming traffic
rate. However, the effect is not clearly perceivable from this
figure because the mean time (or the steady-state probability)
in collision state (i.e., state ‘3’ in Table I) is insignificant as
compared to the normalized throughput.

Fig. 9(b) helps to grasp a better picture where the colli-
sion rate experienced by the NUT increases rapidly with the
increase of the internal traffic rate. As we consider that the
NUT can perceive collisions and discard packets instantly, it
minimizes the total amount of time the NUT stays at the col-
lision state. Nonetheless, these incidents engender in packet
drops, stifle the throughput, and increase the collision rate.

Impact of iy, on the HTE Attack: A higher service rate
represents faster throughput and shorter packet length for a
given data. Therefore, we use a different performance indicator
than normalized throughput to illustrate the impact of p;y,, i.e.,
normalized channel utilization. Channel utilization represents
the portion of time the NUT utilized the network successfully
for communication purposes. Intuitively, we can understand
that as we increase the service rate of each packet, the chan-
nel utilization decreases. Fig. 9(c) provides the corresponding
impact of internal packet service rate on the channel utiliza-
tion. Likewise, the collision rate decreases because attackers
have less time to perpetrate the attack. Fig. 9(d) shows the
change in collision rate with the increase of packet service
rate.

Impact of \ez on the HTE Attack: Note that the attacker
can only interfere if it is inactive during the transmission of
its hidden counterparts; otherwise, it must continue and finish
its own data packet transmission. As the traffic rate of the EX
rises, the time it stays in the active state also increases (i.e.,
pez). Hence, the room for interference decreases. Therefore, to
augment the impact of the attack, the attacker must decrease
its packet arrival rate. In Fig. 9(e)-(f), we can observe that
under no attack (i.e., when the EX is benign), the EX’s traffic
has an insignificant effect on the throughput and the collision
of the NUT. However, under attack, it illustrates sensitivity
to the change in \¢;. Besides attack performance, A¢; also
influence the detection accuracy. Later, we will discuss the
effect of \¢; on the detection performance.
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Fig. 9. The impact of different traffic parameters (\;;,, tin, Aex, and pegz) on NUT’s throughput, channel utilization, and collision.

Impact of ey on the HTE Attack: Similar to pg,, we con-
sider normalized channel utilization as a performance metric
instead of normalized throughput. As we increase the service
rate of the attacker (i.e., ptez), it shortens the amount of time
the attacker remains busy with benign actions and provides
the attacker with more opportunities to perpetrate the attack.
As a result, the normalized channel utilization of the NUT
decreases (Fig. 9(g)). Similarly, the normalized collision rate
increases with the increase in pey (Fig. 9(h)).

Different Attack Models: As discussed in Section VI, dif-
ferent attack models have their own advantages and disad-
vantages. In Fig. 10(a)-(b), the normalized throughput and
collision rate of the NUT are shown for the naive, naive-
random, and proposed HTE attack. It is evident that the naive
and naive-random attack results in superior attack performance
than the proposed HTE attack. Nonetheless, they suffer from
singular detection problem and have a negligible immunity
against the proposed context-aware detection technique, even
with a small observation time.

B. PU and EX Parameter Estimation

The performance of the proposed Third Eye depends on how
accurately HMM-based estimators can estimate the required
traffic parameters of PUs and EX in victim’s sensing range.
In addition, the length of a training sample is instrumen-
tal to the learning performance. In Fig. 11, we can observe
the trend of estimation error for PU packet arrival rate
(Ap) and service rate (yp) (showed for 5 PUs). Estimation
errors reduce to below 4% when the estimator is trained to
50 seconds.

In this work, we train the HMM estimator with 25 seconds
of data and observe the impact of the attack detection for
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Fig. 11. HMM estimation performance.

the next 75 seconds without changing the PU or EX activity
rate. Nevertheless, in reality, the PU and EX activity rate is
not going to be constant all the time and the HMM estimator
must re-estimate to track changes.
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Fig. 12. The HTE attack detection.

C. Attack Detection

The proposed mathematical model can effectively distin-
guish the activity of an attacker through carrier sensing
and detect the interference created by HTE attackers. This
subsection analyzes the performance of the detection model.

ROC Curve: To illustrate the effectiveness of our proposed
detection strategy, we compare it with the jamming detection
approach that considers the RSS and BER as the primary met-
rics of jamming detection [22]; here, we name it as the naive
method. In this approach, the intuition is that when there is a
bit error whereas the RSS value is high, this indicates jamming
attack. In addition, we compare the performance to an earlier
work [23], which detects anomalies in hidden nodes’ behavior.
We point out that, to the best of our knowledge, there is not
yet a signature-based detection method for the proposed HTE
attack to compare with. Our effort is to compare the ability
of attack activity detection, with the naive method [22], the
anomaly-based method [23], and the proposed Third Eye.

Fig. 12(a) illustrates the receiver operating characteristic
(ROC) curve that represents the efficiency of detection by
plotting the true positive rate (i.e., the probability of detec-
tion) versus the false positive rate (i.e., the probability of false
alarm). Comparing these four ROC curves, we find that the
proposed context-aware detection strategy results in a large
area under the curve (AUC). Thus, it achieves significantly
more reliable detection results. In the case of false negatives,
the attacker conducts a very low level of interference, which
the detector identifies as statistically insignificant to match
with the behavior of an attacker.

Though the anomaly-based detection technique provides
almost similar results—if not better—it fails to uniquely iden-
tify an HTE attacker because it does not consider exclusive
characteristics of an HTE attacker in its detection approach;
it only performs well when the goal is to detect anomalous
behavior. Conversely, the naive method has a much smaller
AUC and suffers extensively from poor false positive rate.
As the naive approach does not consider that an interference
source could be benign, it detects the interference from co-
located benign neighboring nodes as malicious interference;
hence, it exhibits poor performance.

Impact of Observation Window Size on the Detection: The
observation window size plays an instrumental role in the
effectiveness of HTE attack detection. Fig. 12(b) represents the

(c) Impact of Aox and pex on detection.
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We can observe that the detection performance declines as d
decreases; with d = 200, it performs very close to the random
detection approach. A larger observation window size provides
the NUT with better abilities to see through the randomness
in an attacker’s behavior and to differentiate an attacker from
a benign one. Therefore, a larger observation window size is
required to extract better performance from the detection strat-
egy. As different window sizes offer different performance, a
proper choice of d depends upon the cost and time-criticalness
of the application.

Impact of Aeg; and ez on the Detection: The traffic param-
eters of the attacker impact the performance of the proposed
detection model. In Fig. 12(c), we represent the true positive
rate vs. Agp (With a fixed false positive rate, 0.05) to illustrate
the relationship between them. We can observe from the figure
that the true positive rate decreases with the increase in Ay.
Though a lower A, facilitates heightened attack performance
(Figs 9(c)-(d)), it also increases the probability of detection.
Moreover, (i, also impacts the true positive rate. Hence, these
findings create a practical design challenge for an attacker who
wants to maximize the attack efficiency and remain undetected
at the same time.

Impact of M and « on the Detection: The proposed
signature-based detection model weighs in different network
parameters to model a benign hidden terminal and a mali-
cious one. Among them, the number of channels (M) and the
hidden terminal factor («) play pivotal roles. Intuitively, as
the number of channels increases, the probability of collision
decreases because co-existing IoT nodes have more channels
to utilize. However, the number of channels does not make
significant difference in collision rate after it passes a certain
threshold, such as M = 5 in Fig. 12(d) where the normalized
collision rate difference represents the difference between state
transition probabilities Po3 of benign and malicious hidden
terminals. Here Pa3 represents the probability of experienc-
ing interference from hidden terminals while the NUT is
receiving.

However, as « increases, the difference increases signifi-
cantly. Though higher values of « offers more performance
increase for the attacker, it also exposes the attacker to higher
risks of detection. Thereby an attacker remains constrained in
its attack performance to avoid detection.
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D. Qualitative Comparison With the Literature

The proposed signature-based detection strategy depends on
learning the context of each transmission from its neighboring
nodes; therefore, it requires different set of information than
traditional strategies and, in some cases, may incur additional
computational and memory resources. In this subsection, we
shed light on these from a qualitative perspective.

Detection Parameters: Unlike general network performance
indicators—such as packet delivery ratio, signal strength, bad
packet ratio, throughput, delay—the proposed context-based
detection strategy relies on the traffic characteristics of neigh-
boring nodes from external networks (i.e., A¢z and fiez) and
the network topology (i.e., o).

Traditional detection strategies try to determine whether the
NUT is under attack, and they do not consider the source
of interference (or jamming). In contrast, our proposed strat-
egy tries to determine whether the NUT is under attack based
on the source of interference. Besides identifying the attack,
this approach provides the ability to identify the attacker; this
allows us to build a context-based detection model.

Computational and Memory Cost: The computation tasks
are divided into two stages: i) offline phase: the NUT cap-
tures behaviors of a benign and a malicious node using the
proposed Markov model and, afterward, the Markov model
produces closed-form expressions to feed into the detector
module. Note that, learning finishes in this phase and no fur-
ther learning is required in the online phase and ii) online
phase: the NUT keeps track of PUs’ traffic parameters (),
and up), EX’s traffic parameters (Aez and fiez), and network
topology («), which are available from the sensing process.
The computation steps are constant for each external node
and increase linearly with the number of neighboring exter-
nal nodes. Therefore, the computational cost, though higher
than some traditional techniques, is tractable to support dense
networks. However, unlike most traditional jamming detec-
tion strategies, this strategy incurs memory cost to maintain
the tracking of the required parameters.

IX. CONCLUSION

In this paper, we proposed a vulnerability that the dense
IoT deployment will likely bring, i.e., interference from hidden
terminals of external IoT networks, and we illustrated how a
reactive attacker can exploit this vulnerability to stifle the oper-
ation of the network. To the best of our knowledge, this is the
first work that foresees this vulnerability of IoT deployment,
studies it, and proposes a detection technique based on carrier
sensing. We captured the effect of external hidden terminals
through a Markov model and detected the aberrant behaviors
of HTE attacks. The numerical and simulation results showed
the superior performance of our proposed detection model as
compared to the naive jamming detection approach.
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