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Abstract  

Bacillus anthracis, the etiological agent of anthrax, is a well-established model organism. 

For B. anthracis and most other infectious diseases, knowledge regarding transmission and 

infection parameters in natural systems is, in large, comprised of data gathered from closely 

controlled laboratory experiments. Fatal, natural anthrax infections transmit the bacterium 

through new host-pathogen contacts at carcass sites, which can occur years after death of the 

previous host. For the period between contact and death, all of our knowledge is based upon 

experimental data from domestic livestock and laboratory animals. Here we use a non-invasive 

method to explore the dynamics of anthrax infections, by evaluating the terminal diversity of B. 

anthracis in anthrax carcasses. We present an application of population genetics theory, 

specifically coalescence modeling, to intra-infection populations of B. anthracis to derive 

estimates for the duration of the acute phase of the infection and effective population size 

converted to the number of spores establishing infection in wild plains zebra (Equus quagga). 

Founding populations are small, a few spores, and infections are rapid, lasting roughly between 

one and three days in the wild. Our results closely reflect experimental data, showing small 

founding populations progress acutely, killing the host within days. We believe this method is 

amendable to other bacterial diseases from wild, domestic and human systems.  

  

Significance statement  

This study is the first to apply coalescence modeling to a “slowly evolving” bacterial 

pathogen, Bacillus anthracis, to derive estimates of infection durations and founding population 

sizes from natural anthrax mortalities. Although coalescence modeling has been applied to 

highly mutable chronic pathogens (i.e. HIV), to date methodological hurdles prevented its wider 



application. Our findings show it is possible to obtain pathological data from infections, post-

hoc, which may be applicable to other pathogens and settings, including clinical. Given their 

higher resolution, microsatellites will remain useful in shorter evolutionary timeframe studies.  

Introduction 

Questions regarding pathology of microorganisms are often addressed using animal 

models. Since the validation of germ theory (using Bacillus anthracis) (1), animal models have 

been used to elucidate various parameters of infection, such as infectious dose, strain lethality, 

disease pathology, and host immune response (2, 3). In most studies inbred, small-animal lines 

are used where age, sex, diet and other variables are controlled to reduce immune response 

variation among individuals. Yet, it is difficult to assess to what degree these controlled studies 

reflect how these infectious agents behave in natural hosts. This is due to variation in immune 

response within heterogeneous host populations where genetic and life history variation can 

affect the outcome of an infection (4). Furthermore, use of natural hosts in pathological studies 

can be, in practice, impossible, due to necessary permissions, facilities and ethical 

considerations. As a result, disease pathology data are lacking in most large, wild hosts and 

leaves general pathological questions regarding these species, open.  

The gram-positive, spore-forming bacterium Bacillus anthracis causes anthrax. An acute 

infection, anthrax can start via several routes of infection: inhalational, cutaneous, ingestional 

and injection. The pathogen occurs globally where its main hosts are large ungulates, yet most 

mammals and even birds can be susceptible (5, 6). Bacillus anthracis is an “obligately lethal 

pathogen,” where the host must die for transmission to occur. In some anthrax endemic areas, 

transmission may be enhanced with the involvement of biting flies and blowflies (7). Yet, 

regardless of these other types of transmission, anthrax associated with grazing at carcass sites 

by new hosts is the backbone of its epidemiology across systems (5, 8). 



 According to Glomski et al., ingestional anthrax infections in mice can start in the upper 

gastrointestinal tract, associated with previous damage to the epithelium, or in the lower 

gastrointestinal tract, within the lymphatic tissue of the oropharynx or Peyer’s patches, 

respectively (9). Stimulation of phagocytic cells, such as dendritic cells and macrophages to 

engulf spores via the classic complement pathway (CCP) plays an important role in establishing 

the infection. Interaction between BlcA glycoprotein, a major structural component of the B. 

anthracis exosporium (10), and complement component C1q stimulate both entry into epithelial 

cells and further activation of CCP, beginning the complement system cascade, marking them for 

uptake by phagocytic cells providing carriage across the epithelium  to adjacent lymphatic 

tissues (11). After passage past the epithelium, the disease seems to progress very similarly, 

regardless of the initial route of infection. Spores germinate to vegetative cells, which proliferate 

and spread through the draining lymphatic system, notoriously involving the spleen, and shortly 

thereafter becomes a systemic infection. Hemorrhaging from orifices occurs around the time of 

death releasing B. anthracis into the soil and inducing sporulation allowing the pathogen to 

survive for years in the environment (8).  

In Etosha National Park, Namibia, anthrax has been monitored, but not managed for 

roughly 40 years; throughout which, an effort was made to sample all discovered mortalities. 

Plains zebra (Equus quagga) are the most common host for B. anthracis in Etosha. Most of these 

infections likely occur after ingesting spores while grazing at anthrax carcasses sites (8), and not 

from drinking contaminated water (8) nor from inhalation of spores (12). Anthrax mortalities in 

zebra peak during the rainy season, where enhanced production of forage occurs at nutrient rich 

carcass sites (13). Although the majority of the zebra in Etosha have trace levels of antibodies 

against B. anthracis (indicating a high exposure rate) (14), disease incidence remains quite low, 



even in outbreak years (< 5%: per communication with Steve Bellan), implying few actually 

succumb to the infection (15).  

Our previous study described increased exposure to high concentrations of the pathogen 

increases the probability of infection (8). Experimentally, high doses are used to induce 

gastrointestinal lethal infection in various ungulates, 10s-100s of millions of spores (8). Which is 

in contrast to the injection route, where LD50s are  only tens to hundreds of spores (5), showing 

low doses in certain instances can lead to fatal infection.  

 To investigate these dynamics in nature, we isolated 30 individual colony forming units 

(CFUs) from 11 naturally occurring zebra mortalities and genotyped the 330 isolates using 

Multi-Locus VNTR Analysis (MLVA) and single nucleotide repeat (SNR) data, as these markers 

mutate quickly enough to allow within-host resolution. In conjunction, we conducted a mutation 

rate experiment to calculate the average number of mutations/gene/generation (µ), treating each 

VNTR or SNR as a gene. We then designed a joint Maximum Likelihood (ML) approach for the 

Coalescent process (16) under constant and variable effective population size (17) leveraging the 

experimental data and the carcass genotyping data to estimate the Time to the Most Recent 

Common Ancestor (TMRCA) and effective population sizes (Ne) starting a given infection. The 

full mathematical and statistical approach detailed in the appendix uses recent theory (18, 19), 

algorithms (17) and ML techniques using Markov chain Monte Carlo (MCMC) for hierarchical 

models (20-22). 

 

 

 

 



Results 

Genotype data  

SNR and MLVA data yielded 43 unique genotypes from 11 carcasses (30 isolates per carcass) 

(SI Appendix Figure 3). All data is available per request from either corresponding author, 

Stenseth or Turner. 

 

Laboratory Experiment 

Assuming a constant population size across the laboratory experiment, the ML estimate for the 

average number of mutations separating a sample size of two genes, 𝜃̂= 0.46 (CI: 0.09,1.42), 

using the DC methodology described in Methods. Noting that the average number of mutations 

that separates two genes, 𝜃, is defined in terms of the mutation rate µ and the effective population 

size Ne  as 𝜃 = 2𝑁𝑒𝜇, we then used MCMC to sample from the conditional distribution of the 

TMRCA given the ML estimate of 𝜃̂, stored the median TMRCA and computed Ne = 126.5 (CI: 

101.3,181.3) by dividing the duration of the experiment in generations (N=214) by that median. 

The mutation rate per gene, per generation, was then computed as  = 𝜃̂/2Ne = 0.002 (CI: 

0.0005,0.004).  

 

Carcass Sampling 

Assuming constant population size from the zebra carcasses, estimates of  varied 

between 0.28 and 1.1 and thus assuming a mutation rate µ = 0.002, the effective population size 

of B. anthracis varied between 68.3 and 266.7. Time to most recent common ancestor varied 

between 21.4 and 80.7 days (Figure 1).  



The exponential model gave radically different results. In that model, it is assumed that 

the effective population grows exponentially from past to present at a rate β. Under the 

Coalescent process, this exponential growth model for the effective population size is formulated 

as a change from the present (zebra’s time of death) to the past till the time of infection by a 

“founder” B. anthracis population using 𝑁𝑒(𝑡)=𝑁𝑒(0)ⅇ
−𝛽𝑡 . In this model, 𝜃 changes over time 

according to 𝜃(𝑡) = 2𝑁𝑒(𝑡)𝜇  (see full description of the model in the Methods). Estimates of 

the B. anthracis population  at the moment of zebra death is given by the value of  𝜃 at time 0 

and is denoted 𝜃0 . Its estimates for each zebra varied between 1.88 and 2.42, with β  values 

ranging between 0.35 and 1.61 (see Table 1). The effective population size of the founder B. 

anthracis population (i.e., at the beginning of the infection) is denoted as 𝑁𝑒(1)  (see Methods) 

and was estimated to range between 193.25 and 295.38 (see Table 1). Ne values are converted to 

colony forming units (cfu) using the Ne scaling given by the mutation rate experiment. Since this 

experiment was started with 1 cfu, we then scaled effective population sizes assuming that Ne of 

126.5 = 1 cfu. The cfu’s at the moment of death estimated for all sampled zebras ranged between 

approximately 1 and 6 (Table 1). The estimated TMRCA from the Coalescent model was used as 

an estimate of the elapsed time from the moment of infection with a founder B. anthracis 

population until death (see Methods).  This estimate varied between 0.73 and 2.61 days for all 

zebras (Figure 1). Full results of the estimates of , , Ne and TMRCA and confidence intervals 

for each parameter are shown in Table 1. Finally, model selection through Likelihood ratio tests 

showed the exponential population growth model was a better fit to the data for all zebras (p-

value < 0.0001 in every case).  
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Discussion 

Our best results, not surprisingly, were from the exponential model, as this most closely 

resembles the population growth dynamics of B. anthracis. From these data, we show estimates 

of parameters of lethal anthrax infections in free-ranging wildlife post-mortem. Experimentally, 

infections have a short duration of infection and via injection models, low infectious doses (23). 

Somewhat similar studies have estimated duration of infection for chronic and highly mutable 

viral pathogens, namely HIV (24). Yet, we believe we are the first to use this method to estimate 

both duration of infection and infecting founding population size on a slow-evolving, acute, 

bacterial pathogen (25). It should be noted the model used here applies to Bacillus anthracis as 

the assumptions we make reflect the biology of this highly-clonal pathogen. Stratilo et al. were 

the first to describe the use of SNRs to characterize diversity within infections (26). To date it is 

likely the only developed typing system using SNRs (27).  

Population dynamics  

 

Bacillus anthracis populations fluctuate through transmission and infection stages. 

During an infection the population increases exponentially and afterwards goes through three 

transmission bottlenecks (Figure 2 below) to start an infection in a new host. These bottlenecks 

occur in succession, the first is a slow process of spore decay at carcass sites. This decay may be 

augmented slightly by some vegetative activity during this telluric process (28), nevertheless the 

overall trend is decay (fig 2C-D), a process taking years (8). The other two bottlenecks occur 



during the infection process, first upon ingestion of a subset of spores (ingested dose) from a 

carcass site and finally, a bottleneck as a portion of the ingested population that establishes the 

infection (founders), which we calculate here in this study (Table 1).  

 

 

Grazing and exposure to B. anthracis (Fig 2, A) 

While many vertebrates are suitable hosts for B. anthracis, the foraging behavior and 

overall ecology of many herbivores lends them to be the major hosts and maintainers of anthrax 

in natural settings. Here ingestional anthrax, contracted from grazing at contaminated carcass 

sites (13), is purportedly the most common pathway of infection in wild and domestic ungulates, 

although other routes of transmission may occur (7, 8, 29, 30). For E. quagga in Etosha, grazing 

and ingestion of spores via contaminated plants and soil represents the largest hazard. It is 

difficult to know how strong of a bottleneck occurs between the ingested dose and the infecting 

dose, as the dose ingested is likely to be highly variable depending on site age and host behavior. 

However, simulation models of zebra foraging behavior indicate there is a high probability of 

ingesting doses up to 106 spores with even a bite or two of grass at a carcass site within the first 

two years(8). Over 5 years of simulations, there remained a spike in the probability of ingesting 

doses up to 105-106; doses higher than this were highly improbable.  

 

Establishment of the infection (Fig. 2, B) 

After ingestion, the process of infection establishment begins. For mouse gastrointestinal 

animal models, two major locations, the oropharynx (when epithelium is damaged) and/or 

Peyer’s Patches, are tissues commonly associated with B. anthracis entry from the lumen into the 



body (9). In wild ungulates, infection establishment has been speculated to be enhanced through 

damaged tissues caused by rough forage (31, 32) or gut parasites such as helminths due to higher 

activity of immune cells at these wound sites (32). Entry occurs through phagocytosis of spores 

by macrophages, carriage across the epithelium and transport to lymphatic tissue. After 

phagocytosis, spores germinate and the vegetative cells escape the phagosome starting the 

infection (33). High proportions of spores can germinate within hours, but can also be quite 

staggered depending on germinates present (34). 

Although anthrax establishes via several routes of infection, crossing the epithelium is 

typically mediated through macrophages, and from our data and in accordance with Lowe et al. 

(35), B. anthracis incurs a large population bottleneck starting the infection. Parsimoniously, our 

data suggest a small population can result in these animals and progress quickly to a lethal 

infection. The majority of the subsequent population diversity seems to be arising in-host, hence 

there are very similar diversity patterns among infections. Likewise, Lowe et al. suggests a 

similar mechanism creating a bottleneck for an intranasal anthrax model, where a substantial 

population bottleneck occurs between the inoculum and the founding population in the nasal 

mucosa-associated lymphoid tissue (NALT)(35).  

For anthrax, route of infection greatly affects the necessary dose to reach an LD50. This is 

especially true between oral and injectional routes, where the epithelium acts as an effective 

barrier to infection. For instance, de Vos reports that kudu (Tragelaphus strepsiceros) ingestional 

lethal doses were estimated at 1.5 x 107 (range 1 x 106 to 6.5 x 107) while a parenteral (injected) 

dose of 250 cells proved fatal to impala (Aepyceros melampus) (36). These data also reflect 

trends for sheep where lethality for ingestional anthrax requires much larger doses and only tens 

of cells required via injection (23). By our estimates, the founding population reflects the number 



of spores which crossed the epithelium and successfully germinated to start the infection. Despite 

our estimated low number of spores, large doses of ingested spores may be required to start 

gastrointestinal anthrax infections. Where blcA on the outmost coat stimulates the classical 

complement system (11) a high dose might be needed to produce an adequate innate immune 

response to stimulate macrophages and dendritic cells to take up spores marked with C3 

fragments. Strikingly, infectious doses among zebras in this study were very similar which 

reflects supathogen diversity and suggests some common pathology for B. anthracis and/or a 

shared trait among the individual zebra mortalities, such as genetic, behavioral, or life history, 

including previous exposure.  

 The success of using coalescence modeling to estimate Ne and TMRCA depends on 

having enough genetic resolution within the sampled population. This means having sampled 

enough individuals from a given population in combination with a high enough diversity, which 

corresponds to mutation rate. Although pathogens such as B. anthracis, Yersinia pestis and 

others are often referred to as “highly clonal” or “slowly evolving” it is important to make some 

distinctions. These pathogens are often classified this way due to high sequence similarity in 

coding regions, yet mutations such as indels (including VNTRS/SNRs), and genomic 

rearrangements are ignored in this classification. This is especially true with the use of genome 

sequencing for population studies, where most often resequencing and aligning to a reference are 

used, which often technically have hurdles in assembling larger VNTRs and ignore 

rearrangements in favor of reference synteny. Yet, longer read technology and de novo 

alignment will make these data available. In conclusion, this method may be quite amendable to 

other disease systems and even clinical settings, given these types of markers (VNTRs and 

SNRs) are used and may yield valuable information for curtailing disease transmission. 



Methods 

Study area 

This study was conducted using isolates of B. anthracis collected from anthrax carcasses in 

central Etosha National Park, Namibia from 2008-2012. Anthrax is endemic in Namibia, and 

Etosha National Park has regular annual outbreaks of anthrax recorded primarily in grazing 

herbivores (37, 38). More than 50% of anthrax cases recorded are of plains zebras (Equus 

quagga), and among the herbivorous species, zebras show the strongest propensity for foraging 

on grasses at anthrax carcass sites (13).  

 

Isolation of B. anthracis from blood swabs 

Culture and isolation of B. anthracis was done at the Etosha Ecological Institute’s 

pathogen laboratory. Dried, refrigerated carcass swabs from 11 zebra anthrax mortalities with 

three zebra from 2008, four from 2009, two from 2010 and two from 2012 (SI Appendix, Figure 

2) were used to collect isolates for this study. Swabs were rehydrated in 1.5ml sterile distilled 

water and agitated occasionally for several minutes to suspend spores.  Dilutions of 10-2, 10-4 and 

10-6 were prepared and plated on PLET agar using 5μl of each dilution and the undiluted with an 

additional 50μl of sterile, distilled water to spread the sample evenly over the agar. 30 isolated 

colonies were selected from among the plates for each carcass. If a particular morphology was in 

doubt as to whether or not it was B. anthracis, standard confirmation tests (penicillin and Ɣ-

phage) on a representative from that morphology were done before picking samples.  Entire 

colonies were transferred from the culture plates to 0.5ml cryotubes containing 0.25ml PLET 

agar using sterile toothpicks and incubated for several days at 37C before shipping at ambient 

temperature to University of Florida in Gainesville. 



 

Mutation rate experiment methods 

An isolate was obtained from a blood swab from zebra carcass containing the most 

common genotype in Etosha (genotype 6) according to Beyer et al. (39). This isolate is from 

A.Br.003 (A.Br.Aust94) using Van Ert et al.’s global classification (40), and group 5.4 using a 

new population genomic classification (41). The zebra carcass was found on 22 February 2010 

(carcass ID: EB100224-01WT). The colony was placed into 25mL of Difco nutrient broth in a 

50mL tube and mixed gently in an incubator at 37°C (range 35-41°C) for 24 hours.  The 

remaining part of the colony was transferred to a cryotube to preserve as the initial diversity for 

the experiment. After 24 hours, the B. anthracis culture in nutrient broth was diluted to 10-6 in 

sterile water.  We then inoculated 1µL of 10-6 dilution into 60 50mL tubes each with 25mL of 

nutrient broth.  These 60 samples were gently mixed in the incubator at 37°C for 24 hours. From 

these original 60 tubes, five additional serial transfers were done. 61 isolates from 60 lineages 

and the 1 progenitor were shipped to U of F. The starting isolate used for this experiment was 

sequenced and is available on GenBank (SubmissionID: SUB6568587 or 

BioProject ID: PRJNA590262). 

 

DNA extraction. At the University of Florida, isolates were grown on 5% sheep blood agar for 

24 – 48 hours and DNA was isolated using a modification of the method presented by Van Ert 

(40).  

MLVA-25 genotyping. MLVA-25 genotyping was performed as described by Lista et al. (42), 

with minor changes in PCR chemistry and volumes to reduce genotyping costs and adaptations 

in primer labeling to accommodate analyses on the Applied Biosystems (ABI; Applied 



Biosystems, Foster City, California) instruments.  Briefly, cold start, multiplex PCR was 

performed using 5.0 µL reactions containing: 0.5 U/rxn Taq DNA Polymerase (Syd labs, Natick, 

MA), 1X Syd Taq Buffer (contains MgCl2), 1X concentration of multiplex primer mix, 0.25 mM 

each dNTPs (Applied Biosystems, Foster City, California), and 0.5 µL of template DNA. 

Thermal cycling conditions were as per Lista et al. with exception of omitting the initial 

denaturation step (cold start polymerase). PCR products were diluted 1:40 by the direct addition 

of 195 µL of molecular grade water to the PCR plates and 1.0 µL of diluted product was added 

to 19.0 µL of a formamide/LIZ 1200 (ABI) size standard mixture (0.285 uL size standard per 

well) and denatured. Electrophoresis was conducted on an ABI 3730 sequencer and fragment 

sizes determined using GeneMapper™ software (Applied Biosystems). 

SNR-4 genotyping. The four SNR loci described in Kenefic et al. (27) were amplified in 

multiplex  The 10.0 µl PCR reactions were carried out with final concentrations of the following: 

1.0 µL template DNA per reaction, 1X PCR buffer, 0.5 U per reaction pfu Polymerase (Agilent 

technologies, Wilmington DE), 3 mM MgCl2
*, and 0.25 mM of each dNTP.  The final primer 

concentrations in the reaction were 0.1 µM of HM-1, 0.15 µM of HM-2, 0.1 µM of HM-6 and 

0.25 µM of HM-13.  The PCR products were diluted 1:20 and 1.0 uL was mixed with 19.0 uL of 

a formamide/LIZ 500 (Applied Biosystems) size standard mixture (0.285 uL standard per rxn) 

and denatured. Fragment sizing for SNR-4 was performed on an ABI 3730 (Applied Biosystems) 

and array sizes were determined using GeneMapper™ software (Applied Biosystems). 

 

MODELING APPROACH: AN OVERVIEW 



In what follows we briefly overview our modeling approach using the Coalescent Process (16), 

our analyses rationale as well as the questions we sought to answer with them. Then, we give a 

detailed statistical account of our methodologies.  

Here we used statistical inference for the Coalescent Process (16) to leverage the results 

from the serial passage culturing of B. anthracis, and the MLVA and SNR types sampled from 

the eleven zebra carcasses. In a landmark paper, Tavaré et al (43) showed how to use 

computational sampling methods to estimate the Time to the Most Recent Ancestor (TMRCA) 

from a sample of size n genes and the count of “segregating sites”, or the number of variable loci 

in these genes. Critical for their inferential approach is the adoption of a mutation model. As 

these authors mention, a wide variety of models for the mutation process can be incorporated 

into the Coalescent. When the data are DNA sequences, the infinitely-many-sites model (44) 

may be appropriate. This model is commonly applied to sequence data (e.g. cytochrome b 

mtDNA used in 45 to infer ancestry) and variation at loci among the sampled genes. In this case, 

we refer to a gene as a sequence from an individual (or sample in our case). Specifically, these 

datasets consist of the sequence of nucleotides at a specific region of the genome for which 

individuals are variable at specific loci within the region. The number of these variable loci is the 

number of segregating sites, which is critical for our calculations. Furthermore, identical 

sequences within a group of individuals are labeled as haplotypes and their frequencies in the 

sample are recorded (see Fig 1 in 45). 

A careful reading of Watterson (44), Ward et al. (45) and Tavaré et al (43) suggests the 

infinitely-many-sites model seems to be equally applicable to MLVA and SNR data structure 

and nature of polymorphic microsatellites. With respect to the data structure, the analogy is as 

follows: in our case, the equivalent to one DNA sequence haplotype is a series of the 



MLVA/SNR alleles at every MLVA/SNR locus found in one sample (e.g. Appendix 1A). In 

what follows, we call each different sequence of MLVA/SNR alleles a MLVA/SNR haplotype.  

Also, just as with the mtDNA data, we also have the observed frequencies of each one of the 

MLVA/SNR haplotypes within the samples in each zebra.  The annotated table of MLVA/SNR 

haplotypes and their frequencies is shown in SI Appendix table 1. In that table, ni  refers to the 

total number of samples for zebra i, (i = 1, 2… 11). For more details about the data structure and 

notation, see the example in the Statistical Analyses section below.  

 With respect to the biological justification of the applicability of the infinitely-many-sites 

model to the MLVA/SNR data set, the analogy with Watterson’s setting is as follows.  Watterson 

first assumed as his data unit, a portion of DNA specifying a single polypeptide chain of an 

enzyme (a functional “gene”). Recombination due to crossing over could be ignored so new 

alleles only result from mutation. Furthermore, the model does not require accommodating 

linkage and/or independence among loci. The model name, “infinitely-many-sites” assumes no 

two mutations ever occur at the same site (locus) so at each site, there are only two possible 

nucleotides: the original wild type and the mutant type.  In our case, then, adopting this model 

assumes the inter-allelic mutations at each MLVA/SNR locus are symmetrical and identical. 

Although we recognize this assumption is a simple approximation of reality, it allows a clever 

MCMC (Markov Chain Monte Carlo) solution by Ewens and Joyce (17) (described in our 

Statistical Analysis section below) to bypass the integration over all genealogies and target the 

estimation of the TMRCA, while ignoring the estimation of the topology of the genealogical tree 

among the MLVA /SNR genes. Having a quick access to the estimation of the TMRCA allowed 

us to: first, estimate the TMRCA from the serial transfer experiments, calibrate this Coalescent 

time with real time units (in days) and estimate a laboratory effective population size and 



mutation rate. Second, it allowed us to estimate the time (in days) from initial host infection to 

host death as the TMRCA between all the MLVA/SNR variants sampled within a single host, for 

each host. Third, it allowed us to carry a test of the hypothesis of within host exponential growth 

of the effective population size vs. the usual Coalescent assumption of constant effective 

population size. Infection by B. anthracis undergoes at least two bottlenecks driven by host 

resistance in specific organs (35), suggesting a model with exponential growth posterior to initial 

infection might be a more realistic scenario than the constant population size model. Fourth, 

adopting the infinitely-many-sites model allowed estimates of the effective population size of the 

MLVA/SNR genes upon death for each zebra. Finally, our methodology also allowed us to 

estimate the effective population size for these genes at the onset of host infection. In that sense, 

the joint estimation of the effective population size and the hypothesis test mentioned above 

allowed us to distinguish between two hypotheses 1) each host was initially invaded with a large 

B. anthracis load which did not grow significantly 2) zebra were initially infected with a small B. 

anthracis load, which grew fast and exponentially during infection. The comparison of the 

effective population sizes with the laboratory effective population size which underwent various 

bottlenecks, allowed us to discuss the within host population processes from the time of infection 

until host death.   

In what follows, we delve into the mathematical modeling details, starting with the description of 

the model parameters and likelihood functions under both models, and detailing the Coalescent 

time scaling transformation to real time units. 

STATISTICAL ANALYSES 

Data structure and general model setting 



Before setting our statistical notation, recall that here, our functional “gene” unit is the B. 

anthracis genome, genotyped for 25 MLVA and four SNR sites for any one sample within a 

zebra. For zebra 2, for example, for which there were 26 samples (our “genes”), four 

MLVA/SNR sites were variable (see SI Appendix 1A and B for the table presenting the raw 

data). These samples have 7 distinct MLVA/SNR haplotypes. Heretofore, we will simply say for 

zebra 2 we have 26 sampled genes and 7 MLVA/SNR haplotypes, each one with frequencies 

shown in Appendix 1C.   

The key parameter in the Coalescent process with neutral mutations is 𝜃, the average 

number of mutations separating a sample of size n = 2  genes. Furthermore, 𝜃 = 2𝑁𝑒𝜇 where 𝑁𝑒 

is the “effective population size” and µ is the mutation rate (per gene, per generation). “N-

Coalescent” time is measured retrospectively, with 0 being at present and increasing from 

present to past. Formally, this stochastic process is a pure death process (16), where the quantity 

that is “dying” is the number of distinct gene lineages, from present to past. This effective 

population size 𝑁𝑒 is assumed constant over time and is defined as the size of the “population” of 

genes from which the samples in the present time are taken.  This quantity is equal to the census 

population size in an idealized Wright-Fisher model (19). Although 𝑁𝑒 is an abstract parameter, 

for a real biological population it is proportional to the rate at which genetic diversity is lost or 

gained. In the absence of natural selection and if the variation in the number of descendant genes 

per gene as well as the generation time are known, a census population size can be approximated 

(46).  To date, statisticians working in this field (e.g. 19) adopt a more cautious interpretation of 

the effective population size and simply see it as a measure of relative genetic diversity (47, 48). 

In any case, this parameter (Ne) is useful, because under the Coalescent, time is re-scaled so one 

unit of continuous Coalescent time is equivalent to 𝑁𝑒 generations (2𝑁𝑒 is used in diploid 



models). With that scaling, we can transform our estimated TMRCA expressed in Coalescent 

time units into real time units. 

Several Coalescent-based methods for estimation of 𝑁𝑒 were derived using stringent and 

flexible assumptions, such as constant population size, exponentially growing population size, 

logistic and piecewise linear. To remove the inflexible conditions imposed by adopting any time-

dependent model, Palacios and Minin (19) go so far as to propose a non-parametric, 

stochastically varying Markov Random Field model for 𝑁𝑒 (19). Even this last complex model 

formulation can be tied to a specific mathematical model of population dynamics: a translated 

Stochastic Gompertz diffusion model of population size growing under environmental variability 

(Ponciano 2018). Because most implementations of the Coalescent under variable population 

size can be tied to a population dynamics rationale, we opted for testing the applicability of the 

constant vs. the exponentially growing 𝑁𝑒as way to compromise between biological realism and 

estimability of parameters in the light of the data. Although most of these methodologies have 

been implemented and readily available software exists (e.g. “BEAST”) to analyze the data 

under different models, these programs rely on a set of hard-coded genetic mutation models to 

carry the likelihood calculation by integrating the genealogy likelihood over all possible 

genealogies (49). Because we are mainly interested on the estimation of the TMRCA and not on 

the topology of the within-host genealogies, we used the approach proposed by Ewens and Joyce 

(17) to deal with this case to swiftly bypass the topology estimation problem.  Although in their 

lecture notes, Ewens and Joyce only outline this approach, here we coded it de novo and 

extended it for the joint estimation of 𝜃  and the TMRCA (scaled to real time units) under a 

constant effective population size model and an exponentially growing effective population size 

model.  The code was originally written by one of us (JMP) during a mathematical population 



genetics workshop taught in 2009 by Joyce, Ewens, Krone and Ponciano at the Center for 

Research in Mathematics in Guanajuato, Mexico. 

The joint distribution of Coalescent times  

The Coalescent process is a continuous time, discrete state Markov death process, which is 

initiated at the present time by gathering a random sample of n genes from a population of Ne  

genes. Then, the process models how the number of distinct gene lineages sampled in the present 

decreases one at a time when we traverse time from the present to the past. When two genes 

sampled today find a common ancestor j generations back into the past, we say a “coalescence” 

has occurred. These “Coalescent events” happen until all genes in a sample have found a 

common ancestor. Kingman (16) and multiple authors subsequently described the mathematical 

properties of the retrospective and random time period elapsed since the moment one finds n 

genes in a sample until all of these genes have found their most common recent ancestor 

(TMRCA). Regardless of the assumptions about the size of Ne , TMRCA adopts a probability 

distribution that can be thought as the sum of all the inter-Coalescent times in a genealogy, 

which are all the time periods between two consecutive coalescences in a genealogy. Using 

stochastic processes terminology, these inter-Coalescent times are the inter event times of the 

Markov death process.  

 One attractive feature of the Coalescent model is its mathematical simplicity, which 

allows an intuitive understanding of the model properties and of the inter-Coalescent events 

using simple biological and probabilistic rationales. The number of discrete generations from the 

present to the past until the first coalescence occurs is modeled using a Geometric random 

variable where the “success” probability p  is the probability that in a sample of n genes, 2 

individuals find a common ancestor one generation in the past. Its complement, 1- p is the 



probability that no coalescence occurs. Thinking of generations as independent trials, the 

probability of any two genes among these n genes finding a common ancestor j generations back 

in the past is simply (1 − 𝑝)𝑗−1𝑝  and the probability of their first common ancestor appearing 

more than  generations ago is (1 − 𝑝)𝑟. The analytical expression for p is found as follows: 

The probability any two genes picked at random today have 2 different ancestors one generation 

back in the past is 
𝑁𝑒

𝑁𝑒
(
𝑁𝑒−1

𝑁𝑒
) = (1 −

1

𝑁𝑒
), since the first gene has Ne choices for its ancestor and 

the second N-1 choices. The probability that these two genes have a common ancestor one 

generation back in the past (i.e., that a coalescence occurs) is then simply 1 − (1 −
1

𝑁𝑒
) =

1

𝑁𝑒
. 

This fraction only gives us the value of p for a sample of size 2 genes. Also, note the expected 

number of generations until two individuals find their common ancestor is 1 ∕ (1 ∕ 𝑁𝑒) = 𝑁𝑒. 

Iterating the above argument to include 3 or more genes, it is easy to see that the probability 1-p 

for a sample of n genes all find different ancestors one generation back in the past is 

 

∏(1−
𝑖

𝑁𝑒
)

𝑛−1

𝑖=1

≈ 1 − 𝑛(𝑛−1)
2𝑁𝑒

 

and hence the probability of at least one coalescence occurs one generation back in the pasts is  

1− (1 −
𝑛(𝑛−1)

2𝑁𝑒
) = (

𝑛
2
)

1

𝑁𝑒
 . Denoting the inter-Coalescent, geometrically distributed, random 

time between k  and k - 1 gene ancestors as Uk , it follows that  

  

𝑃(𝑈𝑘 > 𝑟) = [∏(1 −
𝑖

𝑁𝑒
)

𝑘−1

𝑖=1

]

𝑟

≈ (1 −
𝑘(𝑘 − 1)

2𝑁𝑒
)

𝑟

 

  



for constant population size. Now, if Ne is large relative to (𝑛 − 1) ∕ 2 , Coalescent events will 

occur rarely: many generations would elapse before a coalescence occurs. It then makes sense to 

re-scale time using a continuous scale instead of discrete generations by measuring it in units of 

Ne so that 𝑟 = 𝑁𝑒𝑡 Coalescent time units (e.g. one Coalescent time unit is equivalent to Ne  

generations).  Applying this re-scaling is achieved by computing the limit 

 lim
𝑁𝑒→∞

𝑃(𝑈𝑘 > 𝑡) = lim
𝑁𝑒→∞

(1 −
𝑘(𝑘−1)𝑡

2𝑁𝑒𝑡
)
𝑟

= 𝑒−
𝑘(𝑘−1)

2
𝑡  . 

Thus, measured in continuous time, the inter-Coalescent time between k and k - 1 gene ancestors 

can be modeled using an exponential distribution with rate (
𝑘
2
) . The TMRCA can be simply 

modeled as a sum of exponentially distributed inter-Coalescent times. Using the Markov 

property, the joint probability distribution of the inter-Coalescent times is simply written as the 

product of all the inter-Coalescent exponential distributions.   

To set notation as well as visualize these inter-Coalescent times, we plotted a realization 

of a genealogy under the Coalescent process assuming at present, a sample of n=7  genes was 

gathered (SI Appendix Figure 1). In that graph, the ui’s denote realizations of the (random) inter-

Coalescent times and ti’s denote the accumulated time, from the present to the past.  

Accordingly, 𝑢𝑘 = 𝑡𝑘−1 − 𝑡𝑘 or equivalently, 𝑡𝑘−1 = 𝑢𝑘 + 𝑡𝑘 under a model of changing 

effective population size, denoted Ne(t), the probability density function (pdf) of the inter-

Coalescent times is no longer exponential. Instead, the pdf of each inter-Coalescent time is 

 Pr(𝑢𝑘|𝑡𝑘) =
𝑘(𝑘−1)

2𝑁𝑒(𝑢𝑘+𝑡𝑘)
× ⅇxp {−∫

𝑘(𝑘−1)

2𝑁𝑒(𝑡)
ⅆ𝑡

𝑢𝑘+𝑡𝑘

𝑡𝑘

} ′  

(50) and their joint pdf is simply written as the product of these densities, for k = n, n-1,…, 2.  

When it is assumed the population grows exponentially from past to present at a rate 𝛽  (or 



alternatively, decays exponentially from present to the past), expressed as 𝑁𝑒(𝑡) = 𝑁𝑒(0)ⅇ
−𝛽𝑡 

then  

 pr(𝑢𝑘|𝑡𝑘) =
𝑘(𝑘−1)

2𝑁𝑒(𝑢𝑘+𝑡𝑘)
× ⅇxp {−

𝑘(𝑘−1)

2𝑁𝑒(0)
(𝑒𝛽𝑡𝑘−1 − 𝑒𝛽𝑡𝑘)}  

  

Mutation in the Coalescent: 

A mutational model for the Coalescent Process is derived by thinking once again in discrete 

generations and then making a continuous time approximation. Let µ denote the probability of 

the offspring of a gene, from one generation to the next, is a mutant. Let Υr   be the total number 

of mutations accumulated in one gene line of descent after r generations. Under the assumption 

of independence across lineages, this number of mutations can be modeled with a binomial 

distribution with probability µ and total number of trials r. Denote S2 the number of mutations 

separating two individuals. Conditional on the time U2 (in discrete generations) until these two 

individuals find their most recent common ancestor, (𝑆2|𝑈2 = 𝑢2)~Binom(𝑢2′𝜇) and recalling 

that 𝐸[𝑈2] = 𝑁𝑒 it follows that 𝐸(𝑆2) = 𝐸[𝐸(𝑆2|𝑈2)] = 𝐸[2𝑈2𝜇] = 2𝑁𝑒𝜇 = 𝜃.  Using the same 

time-scale change defined above and replacing r with Net the binomial pmf of Υr  becomes 

 Pr(𝛾𝑁𝑡 = 𝑗) = (
𝑁𝑡
𝑗
) (

𝜃

2𝑁𝑒
)
𝑗

(1 −
𝜃

2𝑁𝑒
)
𝑁𝑡−𝑗

→
1

𝑗!
(
𝜃𝑡

2
)
𝑗

𝑒−𝜃𝑡∕2  

as  𝑁𝑒 → ∞. Thus, mutations in the Coalescent are simply modeled with a Poisson process with 

rate 𝜃𝑡 ∕ 2. Critical for this derivation is the conditioning step, and the integration (i.e. 

calculation of the expected value or average) over all the possible genealogy lengths separating 

two individuals. The same integration is needed to compute the overall likelihood functions. 

Likelihood function under the Coalescent with mutations: 



The reader familiar with hierarchical or “state-space models” in biology, will recognize the 

Coalescent process with mutation is indeed a hierarchical stochastic model.  Such models allow 

researchers to incorporate variability in parameters that otherwise might be unrealistically treated 

as fixed. In addition, these models allow the incorporation of multiple layers of process and/or 

observation variability. Until recently, computational difficulties rendered likelihood inference 

for these models unfeasible, or plainly unreliable. For all but the simplest models, the likelihood 

function is written as a multi-dimensional integral. Here we solve this integration problem using 

Data Cloning (DC), which is an efficient and extensively tested computational algorithm to find 

the Maximum Likelihood (ML; 20, 21, 22, 51-56). The DC theorem allows one to apply a typical 

Bayesian posterior calculation and MCMC sampling to a number c of copies (clones) of the data 

(52).  When c is large, the sample mean vector of the resulting simulated posterior distribution 

corresponds to the ML estimates of the parameters.  Furthermore, the sample variance-

covariance matrix of the posterior, multiplied by c, provides estimates of the variances and co-

variances of these ML estimates (the inverse of the observed Fisher’s information matrix). 

Ponciano et al (22) extended this estimation methodology to a complete inferential approach by 

proving and demonstrating how DC for hierarchical models can be easily extended to carry 

model selection, Likelihood Ratio Tests (LRTs) and computing profile likelihood intervals with 

much better coverage than the Wald confidence intervals for small sample sizes. This DC 

methodology is what we use here. We refer the interested reader to Ponciano et al. (20) who 

show step by step the explicit DC calculations for an analytically tractable example. We favored 

this methodology because, unlike any available Bayesian software to work with the Coalescent 

process, we can (and did) explicitly and efficiently assess the identifiability and estimability of 

the model parameters. This assessment is the greatest advantage of using DC for hierarchical 



models vs. conforming to a Bayesian estimation methodology. Here again, we refer the reader to 

Ponciano et al. (20) for explicit and extensive accounts of such assessment. In the results section 

we illustrate the assessment of parameter identifiability using the data coming from one zebra. 

With a sample of size n a total of Sn segregating sites are observed, the likelihood 

function is written as the Poisson probability with Sn variants emerging along the genealogy, 

averaged over all possible genealogies. The joint distribution of the inter-Coalescent times ui,i = 

n, n - 1, …, 2 (see Figure 1) is simply the product of their pdfs 𝑓(𝑢𝑘) = 𝑃𝑟(𝑢𝑘|𝑡𝑘). For the 

constant Ne population model, this product is u 

  

𝑓(𝑢2)𝑓(𝑢3)…𝑓(𝑢𝑛) = 𝑓(𝑢 ) =∏
𝑘(𝑘 − 1)

2
𝑒
{
𝑘(𝑘−1)

2
𝑢𝑘}

𝑛

𝑘=2
 

  

    

whereas for the exponential model where it is assumed the population decays exponentially from 

the present to the past according to the model 𝑁𝑒(𝑡) = 𝑁𝑒(0)𝑒
−𝛽𝑡 , (ⅇβtk−1 − ⅇβtk) 

  

𝑓(𝑢2)𝑓(𝑢3)…𝑓(𝑢𝑛) = 𝑓(𝑢 ) =∏
𝑘(𝑘 − 1)ⅇ𝛽𝑡𝑘−1

2𝑁𝑒(0)

𝑛

𝑘=2

× ⅇxp
{−

𝑘(𝑘−1)
2𝑁𝑒(0)𝛽

(e𝛽𝑡k−1−e𝛽𝑡k)}
 

.

 

 

Since along a branch of length u of the genealogy, the number of mutations is distributed Poisson 

with mean 
𝜃u

2
 for the constant effective population size model, given a particular genealogy (i.e., 



given an particular set of values of  un, un−1, … , u2), the conditional distribution of the total 

number of mutations 𝑆𝑛 | (un, un−1, … , u2)  along this genealogy is going to be Poisson 

distributed with mean 
𝜃𝐿

2
 where 

L = ∑ iui
n
i=2  is the total length of a given genealogical tree (SI Appendix see Fig 1). That is  

 Pr(𝑆𝑛 = 𝑠|(𝑢𝑛, 𝑢𝑛−1, … , 𝑢2) = 
e
−
𝜃𝐿
2 (𝜃𝐿∕2)𝑠

𝑠!
  

For the exponential growth model the value of  changes over time according to 𝜃(𝑡) = 𝜃0𝑒
−𝛽𝑡 

and we arbitrarily assume such changes only occur at the Coalescent events and therefore,  

Pr (𝑆𝑛 = 𝑠|(𝑢𝑛, 𝑢𝑛−1, … , 𝑢2) =  
e
−∑

𝜃𝑖−1𝑖𝑢𝑖
2

𝑛

𝑖=2 (∑
𝜃𝑖−1𝑖𝑢𝑖

2

𝑛

𝑖=2
)
𝑠

𝑠!
. 

Averaging these Poisson probabilities over all the possible genealogy lengths gives us the 

likelihood function as 

Pr(𝑆𝑛 = 𝑠) = ∫ …∫ Pr(𝑆𝑛 = 𝑛|𝑢2, 𝑢3…𝑢𝑛)𝑓(𝑢2)𝑓(𝑢3)…𝑓(𝑢𝑛)ⅆ𝑢2…ⅆ𝑢𝑛 

Both likelihood functions were maximized in JAGS (57) using the DC methodology. Our 

computer code is available in the appendix. After maximizing the likelihood, we used the 

methodology in Ponciano et al. (22) to compute the ML estimates of the latent variables  

u2,u2,…, un
 
and of their sum, which is the TMRCA. We also used Ponciano et al.’s (22) DC 

likelihood ratio test and model selection tools to test the goodness of fit of the exponential vis-à-

vis the constant population size model for the data in all zebra.  For the laboratory data, we 

assumed the constant population size model (58). Joyce et al. (58) demonstrated the overall 

dynamics of a serial passage experiment with plasmid carrying and plasmid-free bacteria 

mirrored the dynamics during a single day because bacteria were grown approximately to the 

same total from one cycle to the next of the experiment. Under these conditions, the bacterial 

q



dynamics could be accurately predicted (59) and estimated by assuming a constant bacterial 

population size at the end of each cycle. The alternative would be to fit a Coalescent model with 

as many bottlenecks as serial passage transfers, which is beyond the scope of this work. The 

laboratory constant population size assumption allowed us to estimate the laboratory Ne directly 

from the Coalescent time scaling and the known number of elapsed generations throughout the 

experiment (214, at 6 generations per day). Since our Coalescent model fitting gave us the ML 

estimate of the TMRCA and one unit of the Coalescent time corresponds to Ne discrete 

generations, we simply obtained our  Ne estimate as 214/TMRCA. Since our model fitting also 

gives us an independent estimate of ϴ for the laboratory, we could solve for the per generation 

mutation rate µ = 0.002.   

Finally, the value of 𝑁𝑒(𝑡)  in the above likelihood can be arbitrarily substituted by ϴ(t) without 

affecting the maximum location in parameter space (60-62). After all, both quantities are 

proportional to each other. After maximization, whenever we fitted the constant population size 

we accomplished the transformation from values of ϴ  to values of  𝑁𝑒 by dividing by twice the 

laboratory rate mutation rate per generation µ. Recalling one unit of Coalescent time corresponds 

to 𝑁𝑒 generations for this simple model and knowing the number of generations per day is 

approximately six, we then transformed the ML estimate of the TMRCA to days and took this 

value as the estimate of the retrospective number of days from death to infection. For the 

exponential model, the transformation from Coalescent time to generations was accomplished by 

solving the question: How many discrete generations j does it take to traverse τ units of 

exponentially decaying Coalescent time, starting from the present to the past?  

Suppose the population size j generations back into the past, corresponding to τ  

Coalescent time units is N(j).  Because the amount of Coalescent time traversed from generation 



i to i+1 back in the past is  
1

𝑁𝑒(𝑖)′
 then during j generations, the total amount of Coalescent time  τ 

is given by 

𝜏 = 𝑔(𝑗) =∑
1

𝑁𝑒(𝑖)

𝑗

𝑗=1

 

.

 
 Having an estimate of τ (which for us will be the TMRCA) all we did was to solve for j in the 

above equation, by using the exponential growth model 𝑁𝑒(𝑡) = 𝑁𝑒(0)ⅇ
−𝛽𝑡 and the integral 

approximation 

∑
1

𝑁𝑒(𝑖)

𝑗

𝑗=1

≈ ∫
1

𝑁𝑒(𝑠)
ⅆ𝑠

𝑗

0

=
1

𝑁𝑒(0)𝛽
(𝑒𝛽𝑗 − 1)

 

.  Accordingly,  𝑗 =
𝑙𝑛(𝑁𝑒(0)𝛽𝜏+1)

𝛽
. 

 For both models, we transformed the time to most recent common ancestor from 

Coalescent time units to real time units assuming two possible values of 𝑁𝑒. First, we estimated 

Ne using the mutation rate estimated from the laboratory experiment and the ML estimate of ϴ 

for each zebra and either the constant population size or exponential population growth models. 

For the exponential population size model, we then estimated the initial Ne when each zebra was 

infected using the ML estimates of β in each zebra. 

 

Data Availability 

All data and detailed methods are available upon request to WCT or NCS. This includes detailed 

protocols, data (cfu counts and timetables for the transfer exp., photos of sampled colonies for 



the mutation rate exp. genotype data including raw fragment size data, etc.) and code for 

coalescence modeling.  
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Figure 1. Histograms of the Time to Most Recent Common Ancestor (TMRCA) for 11 Zebra 

carcasses plotted for 50000 samples of the posterior distribution given the likelihood of the 

constant population size (black) exponential population growth (grey) models. According to data 

cloning theory (DC), the Maximum Likelihood estimate of TMRCA (red vertical line) is given 

by the mean of this 50000 samples. The estimates have been rescaled to represent time in days 

and not Coalescent time. 

 

Figure 2: Illustration of population dynamics of B. anthracis through infection-transmission 

cycles for log(N) B. anthracis population [shaded yellow] over time [split into days and years]). 

A) Ingestion: ungulates grazing at carcass sites ingest a portion of the spores present along with 

forage and soil, creating a bottleneck. B) crossing epithelium: after ingestion only a portion of 

the ingested cells cross the epithelium, starting the infection.  C) climax population: the 

population climax, near the time of death. D) decay: the process of spore decay begins post-

mortem.  

 

 

 Constant Exponential    

Zebra No  Ne TMRCA 0  Ne(1) TMRCA  CFU  

1 1.05 286.16 88.14 1.9(1.4,2.63) 0.69(0.2,1.18) 215.94(120.18,528.12) 1.47(0.86,4.35) 1.71 (0.95, 4.17) 

2 1.08 294.08 89.41 1.92(1.39,2.7) 0.74(0.23,1.23) 212.13(116.52,514.11) 1.39(0.83,3.94) 1.68 (0.92, 4.06) 

3 0.79 215.5 67.18 1.88(1.38,2.62) 0.57(0.1,1.08) 232.67(118.23,634.15) 1.74(0.94,7.33) 1.84 (0.93, 5.01) 

5 0.52 142.3 44.13 1.88(1.38,2.61) 0.36(0.1,0.89) 295.38(126.63,636.11) 2.61(1.13,7.22) 2.34 (1.00, 5.03) 

7 1.09 297.81 90.85 1.92(1.38,2.72) 0.76(0.25,1.26) 209.15(114.66,508.35) 1.36(0.81,3.75) 1.65 (0.91, 4.02) 

8 1.03 280.55 82.05 2.02(1.27,3.33) 0.96(0.29,1.6) 193.25(88.07,621.59) 1.11(0.64,3.37) 1.53 (0.70, 4.91) 

9 0.6 163.24 49.7 1.91(1.31,2.88) 0.58(0.1,1.18) 235.22(101.56,708.49) 1.74(0.86,7.23) 1.86 (0.80, 5.60) 

13 1.1 301.08 91.46 1.92(1.38,2.75) 0.77(0.25,1.28) 208.01(112.63,509.58) 1.33(0.8,3.69) 1.64 (0.89, 4.03) 

14 0.52 142.3 44.13 1.88(1.38,2.61) 0.36(0.1,0.89) 295.38(126.63,636.11) 2.61(1.13,7.22) 2.34 (1.00, 5.03) 

17 0.53 145.22 45.06 1.89(1.38,2.66) 0.45(0.1,1) 260.27(116.15,650.11) 2.15(1.01,7.21) 2.06 (0.92, 5.14) 

19 0.28 77.24 24.26 2.42(1.67,3.64) 1.62(0.63,2.47) 118.09(52.91,375.73) 0.73(0.47,1.81) 0.93 (0.42, 2.97) 

 

Table 1. Parameter estimates for both constant size and exponential population growth models. 𝜃 

is the average number of mutations that separates two genes under the Coalescent process.  It is 

defined as twice the effective population size Ne times the mutation rate µ. This number remains 

the same under the constant effective population size model.  Under the exponential population 

growth model, the zebra’s B. anthracis population value of 𝜃 at the moment of death is 𝜃0 and 

the effective population size changes (from present to past) according to the exponential function 

𝑁𝑒(𝑡) = 𝑁𝑒(0)𝑒
−𝛽𝑡, where 𝛽 is the exponential rate parameter and 𝑁𝑒(O) =

𝜃0

2𝜇
. Accordingly, 

Ne(1) represents the effective population size of B. anthracis in each zebra at moment of 

infection using the experiment’s estimated mutation rate (see full model and statistical analyses 

description in Methods). Confidence intervals are calculated only for the exponential population 



growth model since it was the best fit to the data. TMRCA is the estimated Time to Most Recent 

Common Ancestor expressed in days assuming a mutation rate of 0.002.  

 

 

 


