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Abstract—Systems engineering processes (SEPs) coordinate the
effort of different individuals to generate a product satisfying
certain requirements. As the involved engineers are self-interested
agents, the goals at different levels of the systems engineering
hierarchy may deviate from the system-level goals, which may
cause budget and schedule overruns. Therefore, there is a need of a
systems engineering theory that accounts for the human behavior
in systems design. As experience in the physical sciences shows, a
lot of knowledge can be generated by studying simple hypothetical
scenarios, which nevertheless retain some aspects of the original
problem. To this end, the objective of this article is to study the
simplest conceivable SEP, a principalagent model of a one-shot,
shallow SEP. We assume that the systems engineer (SE) maximizes
the expected utility of the system, while the subsystem engineers
(sSE) seek to maximize their expected utilities. Furthermore, the SE
is unable to monitor the effort of the sSE and may not have complete
information about their types. However, the SE can incentivize the
sSE by proposing specific contracts. To obtain an optimal incentive,
we pose and solve numerically a bilevel optimization problem.
Through extensive simulations, we study the optimal incentives
arising from different system-level value functions under various
combinations of effort costs, problem-solving skills, and task com-
plexities. Our numerical examples show that, the passed-down
requirements to the agents increase as the task complexity and
uncertainty grow and they decrease with increasing the agents’
costs.

Index Terms—Bilevel programming problem, complex systems,
contract theory, expected utility, game theory, mechanism design,
optimal incentives, principal–agent model, systems engineering
theory, systems science.

I. INTRODUCTION

C
OST and schedule overruns plague the majority of large

systems engineering projects across multiple industry sec-

tors including power [1], defense [2], and space [3]. As design

mistakes are more expensive to correct during the production and

operation phases, the design phase of the systems engineering

process (SEP) has the largest potential impact on cost and

schedule overruns. Collopy et al. [4] argued that requirements

Manuscript received March 29, 2019; revised September 20, 2019 and De-
cember 26, 2019; accepted December 26, 2019. This work was supported by
the National Science Foundation under Grant 1728165. (Corresponding author:

Ilias Bilionis.)

The authors are with the School of Mechanical Engineering, Purdue Uni-
versity, West Lafayette, IN 47907-2088 USA (e-mail: ssafarkh@purdue.edu;
ibilion@purdue.edu; panchal@purdue.edu).

Digital Object Identifier 10.1109/JSYST.2020.2964668

engineering (RE), which is a fundamental part of the design

phase, is a major source of inefficiencies in systems engineering.

In response, they developed value-driven design (VDD) [5], a

systems design approach that starts with the identification of

a system-level value function and guides the systems engineer

(SE) to construct subsystem value functions that are aligned

with the system goals. According to VDD, the subsystem en-

gineers (sSE) and contractors should maximize the objective

functions passed down by the SE instead of trying to meet

requirements.

RE and VDD make the assumption that the goals of the human

agents involved in the SEP are aligned with the SE goals. In

particular, RE assumes that, agents attempt to maximize the

probability of meeting the requirements, while VDD assumes

that they will maximize the objective functions supplied by the

SE. However, this assumption ignores the possibility that the

design agents, as all humans, may have personal agendas that

not necessarily aligned with the system-level goals.

Contrary to RE and VDD, it is more plausible that the design

agents seek to maximize their own objectives. Indeed, there

is experimental evidence that the quality of the outcome of a

design task is strongly affected by the reward anticipated by the

agent [6]–[8]. In other words, the agent decides how much effort

and resources to devote to a design task after taking into account

the potential reward. In the field, the reward could be explicitly

implemented as an annual performance-based bonus, or, as it

is the case most often, it could be implicitly encoded in expec-

tations about job security, promotion, professional reputation,

etc. To capture the human aspect in SEPs, one possible way is

to follow a game-theoretic approach [9], [10]. Most generally,

the SEP can be modeled as a dynamical hierarchical network

game with incomplete information. Each layer of the hierarchy

represents interactions among the SE and some sSEs, or the sSEs

and other engineers or contractors. With the term “principal,” we

refer to any individual delegating a task, while we reserve the

term “agent” for the individual carrying out the task. Note that an

agent may simultaneously be the principal in a set of interactions

down the network. For example, the sSE is the agent when

considering their interaction with the SE (the principal), but the

principal when considering their interaction with a contractor

(the agent). At each time step, the principals pass down delegated

tasks along with incentives, the agents choose the effort levels

that maximize their expected utility, perform the task, and return

the outcome to the principals.
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The iterative and hierarchical nature of real SEPs makes them

extremely difficult to model in their full generality. Given that

our aim is to develop a theory of SEPs, we start from the simplest

possible version of a SEP which retains, nevertheless, some

of the important elements of the real process. Specifically, the

objective of this article is to develop and analyze a principal–

agent model of a one-shot, shallow SEP. The SEP is “one-shot”

in the sense that decisions are made in one iteration and they

are final. The term “shallow” refers to a one-layer-deep SEP

hierarchy, i.e., only the SE (principal) and the sSEs (agents) are

involved. The agents maximize their expected utility given the

incentives provided by the principal, and the principal selects

the incentive structure that maximizes the expected utility of

the system. We pose this mechanism design problem [11] as a

bilevel optimization problem and we solve it numerically.

A key component of our SEP model is the quality function

of an agent. The quality function is a stochastic process that

models the principal’s beliefs about the outcome of the delegated

design task given that the agent devotes a certain amount of

effort. The quality function is affected by what the principal

believes about the task complexity and the problem solving skills

of the agent. Following our work [12], we model the design task

as a maximization problem where the agent seeks the optimal

solution. The principal expresses their prior beliefs about the

task complexity by modeling the objective function as a random

draw from a Gaussian process prior with a suitably selected

covariance function.

As we showed in [12], conditioned on knowing the task

complexity and the agent type, the quality function is well

approximated by an increasing, concave function of effort with

additive Gaussian noise. However, we will use a linear approx-

imation for the quality function.

We study numerically two different scenarios. The first sce-

nario assumes that the SE knows the agent types and the task

complexity, but they do not observe the agent’s effort. This situ-

ation is known in game theory as a moral hazard problem [13].

The most common way to solve a moral hazard problem is

to use the first-order approach (FOA) [14]. In the FOA, the

incentive compatibility constraint of the agent is replaced by

its first-order necessary condition. However, the FOA depends

on the convexity of the distribution function in effort which is not

valid in our case. There have been several attempts to solve the

principal–agent model, where the requirements of the FOA may

fail, nonetheless they must still satisfy the monotone likelihood

ratio property [15].

In the second scenario, we study the case of moral hazard with

simultaneous adverse selection [16], i.e., the SE observes neither

the effort nor the type of agents nor the task complexity. This is

a Bayesian game with incomplete information.. In this case, the

SE experiences additional loss in their expected utility, because

the sSEs’ can pretend to have different types. The revelation

principle [17] guarantees that it suffices to search for the optimal

mechanism within the set of incentive compatible mechanisms,

i.e., within the set of mechanisms in which the sSEs are telling

the truth about their types and technology maturity. In this article,

we solve the optimization problem in the principal–agent model,

numerically with making no assumptions about the quality

function.

This article is organized as follows. In Section II, we will

derive the mathematical model of the SEP and we will study the

type-independent and type-dependent optimal contracts. We will

also introduce the value and utility functions. In Section III, we

perform an exhaustive numerical study and show the solutions

for several case studies. Finally, we conclude in Section IV.

II. MODELING A ONE-SHOT, SHALLOW SEP

A. Basic Definitions and Notation

As mentioned in the introduction, we develop a model of a

one-shot (the game evolves in one iteration and the decisions

are final), shallow (one-layer-deep hierarchy) SEP. The SE has

decomposed the system into N subsystems and assigned an

sSE to each one of them. We use i = 1, . . . , N to label each

subsystem. From now on, we refer to the SE as the principal

and the sSEs as the agents. The principal delegates tasks to the

agents along with incentives. The agents choose how much effort

to devote on their task by maximizing their expected utility. The

principal, anticipates this reaction and selects the incentives that

maximize the system-level expected utility.

Let (Ω,F ,P ) be a probability space where, Ω is the sample

space, F is a σ-algebra, and P is the probability measure. With

ω ∈ Ω we refer to the random state of nature. We use upper case

letters for random variables (r.v.), bold upper case letters for

their range, and lower case letters for their possible values. For

example, the type of agent i is a r.v.Θi takingMi discrete values

θi in the set Θi ≡ Θi(Ω) = {1, . . . ,Mi}. Collectively, we de-

note all types with the N -dimensional tuple Θ = (Θ1, . . . ,ΘN )
and we reserve Θ−i to refer to the (N − 1)-dimensional tuple

containing all elements of Θ except Θi. This notation carries to

any N -dimensional tuple. For example, θ and θ−i are the type

values for all agents and all agents except i, respectively. The

range of Θ is Θ = ×N
i=1Θi.

The principal believes that the agents types vary indepen-

dently, i.e., they assign a probability mass function (p.m.f.) on

Θ that factorizes over types as follows:

P [Θ = θ] =

N
∏

i=1

P [Θi = θi] =

N
∏

i=1

piθi (1)

for all θ in Θ, where pik ≥ 0 is the probability that agent i has

type k, for k in Θi. Of course, we must have
∑Mj

k=1 pik = 1, for

all i = 1, . . . , N .

Each agent knows their type, but their state of knowledge

about all other agents is the same as the principal’s. That is, if

agent i is of type Θi = θi, then their state of knowledge about

everyone else is captured by the p.m.f.

P [Θ−i = θ−i|Θi = θi] =
P [Θ = θ]

P [Θi = θi]
=

∏

j �=i

pjθj . (2)

Agent i chooses a normalized effort level ei ∈ [0, 1] for his

delegated task. We assume that this normalized effort is the

percentage of an agent’s maximum available effort. The units
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of the normalized effort depend on the nature of the agent’s

subsystem. If the principal and the agent are both part of same

organization then the effort can be the time that the agent

dedicates to the delegated task in a particular period of time, e.g.,

in a fiscal year. On the other hand, if the agent is a contractor, then

the effort can be the percentage of the available yearly budget

that the contractor spends on the assigned task. We represent the

monetary cost of the ith agent’s effort with the random process

Ci(ei). In economic terms, Ci(ei) is the opportunity cost, i.e.,

the payoff of the best alternative project in agent could devote

their effort. In general, we know that the process Ci(ei) should

be an increasing function of the effort ei. For simplicity, we

assume that the cost of effort of the agents is quadratic

Ci(ei) := ciΘi
e2i (3)

with a type-dependent coefficient cik > 0 for all k in Θi.

The quality function of the ith agent is a real-valued random

Qi(ei) := Qi(ei) process paremeterized by the effort ei. The

quality function models everybody’s beliefs about the design

capabilities of agent i. The interpretation of the quality function

is as follows. If agent i devotes to the task an effort of level

ei, then they produce a random outcome of quality Qi(ei). In

our previous work [12], we created a stochastic model for the

quality function of a designer where we explicitly captured its

dependence on the problem-solving skills of the designer and

on the task complexity. In that work, we showed that Qi(ei) has

increasing and concave sample paths, that its mean function is

increasing concave, and the standard deviation is decreasing with

effort, albeit mildly, it is independent of the problem-solving

skills of the designer, and it only increases mildly with increasing

task complexity. Examining the spectral decomposition of the

process for various cases, we observed that it can be well

approximated by

Qi(ei) = q0iΘi
(ei) + σiΘi

Ξi (4)

where for k in Θi, q0ik(ei) is an increasing, concave, type-

dependent mean quality function, σik > 0 is a type-dependent

standard deviation parameter capturing the aleatory uncertainty

of the design process, and Ξi is a standard normal r.v. If we

further assume that the time window for design is relatively

small, then the q0ik(ei) term can be approximated as a linear

function. Therefore, we will assume that the quality function is

Qi(ei) = κiΘi
ei + σiΘi

Ξi (5)

where κ is inversely proportional to the complexity of the

problem. For instance, a largeκ corresponds to a low-complexity

task while a small κ corresponds to a high-complexity task. The

standard deviation parameterσ captures the inherent uncertainty

of the design process and depends on the maturity of the under-

lying technology. In summary, an agent’s type is characterized

by the triplet cost-complexity-uncertainty.

From the perspective of the principal, the r.v.’s Ξi are inde-

pendent of the agents’ types Θi as they represent the uncertain

state of nature. A stronger assumption that we employ is that

these Ξi’s are also independent to each other. This assumption

is strong because it essentially means that the qualities of the

various subsystems are decoupled. Under these independence

assumptions, the state of knowledge of the principal is captured

by the following probability measure:

P
[

Θ = θ,Ξ ∈ ×N
i=1Bi

]

=

N
∏

i=1

[

piθi

∫

Bi

φ(ξi)dξi

]

(6)

for all θ ∈ Θ and all Borel-measurable Bi ⊂ R. Assuming that

all these are common knowledge, the state of knowledge of agent

i after they observe their type θi (but before they observe Ξi) is

P
[

Θ−i = θ−i, ξ ∈ ×N
i=1Bi|Θi = θi

]

=
P
[

Θ = θ, ξ ∈ ×N
i=1Bi

]

P [Θi = θi]

= P [Θ−i = θ−i|Θi = θi]

N
∏

i=1

[
∫

Bi

φ(ξi)dξi

]

. (7)

Finally, we use E[·] to denote the expectation of any quantity

over the state of knowledge of the principal as characterized by

the probability measure of (6). That is, the expectation of any

function f(Θ,Ξ) of the agent types Θ and the state of nature

Ξ is

E[f(Θ,Ξ)] =
∑

θ∈Θ

∫

RN

f(θ, ξ)

N
∏

i=1

[piθiφ(ξi)] dξ. (8)

Similarly, we use the notation Eiθi [·] to denote the conditional

expectation over the state of knowledge of an agent iwho knows

that their type is Θi = θi. This is the expectation E[·|Θi = θi]
with respect to the probability measure of (2) and we have

Eik[f(Θ,Ξ)] =
∑

θ−i∈Θ−i

∫

RN

f(θi, θ−i, ξ)

∏N
j=1

[

pjθjφ(ξj)
]

piθi
dξ.

(9)

B. Type-Independent Optimal Contracts

We start by considering the case where the principal offers

a single take-it-or-leave-it contract independent of the agent

type. This is the situation usually encountered in contractual

relationships between the SE and the sSEs within the same

organization. The principal offers the contract and the agent

decides whether or not to accept it. If the agent accepts, then they

select their level of effort by maximizing their expected utility,

they work on their design task, they return the outcome quality

back to the principal, and they receive their reward. We show a

schematic view of this type of contracts in Fig. 1(a). A contract

is a monetary transfer function ti : R → R that specifies the

agent’s compensation ti(qi) contingent on the quality level qi.

Therefore, the payoff of the ith agent is the random process

Πi(ei) = ti (Qi (ei))− Ci(ei). (10)

We assume that the agent knows their type, but they choose

the optimal effort level ex-ante, i.e., they choose the effort level

before seeing the state of the nature Ξi. Denoting their monetary

utility function by Ui(πi) = uiΘi
(πi), the ith agent selects an
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Fig. 1. (a) Timing of the contract for type-independent contracts. (b) Timing
of the contract for type-dependent contracts.

effort level by solving

ei
∗
θi

= argmax
ei∈[0,1]

Eiθi [Ui (Πi(ei))] . (11)

Let Q∗
i be the r.v. representing the quality function that the

principal should expect from agent i if they act optimally, i.e.,

Q∗
i = Qi(e

∗
iΘi

). (12)

Then, the system level value is a r.v. of the form

V = v(Q∗) (13)

where v : R
N → R is a function of the subsystem outcomesQ∗.

We introduce the form of the value function, v(q), in Section III.

Note that, even though in this article the r.v. V is assumed to

be just a function of Q∗, in reality it may also depend on the

random state of nature, e.g., future prices, demand for the system

services. Consideration of the latter is problem-dependent and

beyond the scope of this article.

Given the system valueV and taking into account the transfers

to the agents, the system-level payoff is the r.v.

Π0 = V −
N
∑

i=1

ti(Q
∗
i ). (14)

If the monetary utility of the principal isu0(π0), then they should

select the transfer functions t(·) = (t1(·), . . . , tN (·)) by solving

t∗ (·) = argmax
t(·)

E [u0 (Π0)] . (15)

However, guarantee that they want to participate in the SEP, the

expected utility of the sSEs must be greater than the expected

utility they would enjoy if they participated in another project.

Therefore, the SE must solve (15) subject to the participation

constraints

Eiθi [Ui (Πi)] ≥ ūiθi (16)

for all possible values of θi, and all i = 1, . . . , N , where ūiθi is

known as the reservation utility of agent i.

C. Type-Dependent Optimal Contracts

By offering a single transfer function, the principal is unable

to differentiate between the various agent types when adverse

selection is an issue. That is, all agent types, independently of

their cost, complexity, and uncertainty attributes, are offered

exactly the same transfer function. In other words, with a single

transfer function the principal is actually targeting the average

agent. This necessarily leads to inefficiencies stemming from

problems such as paying an agent involved in a low-complexity

task more than a same cost and uncertainty agent involved in a

high-complexity task.

The principal can gain in efficiency by offering different

transfer functions (if any exist) that target specific agent types.

For example, the principal could offer a transfer function that

is suitable for cost-efficient, low-complexity, low-uncertainty

agents, and one for cost-inefficient agents, low-complexity, low-

uncertainty, etc., for any other combination that is supported

by the principal’s prior knowledge about the types of the agent

population. To implement this strategy, the principal can employ

the following extension to the mechanism of Section II-B. Prior

to initiating work, the agents announce their types to the principal

and they receive a contract that matches the announced type. In

Fig. 1(b), we show how this type of contract evolves in time. Let

us formulate this idea mathematically. The ith agent announces

a type θ′i in Θi (not necessarily the same as their true type θi),

and they receive the associated, type-specific, transfer function

tiθ′
i
(·). The payoff to agent i is now

Πi(ei, θ
′
i) = tiθ′

i
(Qi(ei))− Ci(ei) (17)

where all other quantities are like before. Given the announce-

ment of a type θ′i, the rational thing to do for agent i is to select

a level of e∗i (θi, θ
′
i) by maximizing their expected utility, i.e., by

solving

e∗iθiθ′
i
= argmax

ei∈[0,1]
Eiθi [Ui(Πi(ei, θ

′
i))]. (18)

Of course, the announcement of θ′i is also a matter of choice

and a rational agent should select also by maximizing their

expected utility. The obvious issue here is that agents can lie

about their type. For example, a cost-efficient agent (agent

with low cost of effort) may pretend to be a cost-inefficient

agent (agent with high cost of effort). Fortunately, the revelation

principle [17] comes to the rescue and simplifies the situation. It

guarantees that, among the optimal mechanisms, there is one that

is incentive compatible. Thus, it will be sufficient if the principal

constraints their contracts to over truth-telling mechanisms.

Mathematically, to enforce truth-telling, the SE must satisfy the

incentive compatibility constraints

Eiθi [Ui(Πi(e
∗
iΘiθi

, θi))] ≥ Eiθi [Ui(Πi(e
∗
iΘiθ

′
i
, θ′i))] (19)

for all θi �= θ′i in Θi. Equation (19) expresses mathematically

that “the expected payoff of agent i when they are telling the

truth is always greater than or equal to the expected payoff they

would enjoy if they lied.”

Similar to the developments of Section II-B, the quality that

the SE expects to receive is

Q∗
i = Qi(e

∗
iΘiΘi

) (20)
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where we use the fact that the mechanism is incentive-

compatible. The payoff of the SE becomes

Π0 = V −
N
∑

i=1

tiΘi
(Q∗

i ). (21)

Therefore, to select the optimal transfer functions, the SE must

solve

max
t(·,·)

E [u0(Π0)] (22)

subject to the incentive compatibility constraints of (19), and the

participation constraints

Eiθi [Ui(Πi(e
∗
iΘiΘi

,Θi))] ≥ ūiθi (23)

for all θi ∈ Θi, where we also assume that the incentive com-

patibility constrains hold.

D. Parameterization of the Transfer Functions

Transfer functions must be practically implementable. That

is, they must be easily understood by the agent when expressed

in the form of a contract. To be easily implementable, transfer

functions should be easy to convey in the form of a table. To

achieve this, we restrict our attention to functions that are made

out of constants, step functions, linear functions, or combina-

tions of these.

Despite the fact that including such functions would likely

enhance the principal’s payoff, we exclude transfer functions

that encode penalties for poor agent performance, i.e., transfer

functions that can take negative values. First, contracts with

penalties may not be implementable if the principal and the

agent reside within the same organization. Second, even when

the agent is an external contractor penalties are not commonly

encountered in practice. In particular, if the SE is a sensitive

government office, e.g., the department of defense, national

security may dictate that the contractors should be protected

from bankruptcy. Third, we do not expect our theory to be

empirically valid when penalties are included since, according

to prospect theory [18], humans perceive losses differently. They

are risk-seeking when the reference point starts at a loss and risk

averse (RA) when the reference point starts at a gain.

To overcome these issues, we restrict our attention to transfer

functions that include three simple additive terms: a constant

term representing a participation payment, i.e., a payment re-

ceived for accepting to be part of the project; a constant payment

that is activated when a requirement is met; and a linear increas-

ing part activated after meeting the requirement. The role of the

latter two part is to incentivize the agent to meet and exceed the

requirements.

We now describe this parameterization mathematically. The

transfer function associated with type k in Θi of agent i is

parameterized by

tik (qi) = aik,0 + aik,1 H(qi − aik,2)

+ aik,3 (qi − aik,2)H (qi − aik,2) (24)

where H is the Heaviside function (H(x) = 1 if x ≥ 0 and

0 otherwise), and all the parameters aik,0, . . . , aik,3 are non-

negative. In (24), aik,0 is the participation reward, aik,1 is the

award for exceeding the passed-down requirement, aik,2 is the

passed-down requirement, and aik,3 the payoff per unit quality

exceeding the passed-down requirement. We will call these form

of transfer functions the “requirement based plus incentive”

(RPI) transfer function. In the case aik,3 = 0, we call it the

“requirement based” (RB) transfer function. At this point, it

is worth mentioning that the passed-down requirement aik,2
is not necessarily the same as the true system requirement ri,

see our results in Section III. As we have shown in earlier

work [10], the optimal passed-down requirement differs from the

true system requirement. For notational convenience, we denote

by aik ∈ R
4
+ (R = {x ∈ R : x ≥ 0}) the transfer parameters

pertaining to agent i of type k ∈ Θi, i.e.,

aik = (aik,0, . . . , aik,3) . (25)

Similarly, with ai ∈ R
4Mi

+ we denote the transfer parameters

pertaining to agent i for all types, i.e.,

ai = (ai1, . . . ,aiMi
) (26)

and with a ∈ R
4
∑N

i=1
Mi

+ all the transfer parameters

collectively, i.e.,

a = (a1, . . . ,aN ) . (27)

E. Numerical Solution of the Optimal Contract Problem

The optimal contract problem is an intractable bilevel, nonlin-

ear programming problem. In particular, the SE’s problem is for

the case of type-dependent contracts is to maximize the expected

system-level utility over the class of implementable contracts,

i.e.,

max
a

E [u0(Π0)] (28)

subject to

1) Contract Implementability Constraints

aik,j ≥ 0 (29)

for all i = 1, . . . , N, k = 1, . . . ,Mi, j = 0, . . . , 3;

2) Individual Rationality Constraints

e∗ikl = argmax
ei∈[0,1]

Eik[Ui(Πi(ei, l))] (30)

for all i = 1, . . . , N, k = 1, . . . ,Mi, l = 1, . . . ,Mi;

3) Participation Constraints

Eik[Ui(Πi(e
∗
ikk, k))] ≥ ūik (31)

for all i = 1, . . . , N, k = 1, . . . ,Mi; and

4) Incentive Compatibility Constraints

Eik[Ui(Πi(e
∗
ikk, k))] ≥ Eik[Ui(Πi(e

∗
ikl, l))] (32)

for all i = 1, . . . , N and k �= l in {1, . . . ,Mi}.

For the case of type-independent contracts, one adds the con-

straint aik = ail for all i = 1, . . . , N and k �= l in {1, . . . ,Mi}
and the incentive compatibility constraints are removed.
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A common approach to solving bilevel programming prob-

lems is to replace the internal optimization with the correspond-

ing Karush–Kuhn–Tucker condition. This approach is used

when the internal problem is concave, i.e., when it has a unique

maximum. However, in our case, concavity is not guaranteed,

and we resort to nested optimization. We implement everything

in Python using the Theano [19] symbolic computation package

exploit automatic differentiation. We solve the follower problem

using sequential least squares programming as implemented

in the scipy package. We use simulated annealing to find the

global optimum point of the leader problem. We first convert

the constraint problem to the unconstrained problem using the

penalty method such that

f (a) = E [u0(Π0)] +

Nc
∑

i=1

min (gi (a) , 0) (33)

where gi(·)’s are the constraints in (29)–(32). Maximizing the

f(a) in (33), is equivalent to finding the mode of the distribution

πγ (a) ∝ exp (γf (a)) (34)

we use sequential Monte Carlo (SMC) [20] method to sample

from this distribution by increasing γ from 0.001 to 50. To

perform the SMC, we use the “pysmc” package [21]. To ensure

the computational efficiency of our approach, we need to use a

numerical quadrature rule to approximate the expectation over

Ξ. This step is discussed in Appendix A. To guarantee the

reproducibility of our results, we have published our code in

an open source Github repository1 with an MIT license.

F. Value Function and Risk Behavior

We assume two types of value functions, namely, the RB and

RPI. Mathematically, we define these two value functions as

VRB := v0

N
∏

i=1

{H(Q∗
i − 1)} (35)

and

VRPI := v0

N
∏

i=1

{H(Q∗
i − 1)} [1 + 0.2(Q∗

i − 1)] (36)

respectively. In Fig. 2, we show these two value functions for

one subsystem.

We consider two different risk behaviors for individuals, RA

and risk neutral (RN). We use the utility function in (37), for the

risk behavior of the agents and principal

u (π (·)) =

{

a− be−cπ(·), for RA

π (·) , for RN
(37)

where c = 2 for an RA agent. The parameters a and b are

a = b =
1

1− e−c
.

We show these utility functions for the two different risk behav-

iors in Fig. 3.

1[Online]. Available: https://github.com/ebilionis/incentives

Fig. 2. RB value function (black solid line) and RPI value function (green
dashed line).

Fig. 3. Utility functions for RA (black solid line), RN (green dashed line).

III. NUMERICAL EXAMPLES

In this section, we start by performing an exhaustive numerical

investigation of the effects of task complexity, agent’s cost

of effort, uncertainty in the quality of the returned task, and

adverse selection. In Section III-A1, we study the “moral hazard

only” scenario with the RB transfer and value functions. In

Section III-A2, we study the effect of the RPI transfer and value

functions. We study the “moral hazard with adverse selection”

in Section III-A3.

A. Numerical Investigation of the Proposed Model

In these numerical investigations, we consider a single RN

principal and an RA agent. Each case study corresponds to a

choice of task complexity [κ in (5)], cost of effort [c in (3)],

and performance uncertainty [σ in (5)]. With regards to task

complexity, we select κ = 2.5 for an easy task and κ = 1.5 for a

hard task. For the cost of effort parameter, we associate c = 0.1
and c = 0.4 with the low- and high-cost agents, respectively.

Finally, low- and high-uncertainty tasks are characterized by

σ = 0.1 and σ = 0.4, respectively.
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Fig. 4. L and H stand for low and high, respectively, Comp. and Unc. stand for complexity and uncertainty, respectively. The low and high complexity denote
the κ11 = 2.5 and κ11 = 1.5, respectively, low and high cost denote c11 = 0.1 and c11 = 0.4, respectively, low and high uncertainty denote σ11 = 0.1 and
σ11 = 0.4, respectively, RA denotes the RA agent. (a) The RB transfer functions for several different agent types with respect to outcome of the subsystem (Q1)
for moral hazard scenario. (b) The exceedance for the moral hazard scenario using the RB transfer function.

Note that, the parameters κiθi , ciθi , and σiθi have two indices.

The first index i is the agent’s (subsystem’s) number and the

second index is the type of the agent. We begin with a series

of cases with a single agent with a known type denoted by 1

(moral-hazard-only case studies). In these cases, the parameters

corresponding to complexity, cost, and uncertainty take the

values κ11, c11, and σ11, respectively. We end with a series of

cases with a single agent but with an unknown type that can take

two discrete, equally probable values 1 and 2 (moral-hazard-

and-adverse-selection case studies). Consequently, κ11 denotes

the effort coefficient of a type-1 agent 1, κ12 the same for a

type-2 agent, and so on for all the other parameters.

To avoid numerical difficulties and singularities, we replace

all Heaviside functions with a sigmoids, i.e.,

Ĥα(x) =
1

1 + e−αx
(38)

where the parameter α controls the slope. We choose α = 50
for the transfer functions and α = 100 for the value function.

We consider two types of value functions, RB and RPI value

functions, see Section II-F. For the RB value function, we use the

transfer function of (24) constrained so aik, 3 = 0 (RB transfer

function). In other words, the agent is paid a constant amount if

they achieve the requirement and there is no payment per quality

exceeding the requirement. For the case of RPI value function,

we remove this constraint.

1) Moral Hazard With RB Transfer and Value Functions:

Consider the case of a single RA agent of known type and

an RN principal with an RB value function. In Fig. 4(a), we

show the transfer functions for several agent types covering all

possible combinations of low/high complexity, low/high cost,

and low/high task uncertainty. Fig. 4(b) depicts the probability

that the principal’s expected utility exceeds a given threshold for

all these combinations. We refer to this curve as the exceedance

curve. Finally, in Tables I and II, we report the expected utility

TABLE I
EXPECTED UTILITY OF THE PRINCIPAL FOR LOW-COST AGENT

WITH RB VALUE FUNCTION

TABLE II
EXPECTED UTILITY OF THE PRINCIPAL FOR HIGH-COST AGENT

WITH RB VALUE FUNCTION

of the principal for the low- and high-cost agents, respectively.

We make the following observations.

1) For the same level of task complexity and uncertainty, but

with increasing cost of effort.

a) The optimal passed-down requirement decreases.

b) The optimal payment for achieving the requirement

increases.

c) The principal’s expected utility decreases.

d) The exceedance curve shifts to the left.

Intuitively, as the agent’s cost of effort increases, the

principal must make the contract more attractive to en-

sure that the participation constraints are satisfied. As a

consequence, the probability that the principal’s expected

utility exceeds a given threshold decreases.

2) For the same level of task uncertainty and cost of effort,

but with increasing complexity.

a) The optimal passed-down requirement decreases.

b) The optimal payment for achieving the requirement

increases.

c) The principal’s expected utility decreases.

d) The exceedance curve shifts to the left.
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Fig. 5. L and H stand for low and high, respectively, Comp. and Unc. stand for complexity and uncertainty, respectively. The low and high complexity denote
the κ11 = 2.5 and κ11 = 1.5, respectively, low and high cost denote c11 = 0.1 and c11 = 0.4, respectively, low and high uncertainty denote σ11 = 0.1 and
σ11 = 0.4, respectively, RA denotes the RA agent. (a) The RPI transfer functions for several different agent types with respect to outcome of the subsystem (Q1)
for moral hazard scenario. (b) The exceedance curve for the moral hazard scenario using the RPI transfer function.

Thus, we see that an increase in task complexity has a

similar effect as an increase in the agent’s cost of effort.

As in the previous case, to make sure that the agent wants

to participate, the principal has to make the contract more

attractive as task complexity increases.

3) For the same level of task complexity and cost of effort,

but with increasing uncertainty.

a) The optimal passed-down requirement increases.

b) The optimal payment for achieving the requirement

increases.

c) The principals expected utility decreases.

d) The exceedance curve shifts toward the bottom right.

This case is the most interesting. Here, as the uncertainty of

the task increases, the principal must increase the passed-

down requirement to ensure that they are hedged against

failure. At the same time, however, they must also increase

the payment to ensure that the agent still has an incentive

to participate.

4) For all cases considered, the optimal passed down require-

ment is greater than the true requirement (which is set

to one). Note, however, this is not universally true. This

article does not examine all possible combinations of cost,

quality, and utility functions that could have been consid-

ered. Indeed, as we showed in our previous work [10],

there are situations in which a smaller-than-the-true re-

quirement can be optimal.

2) Moral Hazard With RPI Transfer and Value Functions:

This case is identical to Section III-A1, albeit we use the RPI

value function, see Section II-F, and the RPI transfer function

[see (24)]. Fig 5(a), depicts the transfer functions for all com-

binations of agent types and task complexities. In Fig. 5(b), we

show the exceedance curve using the RPI value and transfer

functions. Finally, in Tables III and IV, we report the expected

utility of the principal using the RPI transfer and value functions

for the low- and high-cost agents, respectively. The results are

qualitative similar to Section III-A1, with the following addi-

tional observations.

TABLE III
EXPECTED UTILITY OF THE PRINCIPAL FOR LOW-COST AGENT

WITH RPI VALUE FUNCTION

TABLE IV
EXPECTED UTILITY OF THE PRINCIPAL FOR HIGH-COST AGENT

WITH RPI VALUE FUNCTION

TABLE V
SUMMARY OF THE OBSERVATIONS

1) For the same level of task complexity, uncertainty, and

agent cost, the optimal reward for achieving the re-

quirement decreases compared to the same cases in

Section III-A1. Intuitively, as the principal has the op-

tion to reward the agent based on the quality exceeding

the requirement, they prefer to pay less for fulfilling the

requirement. Instead, the principal incentivizes the agent

to improve the quality beyond the optimal passed-down

requirement.

2) The slope of the transfer function beyond the passed-down

requirement is almost identical to the slope of the value

function.

In Table V, we summarize our observations for the results

in Sections III-A1 and III-A2. In this table, we show how the

passed-down requirement and payment change when we fix two

parameters of the model (we denote it by “fix” in the table) and
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TABLE VI
EXPECTED UTILITY OF THE AGENT WITH UNKNOWN COST FOR

TWO DIFFERENT CONTRACTS

vary the third parameter. We denote increase by ↑ and decrease

by ↓.

3) Moral Hazard With Adverse Selection: Consider the case

of a single RA agent of unknown type, which takes two possible

values, and an RN principal with an RB value function. We

consider two possibilities for the unknown type as follows.

1) Unknown Cost of Effort: Here, we set κ11 = κ12 = 1.5
(p(κ = κ11 = 1.5) = 1), σ11 = σ12 = 0.1 (p(σ = σ11 =
0.1) = 1), and p(c = c11 = 0.1) = 0.5 and p(c = c12 =
0.4) = 0.5.

2) Unknown Task Complexity: For the unknown quality, we

assume that p(κ = κ11 = 2.5) = 0.5 and p(κ = κ12 =
1.5) = 0.5, σ11 = σ12 = 0.4 (p(σ = σ11 = 0.4) = 1),

and c11 = c12 = 0.4 (p(c = c11 = 0.4) = 1).

In this scenario, we maximize the expected utility of the

principal subject to constraints in (29)–(32). The incentive com-

patibility constraint, (32), guarantees that the agent will choose

the contract that is suitable for their true type. In other words,

as there are two agent types’ possibilities, the principal must

offer two contracts, see Fig. 1(b). These two contracts must be

designed in a way that there is no benefit for the agent to deviate

from their true type, i.e., the contracts enforce the agent to be

truth telling.

Solving the constraint optimization problem yields

a11 = a12 = (0, 0.29, 1.06)

i.e., the two contracts collapse into one. Note that the re-

sulting contract is the same as the pure moral hazard case,

Section III-A1, for an agent with type κ11 = 1.5, σ11 = 0.1,

and c11 = 0.4. In other words, the principal must behave as if

there was only a high-cost agent. That is, there are no contacts

that can differentiate between a low- and a high-cost agent in

this case.

A similar outcome occurs for unknown task complexity.

The solution of the constraint optimization problem for this

scenario is

a11 = a12 = (0, 0.08, 1.11)

which is the same as the optimum contract that is offered for the

pure moral hazard case, Section III-A1, for an agent with type

κ11 = 1.5, σ11 = 0.4, and c11 = 0.4. Therefore, in this case the

principal must behave as if there the task is of high complexity.

Note that in both cases above, the collapse of the two contracts

to one contract is not a generalizable property of our model. In

particular, it may not happen if more flexible transfer functions

are allowed, e.g., ones that allow performance penalties.

In Fig. 6, we show the transfer functions for the adverse

selection scenarios with unknown cost and unknown quality. In

Tables VI and VII, we show the expected utility of two types of

Fig. 6. Transfer function for the adverse selection scenarios with unknown
cost (solid line) and unknown quality (dashed line), the agent is an RA. For
unknown cost: κ11 = κ12 = 1.5 with probability 1, σ11 = σ12 = 0.1 with
probability 1, and c11 = 0.1with probability 0.5 and c12 = 0.4with probability
0.5. For unknown quality: κ11 = 2.5 with probability 0.5 and κ12 = 1.5 with
probability 0.5,σ11 = σ12 = 0.4with probability 1, and c11 = c12 = 0.4with
probability 1.

TABLE VII
EXPECTED UTILITY OF THE AGENT WITH UNKNOWN QUALITY FOR

TWO DIFFERENT CONTRACTS

agents and the principal using the optimum contract for unknown

cost and unknown quality, respectively. The unknown cost and

the unknown task complexity can be summarized as follows.

1) The unknown cost comprises the following.

a) The optimum transfer function for this problem is

as same as that the principal would have offered for

a single-type high-cost agent with c11 = c12 = 0.4
(moral hazard scenario with no adverse selection).

b) The expected utility of the low-cost agent (efficient

agent) is greater than that of the high-cost agent.

In this case, the low-cost agent benefits because of infor-

mation asymmetry. In other words, the principal must pay

an information rent to the low-cost agent to reveal their

type.

2) The unknown task complexity comprises the following.

a) The optimum contract in this case is the contract that

the principal would have offered for the single-type

high-complexity task with κ11 = κ12 = 1.5.

b) the expected utility of an agent dealing with a low-

complexity task is greater than that of an agent dealing

with a high-complexity task.

Again, due to the information asymmetry, the agent ben-

efits if the task complexity is low. The principal must pay

an information rent to reveal the task complexity.

B. Satellite Design

In this section, we apply our method on a simplified satellite

design. Typically a satellite consists of seven different subsys-

tems [22], namely, electrical power subsystem, propulsion,
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attitude determination and control, on-board processing, teleme-

try, tracking and command, structures and thermal subsystems.

We focus our attention on the propulsion subsystem (N = 1).

To simplify the analysis, we assume that the design of these

subsystems is assigned to a sSE in a one-shot fashion. Note that,

the actual SEP of the satellite design is an iterative process and

the information and results are exchanged back and forth in each

iteration. Our model is a crude approximation of reality. The goal

of the SE is to optimally incentivize the sSE to produce subsys-

tem designs that meet the mission’s requirements. Furthermore,

we assume that the propulsion subsystem is decoupled from the

other subsystems, i.e., there is no interactions between them, and

that the SE knows the types of each sSE and therefore, there is

no information asymmetry.

To extract the parameters of the model, i.e., a11, σ11, c11,

we will use available historical data. To this end, let I1 be the

cumulative, sector-wide investment on the propulsion subsystem

and G1 be the delivered specific impulse of solid propellants

(Isp). The specific impulse is defined as the ratio of thrust to

weight flow rate of the propellant and is a measure of energy

content of the propellants [22].

Historical data, say D1 = {(I1,i, G1,i)}
S
i=1, of these quan-

tities are readily available for many technologies. Of course,

cumulative investment and best performance increase with time,

i.e., I1,i ≤ I1,i+1 andG1,i ≤ G1,i+1. We model the relationship

between G1 and I1 as

G1 = G1,S +A1(I1 − I1,S) + Σ1Ξ1 (39)

where G1,S and I1,S are the current states of these variables,

Ξ1 ∼ N (0, 1), and A1 and Σ1 are parameters to be estimated

from the all available data, D1. We use a maximum likelihood

estimator for A1 and Σ1. This is equivalent to a least squares

estimate for Ai

Â1 = argmin
A1

S
∑

i=1

[G1,S +A1(I1,i − I1,S)−G1,i]
2

(40)

and to setting Σ1 equal to the mean residual square error

Σ̂1 =
1

S

S
∑

i=1

[

G1,S + Â1(I1,i − I1,S)−G1,i

]2

. (41)

Now, let Gr
1 be the required quality for the propulsion sub-

system in physical units. The scaled quality of a subsystem Q1,

can be defined as

Q1 =
G1 −G1,S

Gr
1 −G1,S

(42)

with this definition, we get Q1 = 0 for the state-of-the-art, and

Q1 = 1 for the requirement. Substituting (39) in (42) and using

the maximum likelihood estimates for A1 and Σ1, we obtain

Q1 =
Â1

Gr
1 −G1,S

(I1 − I1,S) +
Σ̂1

Gr
1 −G1,S

Ξ1. (43)

From this equation, we can identify the uncertainty σ11 in the

quality function as

σ11 =
Σ̂1

Gr
1 −G1,S

. (44)

Fig. 7. Satellite case study (propulsion subsystem): Historical data (1979–
1988) of specific impulse of solid mono-propellants versus cumulative invest-
ment per firm. The solid line and the shaded area correspond to the maximum
likelihood fit of a linear regression model and the corresponding 95% prediction
intervals, respectively.

Finally, we need to define effort. Let T1 represents the time

for which the propulsion engineer is to be hired. The cost of the

agent per unit time is C1. T1 is just the duration of the SEP, we

consider. The value C1T1 can be read from the balance sheets of

publicly traded firms related to the technology. We can associate

the effort variable e1 with the additional investment required to

buy the time of one engineer

e1 =
I1 − I1,S

C1T1
(45)

that is, e1 = 1 corresponds to the effort of one engineer for time

T1. Let us assume there are Z engineers work on the subsystem.

Comparing this equation, (43) and (5), we get that the κ11

coefficient is given by

κ11 =
ZC1T1Â1

Gr
1 −G1,S

. (46)

To complete the picture, we need to talk about the value V0 (in

USD) of the system if the requirements are met. We can use this

value to normalize all dollar quantities. That is, we set

v0 = 1 (47)

and for the cost per square effort of the agent we set

c11 =
ZC1T1

V0
. (48)

Finally, we use some real data to fix some of the parameters.

Trends in delivered Isp [G1 (s)] and investments by NASA [I1
(millions USD)] in chemical propulsion technology with time

are obtained from [23] and [24], respectively. The state-of-the-

art solid propellant technology corresponds to a G1,S value of

252 s and I1,S value of 149.1 million USD. The maximum

likelihood fit of the parameters results in a regression coefficient

of Â1 = 0.0133 s per million USD, and standard deviation Σ̂1 =
0.12 s. The corresponding data and the maximum likelihood fit

are illustrated in Fig. 7. The value of C1 is the median salary

(per time) of a propulsion engineer which is approximately

Authorized licensed use limited to: Purdue University. Downloaded on July 22,2020 at 12:15:00 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SAFARKHANI et al.: TOWARD A THEORY OF SYSTEMS ENGINEERING PROCESSES 11

TABLE VIII
MODEL PARAMETERS FOR TWO CASE STUDIES

Fig. 8. Contracts for two case studies in satellite design.

USD120 000/year, according to the data obtained from [25]. For

simplicity, also assume that T1 = 1 year. Moreover, we assume

that there are 200 engineers work on the subsystem, Z = 200.

We will examine two case studies which is summarized in

Table VIII.

Using RB value function, we depict the contracts for these

two scenarios in Fig. 8.

IV. CONCLUSION

We developed a game-theoretic model for a one-shot shallow

SEP. We posed and solved the problem of identifying the con-

tract (transfer function) that maximizes the principal’s expected

utility. Our results show that, the optimum passed-down require-

ment is different from the real-system requirement. For the same

level of task complexity and uncertainty, as the agent cost of

effort increases, the passed-down requirement decreases and the

award to achieving the requirement increases. In this way, the

principal makes the contract more attractive to the high-cost

agent and ensures that the participation constraint is satisfied.

Similarly, for the same level of task uncertainty and cost of

effort, increasing task complexity results in lower passed-down

requirement and larger award for achieving the requirement.

For the same level of task complexity and cost of effort, as the

uncertainty increases both the passed-down requirement and the

award for achieving the requirement increase. This is because

the principal wants to make sure that the system requirements

are achieved. Moreover, by increasing the task complexity, the

task uncertainty, or the cost of effort, the principal earns less

and the exceedance curve is shifted to the left. Using the RPI

contracts, the principal pays smaller amount for achieving the

requirement but, instead, they pay for per quality exceeding the

requirement.

For the adverse selection scenario with RB value function, we

observe that when the principal is maximally uncertain about the

cost of the agent, the optimum contracts are equivalent to the con-

tract designed for the high-cost agent in the single-type case with

no adverse selection. The low-cost agent earns more expected

utility than the high-cost agent. This is the information rent that

the principal must pay to reveal the agents’ types. Similarly, if the

principal is maximally uncertain about the task complexity, the

two optimum contracts for the unknown quality are equivalent

to the contract that is offered to the high-complexity task where

there is no adverse selection. Note that, the equivalence of the

contracts in adverse selection scenario with the contract that is

offered in absence of adverse selection is not universal. If the

class of possible contracts is enlarged, e.g., to allow penalties,

there may be a set of two contracts that differentiate types.

There are still many remaining questions in modeling SEPs

using a game-theoretic approach. First, there is a need to study

the hierarchical nature of SEPs with potentially coupled sub-

systems. Second, true SEPs are dynamic in nature with many

iterations corresponding to exchange of information between

the various agents. These are the topics of ongoing research

toward a theoretical foundation of systems engineering design

that accounts for human behavior.

APPENDIX A

NUMERICAL ESTIMATION OF THE REQUIRED EXPECTATIONS

For the numerical implementation of the suggested model,

we need to be able to carry out expectations of the form of (9)

a.k.a. (8) and (7). Since, we have at most two possible types

in our case studies, the summation over the possible types is

trivial. Focusing on expectations overΞ, we evaluate them using

a sparse grid quadrature rule [26]. In particular, any expectation

of the form E[g(Ξ)] is approximated by

E[g(Ξ)] ≈
Ns
∑

s=1

w(s)g
(

ξ(s)
)

(49)

where w(s) and ξ(s) are the Ns = 127 quadrature points of the

level 6 sparse grid quadrature constructed by the Gauss-Hermite

1-D quadrature rule.
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