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Thành Nguyen,a Rakesh Vohrab

aKrannert School of Management, Purdue University, West Lafayette, Indiana 47907; bDepartment of Economics, University of
Pennsylvania, Philadelphia, Pennsylvania 19104

Contact: nguye161@purdue.edu, http://orcid.org/0000-0003-4536-3908 (TN); rvohra@seas.upenn.edu (RV)

Received: January 11, 2017

Revised: July 1, 2018; March 25, 2019

Accepted: June 30, 2019

Published Online in Articles in Advance:
September 3, 2019

Subject Classifications: games/group
decisions: cooperative

Area of Review: Games, Information, and
Networks

https://doi.org/10.1287/opre.2019.1909

Copyright: © 2019 INFORMS
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1. Introduction
A number of school choice programs use student
preferences and school priorities to find a stable match
of students to schools. There is also a desire to satisfy
side constraintsmotivated by equity anddistributional
considerations. It is usual to express them in terms of
proportions. As an example, in 1989, the city of White
Plains, New York, required each school to have the
same proportions of Blacks, Hispanics, and “others,”
a term that includes Whites and Asians. The plan
allowed for a discrepancy among schools of only 5%.
Similarly, the 2003 Cambridge,Massachusetts, Public
School District’s goal for matchingwas for each grade
in each school to be within a range of plus or minus 15
percentage points of the district-wide percentage of
low- socioeconomic status (SES) students.1

In prior work, these constraints are expressed as
absolute numbers. For example, a requirement that at
least 10% of students in a school with a capacity of 100
belong to a particular SES becomes a constraint that at
least 10 students in the school belong to the relevant
SES. This assumes that each school is fully allocated. If
the number of students is less than the number of slots,
this clearly cannot be true. This can happen. Chicago
Public Schools, the third largest in the United States,
for example, saw a drop in enrollment from 426,215 in
2000 to about 350,535 in 2013. It classifies almost 50%
of Chicago’s public schools as half empty.2 Even if the
number of students exceeds the number of slots, it does

not guarantee that a school is fully allocated. Student
preferences and their outside options also matter.
In this paper, we consider both lower and upper

bound constraints on the proportions of students from
each category. Constraints on proportions have the ad-
vantage of not committing to an absolute number as a tar-
get. However, under proportionality constraints, stable
matchings need not exist. Furthermore, deciding if there
exists a stable matching with respect to proportionality
is also NP-hard. (See Theorem 3 and Remark 4.)
Absent stability, participantswho find a bettermatch

than the one offered by a clearinghouse will “vote with
their feet,” leading to the unraveling of the entire
market. Our paper proposes a new solution that treats
the diversity constraints as soft but provides guar-
antees on howwell the constraints are satisfied ex post
while preserving stability. Our general result shows
that the violation of proportionality constraints at a
school h is bounded by 2

# assigned students at h. Thus, if a

school accepts more than 100 students, the matching
violates the diversity constraints by at most 2%. How-
ever, the violation increases as the number of accepted
students decreases. This has a natural interpretation as
smaller schools having “softer” diversity constraints.
What determines whether a school receives a small or
large number of accepted students are student pref-
erences. The set of “small” schools cannot be deter-
mined a priori from capacity information alone.
A large-capacity school that is unpopular could
end up with a number of students that is well below

1503



its capacity. Thus, relaxing its proportionality con-
straints allows it to recruit more students. We also
show that the error bound of O 1

# assigned students

( )
is

unavoidable if we want to maintain stability.
The quality of our approximation guarantee depends

on the resultingmatching. One could easily satisfy the
proportionality constraints exactly by assigning no
students at all. This is not true in our case as the stable
matching we return is “maximal” in a certain sense.
We show that, in order to increase the number of
students matched over our matching without making
any student worse off, onemust alter either capacities
or the proportionality constraints.

The need for approximation in our setting is not
driven by the stability requirement but the indivisi-
bility of students. Scarf (1967) extends the notion of
stability to fractional matchings. We use that defini-
tion to find a maximal (in the sense mentioned) stable
fractional matching that satisfies the proportionality
constraints. Our approximation results from round-
ing that fractional stable matching so as to preserve sta-
bility. The associated approximation guarantee can be
interpreted as a measure of how close the integral match-
ing is to the fractional one. In fact, for each school, the
difference between the number of students assigned to it
under the fractional and integer matching is at most one.

We contrast our result with prior work next.

1.1. Related Work

Prior attempts to incorporate diversity considerations
in matching fall into one of four categories that we
list. We give illustrative examples of papers in each
category.3

1.1.1. Ceilings. Distributional concerns are modeled
as ceilings on the number of agents of each type from
the “proposing” side that can be accepted. Ceil-
ing constraints are generally considered easy to ac-
commodate (see Abdulkadiroglŭ and Sönmez 2003).
Regional capacity constraints are ceilings that apply
to subsets on the “accepting” side rather than just
individual members. As long as the subsets have a
laminarity property, satisfying these constraints as
well as the stability is not difficult. See Fleiner and
Kamiyama (2016) and Kojima et al. (2018) for exam-
ples. Ceiling constraints, however, can disadvantage
minorities. This is discussed in Hafalir et al. (2013).

1.1.2. Floors. Instead of imposing ceilings, one imposes
floors on the number of proposers of a particular type.
Satisfyingfloors and stability is generally difficult to do.
This is discussed in Biró et al. (2010) andHuang (2010),
which also describe some solvable cases.

1.1.3. Set-Asides. Instead of ceilings and floors, one
sets aside capacity for each subgroup and then runs a

separate matching process for each subgroup. This
approach generally produces inefficiencies and other
perverse effects in the resulting matching (see Kojima
2012 and Ellison and Pathak 2016), which are subse-
quently addressed by adjusting the set-asides either
dynamically or ex post (see Fragiadakis and Troyan
2016 and Aygun and Turhan 2016 for examples).

1.1.4. Modifying Priorities. Instead of focusing onfloors
and ceilings, one modifies the choice function on the
accepting side so as to favor various groups. If the
modified choice function is specified in the right
way, the deferred acceptance algorithm (or some var-
iant) finds a stable matching. However, there is no ex
post guarantee on realized distribution.4 An example of
this approach can be found in Ehlers et al. (2014). In
lieu of an ex post guarantee, some authors focus on
priorities that produce distributions that are closest
to a target distribution; see Erdil and Kumano (2012)
and Echenique and Yenmez (2015) for examples.
In the first three cases, the relevant “right-hand

sides” are quantities specified before agents on the pro-
posing side make their participation decisions. This
may over-constrain the problem because the number
of proposers who will be matched is endogenous. In
the fourth case, targeted groups are “favored” but
no ex post guarantee is provided on the realized
distribution.
Echenique and Yenmez (2015), for example, intro-

duced several classes of choice functions that reflect
the diversity constraints but also satisfy the sub-
stitutes property. The substitutes property guarantees
the existence of a stable solution. In particular, each
school is assumed to choose the set of students such
that their distribution is “closest” to the target dis-
tribution. This approach does not provide any guar-
antee on the ex post distribution. Example 1 illus-
trates this.

Example 1. Assume three schools h1, h2, h3, each with
capacity 200 and 300 students divided into three
equally sized groups: A,B, and C. School h1 desires
that at least half of its students come from groupA and
at least half from group B. School h2 desires that at
least half of its students come from group B and at
least half from group C. School h3 desires that at least
half of its students come from group C and at least
half from group A. Therefore, the ideal distribution
for each school is 100–100 for the corresponding pair
of groups. Student preferences are as follows: each
student in A prefers h1 to h3; each student in B prefers
h2 to h1; each student in C prefers h3 to h2.

Consider the gross substitute choice function gen-
erated by an ideal point, defined in Echenique and
Yenmez (2015), in which the school chooses a subset
of applying students such that their type distribution
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is closest in Euclidean distance to the ideal one. The
deferred acceptance algorithm stops at the first iter-
ation and assigns all 100 students of groupA to h1, 100
students of group B to h2, and 100 students of group
C to h3.

The core idea in our approach is to relax the inte-
grality constraints of the matching problem so that
students can be fractionally allocated to schools. We
then use an extension of the notion of stability to
fractional matchings from Scarf (1967). We focus on
finding fractional stable matchings. To do this, we
need to generalize Scarf’s lemma, which is of inde-
pendent interest.5 Subsequently, this fractional match-
ing is rounded into an integral stable matching that
only violates the proportionality constraints (but not
the capacity constraints) in a limited way.

Given a fractional stable solution, rounding it into
an integer one that preserves stability can be done via
a network flow algorithm; hence, it is polynomial time.
The problem of finding a fractional stable matching
is polynomial parity argument on directed graphs
complete. However, Tang et al. (2018) and Nguyen
and Vohra (2018) have implemented algorithms for
finding such fractional stable solutions for large-sized
problems and report runtimes that are small enough
to be practical.

Section 2 defines lower bound proportionality
constraints and introduces the notions of bilateral and
coalitional stability. Section 3 derives some attractive
properties of these concepts and shows that stable
solutions, however, might not exist. Section 4 in-
troduces Scarf’s lemma and extends it to problems
with lower bound proportional constraints. Section 5
describes the algorithm. Section 6 analyzes the sta-
bility of the rounded solution. Section 7 extends the
result to upper bound proportionality constraints
and gives an explicit algorithm. We conclude in
Section 8.

2. Proportionality Constraints and
Stability Concepts

To describe the stable matching problem, we label
the two sides of the market doctors and hospitals.
Denote by H the set of hospitals and D the set of
doctors. Each doctor d ∈ D has a strict preference
ordering ≻d overH ∪ {∅}, where ∅ denotes the outside
option for each doctor. If ∅ ≻d h, we say that hospital
h is not acceptable for d. Each hospital h ∈ H has
capacity kh > 0 and a strict priority ordering ≻h over
elements of D ∪ {∅}. If ∅ ≻h d, we say d is not ac-
ceptable for h.

A matching is an assignment of each doctor to a
hospital or the doctor’s outside option; each hospital
is assigned an acceptable set of doctors that does not
exceed its capacity. Given a matching μ, let μ(h) de-
note the subset of doctors matched to h and μ(d)

denote the position that d obtains in the matching.
Thus, μ satisfies

(i) μ(d) ≻d ∅

(ii) if d ∈ μ(h) then d ≻h ∅

(iii) |μ(h)| ≤ kh. (1)

Next, we introduce the proportionality constraints for
hospitals. For each hospital h, let Dh :� {d : d ≻h ∅, h ≻d

∅} be the set of doctors acceptable to h and who find
h acceptable. Each Dh is partitioned into Th sets: D

h �

Dh
1 ∪Dh

2 ∪ .. ∪Dh
Th
. Different hospitals can have dif-

ferent partitions. A doctor d ∈ Dh
t is said to be of type t

for hospital h. In the school choice context, in which
hospitals correspond to schools and doctors to stu-
dents; a type can represent an SES category. Allowing
different schools to have different partitions allows
schools the flexibility to use categories depending on
the proximity of the student’s residence to the school.6

The lower bound proportionality constraint at each
hospital h ∈ H is

αh
t · |μ(h)| ≤ |μ(h) ∩Dh

t | ∀t � 1, . . . ,Th, where

0 ≤ αh
t ≤ 1,

∑

t

αh
t ≤ 1. (2)

A matching satisfying (1) and (2) is called feasible.7

Constraint (2) ensures that the proportion of doctors
of each type in Dh who are matched to hospital h is
above some threshold. These constraints don’t need
to hold for each hospital-type pair. This can be cap-
tured by setting αh

t � 0. Unlike floor constraints, the
left-hand side of (2) is endogenous.

2.1. Bilateral Stability

Next, we introduce our new notion of bilateral sta-
bility. In the presence of (2), one needs to modify
the usual notion of blocking to rule out blocking pairs
that violate (2). A natural way to define (h, d) to be a
blocking pair is that d prefers h to d’s current match
and either (i) h can accept d without violating its
capacity and proportionality constraints, or (ii) h can
replace a lower ranked doctor (according to ≻h) with d
so that h’s capacity and proportionality constraints
are not violated. This is a weak notion of stability that
can lead to a matching that is “wasteful” as shown in
the following example.

Example 2. Consider a single hospital h with capacity
100 and 100 doctors d1, . . . , d100. All doctors strictly
prefer to be matched to h than remain unmatched, and
the priority order of the hospital is d1 ≻h d2 ≻h · · · ≻h

d100. The set of doctors are divided into two subgroups,

Dh
1 � {d1,d3, . . . ,d99} and Dh

2 � {d2,d4, . . . ,d100}. The pro-
portionality constraint is that at least 50% of the doc-
tors in each subgroup are accepted.

Nguyen and Vohra: Stable Matching with Proportionality Constraints
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Under this naive stability definition, the matching
that assigns d1, d2 to h would be stable because no
single doctor can form a blocking coalition with h
because of the proportionality constraints. This is
undesirable compared with the stable matching that
assigns all doctors to h.

To overcome thewaste of 98 positions in Example 2,
we need to require each hospital not to waste posi-
tions if it can accept a set of doctors who demand it
without violating the constraints. Thismeans that one
needs to allow for “coalitional” blocks that contain
multiple students.

Therefore, we introduce a notion of bilateral stability
that additionally requires hospitals to reach their “ef-
fective” capacity. We show that this stability notion
implies coalitional stability and a nonwastefulness
property. To this end, we define for each feasible
matching a set of protected doctors and for each
hospital its effective capacity. A protected doctor can
never be rejected by any hospital to which the doctor
is matched in favor of another doctor.

We start with the notion of waitlisted doctors.

Definition 1 (Waitlisted Doctor). Given a feasible match-
ing μ, a doctor d is waitlisted at h if d and h are mutually
acceptable and either d is unmatched or h ≻d μ(d).

Thus, the waitlisted doctors of a hospital h are those
who prefer to be matched with h over their current
outcome. In other words, each of these doctors would
like to form a blocking coalition with h.

Fix a hospital h and suppose the set of doctors of
type t at this hospital, Dh

t , does not contain any wait-
listed doctors. Then h cannot increase the number of
admitted doctors of type t because all such doctors
are already matched to a more preferred hospital. In
this case, the proportionality constraint correspond-

ing to type t, αh
t |μ(h)| ≤ |μ(h) ∩Dh

t |, implies that the total

number of doctors that hospital h can accept is at most
1
αh
t

|μ(h) ∩Dh
t |. This motivates the following definition

of a hospital’s effective capacity.

Definition 2 (Effective Capacity). Consider a feasible
matching μ and a hospital h. Let T0 be the set of types
t, such that Dh

t contains no waitlisted doctor. Denote
hospital h’s effective capacity with respect to μ by k

μ
h ,

where

k
μ
h :� min kh,min

t∈T0

1

αh
t

|μ(h) ∩Dh
t |

{ }
, and if

T0 � ∅ or αh
t � 0, then k

μ
h :� kh.

Remark 1. Given μ, k
μ
h is an upper bound on the num-

ber of positions that h can fill by accepting more
waitlisted doctors without violating any proportion-
ality constraints. Because μ is feasible, it satisfies both
the capacity and the side constraints. Thus, it is clear

that |μ(h)| ≤ k
μ
h . Furthermore, from the preceding def-

inition, if hospital h is not at its effective capacity with
respect to μ, |μ(h)| < k

μ
h ; then |μ(h)| < kh, and there is no

t ∈ T0 such that the proportionality constraint corre-
sponding to Dh

t binds, that is, |μ(h)| � 1
αh
t

|μ(h) ∩Dh
t |.

In what follows, when μ is clear from context we
omit the qualifier “with respect to μ” when referring
to a hospital’s effective capacity. Next, we define the
types of doctors who are protected.

Definition 3 (Protected Type of Doctors). Given a feasible
matching μ, the set of type t doctors at hospital h is
protectedwith respect to μ if (2) binds with respect to the
effective capacity, that is

|μ(h) ∩Dh
t | � αh

t · k
μ
h . (3)

In what follows, if μ is clear from its context, we omit
the qualifier “with respect to μ” when referring to
protected doctors.

Example 3. We illustrate the definition of effective
capacity and protected doctor using Figure 1. Consider
the group Dh1

2 . Doctor d7 is the only member of Dh1
2 not

matched to h1, and this doctor prefers h2 to h1. Thus, the
group Dh1

2 does not contain any waitlisted doctor. This
means that h1 cannot admit more doctors from Dh1

2 .
Together with the proportionality constraint for group
Dh1

2 , it implies that hospital h1 cannot admit more than
2/(αh1

2 ) � 6 doctors. The effective capacity of h1 be-
comes six instead of its original capacity of eight.

As the effective capacity of h1 is six, the propor-
tionality constraints corresponding toDh1

1 and Dh1
2 bind;

thus,Dh1
1 andDh1

2 are protected. If a type is protected,
it means that the hospital cannot decrease the num-
ber of doctors of this type who are matched to it. Why?
If the hospital decreases this number, it also needs to
decrease the total number of doctors to satisfy the
proportionality constraints.
To motivate the definition of stability, consider d3,

who prefers to be matched with h1 rather than d3’s
current match, h2. As h1 is at its effective capacity, h1
must reject a doctor currently matched to h1 in order
to accept d3. To satisfy the proportionality constraint,

Figure 1. (Color online) An Example of Effective Capacity
and Protected Doctors
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h1 can only reject either a doctor of the same type as d3
(d1 or d2) or an unprotected doctor (d9 or d10). The
following definition requires this matching to be
stable if h1 has no incentive to replace d3 with any of
these doctors. That is, h1 prefers each of d1, d2, d9, and
d10 to d3.

Next, we introduce the notion of stabilitymotivated
by Example 3.

Definition 4 (Bilateral Stability). A feasible matching μ
is bilaterally stable if it satisfies the following two
conditions:

1. Each hospital with a nonempty waitlist is at its

effective capacity, that is, |μ(h)| � k
μ
h .

2. If da is on the waitlist of h, dr ∈ μ(h), and da ≻h dr,
then dr is protected, and da and dr are not of the same
type.

The first condition ensures that no “in-demand”
hospital can increase the number of doctors it accepts.
The second condition ensures that, if h tries to reject dr
to accept a better da, then it violates the side constraint.
This is because dr is protected, and da is not of the same
type as dr; thus, by rejecting dr, hospital h violates the
side constraint of the group containing dr.

In Definition 2, effective capacities can be fractional.
As highlighted in Remark 3, this makes bilateral
stability a very strong concept because, by condition 1
of Definition 4, if a matching is bilaterally stable, then
effective capacities are integral. One can modify this
definition, for example, by taking the floor function of
the bound ⌊ 1

αh
t

|μ(h) ∩Dh
t |⌋ without changing our main

results. This is because our method starts from a
fractional solution for which a fractional effective ca-
pacity is natural.We then round the fractional solution
and change the parameters αh

t accordingly so that the
effective capacities are also integral.

2.2. Coalitional Stability

To define coalitional stability, we must specify each
hospital’s hpreferences over subsets ofD in away that
respects ≻h as well as its capacity and proportionality
constraints and nothing more. This can be done via a
choice function, Choiceh(.) : 2

D → 2D.

Definition 5. The choice function of h on a subset of
acceptable doctors D∗, denoted Choiceh(D

∗), is a maxi-
mum cardinality subset of D∗ that satisfies h’s capacity
constraints and proportionality constraints. If there are
multiple such subsets, then Choiceh(D

∗) is the best one
in the lexicographical order according to ≻h.

8

Given the choice function of the hospitals, next we
consider the standard concept of coalitional stability in
the many-to-one matching setting, which means that no
group of doctors and possibly multiple hospitals can
deviate from the matching to obtain better payoffs.

Definition 6 (Coalitional Stability). A matching μ is co-
alitionally stable if, for every set of doctors D∗ who
prefer h to their current match,Choiceh(μ(h) ∪D∗) � μ(h).

Remark 2. In contrast to the solution in Example 1,
under the choice function of Definition 5, there is a
unique coalitionally stable solution in which hospitals
h1, h2, and h3 get their 50 highest priority doctors from
groups A,B, and C, respectively, and the remaining
doctors are allocated to hospitals so that the propor-
tionality constraints are satisfied.

3. Properties of Stable Matchings
In this section, we show that bilateral stability implies
coalitional stability. Subsequently, we demonstrate
that coalitionally stable matchings are nonwasteful
and, in a certain sense, cannot be improved upon. This
means that bilateral stable matchings inherit the same
properties. These properties come at a cost. We show
by an example that a stable matching need not exist.
At the end of this section, we illustrate how our ap-
proach overcomes this problem.

Theorem 1. If μ is a bilateral stable matching, then μ is also
coalitionally stable.

We need to show that, for any group of doctors D∗

on the waitlist of h, Choiceh(μ(h) ∪D∗) � μ(h). First
notice that, because h is at its effective capacity, h
cannot increase the number of doctors without vio-
lating the proportionality constraints. Thus,

|Choiceh(μ(h) ∪D∗)| � |μ(h)|.

Let DA :�Choiceh(μ(h) ∪D∗) \ μ(h) be the set of ac-
cepted doctors. Let DR :�μ(h) \ Choiceh(μ(h) ∪D∗) be
the set of rejected doctors. Assume DA and DR are not
empty. Let dmin be the lowest ranked doctor amongDR

according to ≻h. Because h breaks ties according to the
lexicographical order, all doctors in DA must be more
preferred than dmin.
If dmin is unprotected, it contradicts the definition of

bilateral stability because any da ∈ DA can replace dmin

at h. If dmin is protected, then in order to satisfy this
type’s proportionality constraint, h needs to accept a
doctor of the same type. Thus, there should be a da ∈
DA that is of the same type as dmin. In this case, we can
replace dmin with a better doctor, da, which contradicts
the definition of bilateral stability. Hence, DA and DR

are empty, and thus, Choiceh(μ(h) ∪D∗) � μ(h).

Remark 3. The converse of Theorem 1 is false. Con-
sider a hospital with 99 positions and 50 men and 50
women applicants. The hospital needs to accept at least
50% men and 50% women. The coalitionally stable
matching is to accept the best 49 men and the best 49
women. Under this matching, the hospital has both
men and women on the waitlist and the hospital leaves
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one position unfilled. Hence, this matching is not bi-
laterally stable because the effective capacity of the
hospital according to Definition 2 is 99. In our solution,
we first find a fractional matching which assigns 49.5
best men and 49.5 best women to the hospital, which
matches the hospital’s effective capacity. We round the
fractional solution to 50 men and 49 women (or 49 men
and 50 women). The proportionality constraints then
are modified to 50

99 and
49
99 . Under these new constraints,

the matching of 50 men and 49 women is bilaterally
stable.

In the remainder of the paper, for short, we say that
amatching is stable if it is bilaterally stable; otherwise,
we specifically label it coalitionally stable.

The next theorem demonstrates the nonwastefulness
and nonimprovability property of coalitionally stable
matchings.

Theorem 2. Given a feasible matching that is coalitionally
stable, there is no other feasible matching (not necessarily
stable) that assigns more doctors to hospitals such that no
doctor is worse off.

Theorem 2 shows that, if one would like to assign
more doctors to hospitals, then some doctors will
be worse off. Hence, there is a trade-off between the
number of doctors assigned and the welfare of each
doctor, and a coalitionally stable matching is on the
efficient frontier of that trade-off.9

Proof of Theorem 2. Let μ be a feasible and stable
matching. Assume μ′ assignsmore doctors to hospitals,
and under μ′, no doctors are worse off than in μ. Then
there must be at least one hospital h that obtains more
students under μ′: |μ′(h)| > |μ(h)|.

Let D∗ :�μ′(h) \ μ(h). Because no doctors are worse
off under μ′, each doctor in D∗ prefers h to the doc-
tor’s match in μ. Observe that μ(h) ∪D∗ � μ(h) ∪ μ′(h)
contains μ′(h), which is a set of doctors that satisfies
the capacity and proportional constraints and has a
larger cardinality than μ(h); thus, Choiceh(μ(h) ∪D∗) ��
μ(h). This shows that μ is not coalitionally stable, a
contradiction.

Next, observe that the choice function of Defini-
tion 5 violates the substitutes property; hence, a stable
matching need not exist. This is captured in the fol-
lowing result.

Theorem3. A stable matching (bilateral or coalitional) need
not exist.

To see this, we consider an example similar to
Example 1; that is, there are three schools h1, h2, h3,
each with capacity 200 and the students divided into
three equally sized groups: A,B, and C. School h1
desires that at least half of its students come from
group A and at least half from group B. School h2
desires that at least half of its students come from

group B and at least half from group C. School h3
desires that at least half of its students come from
group C and at least half from group A. Student pref-
erences are as follows: each student in A prefers h1 to
h3; each student in B prefers h2 to h1; each student in
Cprefers h3 to h2. The only difference from Example 1
is that each group A,B,C contains 99 students instead
of 100.
A stable matching does not exist. For a contradic-

tion, suppose otherwise. Because of the proportion-
ality constraints, each hospital accepts an even number
of students, and thus, the total number of students
accepted is even. Therefore, there is at least one stu-
dent rejected. There cannot be two students from two
different groups rejected because they can form a
blocking coalition with at least one hospital. Assume,
without loss of generality, only doctors from group C
are rejected. This means that no doctors in group B
are assigned to h1 because otherwise, this doctor, to-
gether with the rejected doctor in group C, can form
a blocking coalition with hospital h2. Because of the
proportionality constraint for h1, no doctors from
group A are assigned to h1. Therefore, all 99 doc-
tors from group A are assigned to h3. This leads to a
contradiction because the proportionality constraint
at h3 implies that all 99 doctors from group C are also
assigned to h3.

Remark 4. Biró et al. (2010) shows that deciding if a
stable matching exists for a school admissions problem
with a lower bound is NP-hard. In particular, in ad-
dition to its (upper) bound, each school has a lower
bound. Call a school open if the number of students
assigned to it is between the lower and the upper
bound. A closed school cannot accept any students.
A matching requires every school is either open or
closed. A matching is stable in this context if, in ad-
dition to the standard blocking pair, it also allows for a
blocking coalition of a closed school and a group of
students of size at least the lower bound.

Theorem 1 of Biró et al. (2010) shows that the
problem is NP-hard even when each school has an
upper and lower bound of either (1, 1) or (3, 3). We
reduce this problem to a matching problem with pro-
portionality constraints as follows. For each school,
introduce a dummy student who belongs to a special
group and is only interested in that school. If the
school’s upper and lower bounds are one and one,
respectively, then the school has a capacity of two,
and it requires at least 50% of students from the
special group and 50% from the “normal” students. If
the school’s upper and lower bounds are three and
three, respectively, then the school has a capacity of
four, and it requires at least 25% of students from the
special group and 75% from the normal students. It is
easy to see the correspondence between the school
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admissions problem with lower bound and the stable
matching with proportionality constraints. This re-
duction shows that deciding if a coalitionally stable
matching exists with proportionality constraints is
NP-hard.

In the remainder of this paper, we overcome the
problem of nonexistence in two steps. First, assume
that the doctors are divisible. Using an extension of
Scarf’s lemma, we show the existence of a fractional
dominating solution that satisfies the proportionality
constraints. Domination is the fractional analog of
stability. Second, we round the fractional solution to
an integral one. Rounding violates the proportion-
ality constraints but in a minimal way.

To illustrate these ideas, consider the example in the
proof of Theorem 3. First, suppose doctors can be frac-
tionally allocated to hospitals. In this example, there
is a unique dominating solution that assigns to h1, h2,
and h3 the 49 1

2 best doctors from groups A,B, and C,
respectively, and the remaining doctors are allocated
wholly to each hospital. Using this allocation, the
second step in our algorithm finds an integral one by
rounding it to the nearest integers. In this example,
49 1

2 can be rounded to either 49 or 50, and thus, at least
one hospital receives a distribution of students that
slightly violates its proportionality constraint.

This example can be generalized so that each group
A, B, and C contains 2k + 1 doctors. This shows that,
to obtain a stable matching, one needs to violate the
proportionality constraints, and the error bound of

O 1
# assigned students

( )
is unavoidable.

4. Fractional Stable Matching
This section is the technical heart of the paper. We use
Scarf’s lemma to obtain a fractional stable matching.
A direct application of the lemma does not accom-
modate (2). We derive what we call a “conic repre-
sentation” of the lemma. This is both new and general
enough to apply to other types of side constraints, but
in this paper, we confine ourselves to proportionality
constraints.

We first describe Scarf’s lemma and show how it
can be applied to matching.

4.1. Scarf’s Lemma

Definition 7. Let ! be an m × n nonnegative matrix
with at least one positive entry in each row and column
and let b ∈ R

m
+ be a positive vector. Associated with

each row i of! is a strict ranking ≻i over the columns in
{1 ≤ j ≤ n : !ij > 0}. Let3 � {x : x ≥ 0,!x ≤ b}. We say
x ∈ 3 dominates column j if there exists a row i such that

• !ij > 0 and the constraint ibinds, that is, (!x)i � bi;
• k ≻i j for all columns k �� j such that !ikxk > 0.

In this case, we say that x dominates column j via
row i.

Theorem 4 (Scarf 1967). There exists an extreme point of
3 that dominates every column of !.

To understand the connection of domination to
stability, it is helpful to consider the matching prob-
lem without side constraints. For each d ∈ D ∪ {∅}
and h ∈ H ∪ {∅}, let x(d, h) � 1 if we assign d to h and
zero otherwise. Now, each doctor d ∈ D can be as-
signed to at most one hospital:

∑

h∈H∪∅

x(d, h) ≤ 1 ∀d ∈ D. (4)

Each hospital h can be assigned at most kh doctors:
∑

d∈D∪∅

x(d, h) ≤ kh ∀h ∈ H. (5)

Each inequality (4) inherits the order that doctor d,
that is, ≻d, has over H ∪ {∅}. Each inequality (5) in-
herits the priority ordering that hospital h, that is, ≻h,
has over D ∪ {∅}. As follows, system (4) and (5) along
with a nonnegativity restriction on the x variables
satisfies the conditions of Scarf’s lemma.
Now, as is well known, every nonnegative extreme

point of (4) and (5) corresponds toamatching. ByScarf’s
lemma, one of these extreme points, x∗, say, is domi-
nating. To show that the matching implied by x∗ is
stable, suppose a pair (d∗, h∗) such that x∗(d∗, h∗) � 0.We
show that (d∗, h∗) cannot be a blocking pair. By domi-
nation, there must exist a binding constraint from (4)
and (5). Either it is indexed by d∗ or h∗, say, d∗. Then

∑

h∈H∪{∅}

x∗(d∗, h) � 1.

As x∗(d∗, h∗) � 0, it follows that exactly one h′ ∈ H ∪ {∅}
exists such that x∗(d∗, h′) � 1. Further, by domination,
h′ ≻d∗ h

∗, which means (d∗, h∗) cannot be a blocking pair.
The side constraints in (2) can be written as

αh
t ·

∑

d∈D

x(h, d) ≤
∑

d∈Dh
t

x(h, d) ∀t � 1, . . . ,Th, ∀h ∈ H.

(6)

It is tempting but incorrect to append inequality (6)
to (4) and (5) and invoke Scarf’s lemma. If we re-
write (6) in the form !x ≤ b, the relevant inequalities
have negative coefficients, and the corresponding co-
ordinates of b are zero. Therefore, Scarf’s lemma does
not apply. Also, the condition of stability in our set-
ting is now endogenous and depends on the effec-
tive capacity of a hospital. Because of this, it is not
clear how one can apply Scarf’s lemma directly as in
Nguyen and Vohra (2018).

4.2. Conic Representation

We need another approach to determine a dominat-
ing solution of (4) and (5) that satisfies (6). We exploit
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the fact that the constraints in (6) form a polyhedral
cone. Therefore, any point in the cone can be ex-
pressed as a nonnegative linear combination of its
generators. We give a high-level description first.

Consider the problem of finding a dominating
solution satisfying resource constraints !x ≤ b and
side constraints }x ≥ 0. The set {x ∈ R

n
+|}x ≥ 0} is a

polyhedral cone and can be rewritten as {9z|z ≥ 0},
where 9 is a finite nonnegative matrix. The columns
of 9 correspond to the generators of the cone {x ∈
R

n
+|}x ≥ 0}. The “trick” is to apply Scarf’s lemma to

4 � {z ≥ 0 : !9z ≤ b}. To do so, we need to endow each
row of !9 with an ordering so that domination with
respect to this system corresponds to stability.

Figure 2 gives a geometric illustration of (4)–(5).
The polytope in Figure 2 corresponds to the match-
ing polytope (4) and (5). The inequalities (6) are re-
presented by the cone. The conic version of Scarf’s
lemma gives us a fractional dominating solution, x∗,
say, that is inside the cone but on the boundary of
the matching polytope. In particular, there is no
other dominating point in the matching polyhedron
that vector dominates x∗. In other words, x∗ maxi-
mizes a suitable positive weighted sum of doctor’s
utilities. Our rounding algorithm, described in the
next section, rounds x∗ into an integral solution on
the boundary of the polytope but possibly outside
the cone.

Next, we show how to determine the generators of
the cone associated with (6).

4.2.1. Generators of a Cone. The following is standard
(see Nemhauser and Wolsey 1988). See Figure 3 for
an illustration.

Lemma 1. For any matrix }, if the set {x ∈ R
n
+|}x ≥ 0}

contains a nonzero vector, there exists a finite set of non-
negative vectors 9 such that this set can be expressed as∑

vi∈9 zivi|zi ≥ 0
{ }

. The set of vectors, 9, are called the
generators of {x ∈ R

n
+|}x ≥ 0}.

The proportionality constraints are of the form
}x ≥ 0. To determine the generators of (6), fix a hos-
pital h ∈ H and focus on

αh
t ·

∑

d∈D

x(h, d) ≤
∑

d∈Dh
t

x(h, d) t � 1, . . . ,Th. (7)

It is straightforward to see that the generators can be
described in this way:

1. Select one doctor from each Dh
t and call it dt.

2. Select an extreme point of the system

∑Th

t�1

v(dt, h) � 1, αh
t ≤ v(dt, h) ∀t � 1, . . . ,Th.

An extreme point can be determined using the fol-
lowing two-step procedure.

a. Choose an index t∗ ∈ {1, . . . ,Th} and set v(dt∗ , h) �
1 −

∑
t ��t∗ α

h
t ≥ αh

t∗ .
b. For all t �� t∗, set v(dt, h) � αh

t .
As there are Th types of doctors and each type

contains |Dh
t | doctors, the number of generators asso-

ciated with hospital h can be as large as Th ·∏t |D
h
t |.

10

Let 9h be the set of generators associated with
hospital h. Each v ∈ 9h has Th nonzero coordinates
and can be interpreted as a probability vector. Thus,
from the point of view of each h ∈ H, each v ∈ 9h can
be seen as a lottery over doctors in D.
We illustrate with an example.

Example 4. Suppose H � {h1, h2} and two doctors d1 ∈

Dh1
1 and d2 ∈ Dh1

2 . Hospital h2 considers all doctors to be
the same type, that is, Dh2

1 � {d1, d2}.

The only proportionality constraints are imposed
on h1: the number of type 1 doctors should be at least
one third of the total number of doctors assigned to h1.
This constraint can be written as

1

3
[x(d1, h1) + x(d2, h1)] ≤ x(d1, h1).

The set of generators for this constraint are

9h1 � {(1/3, 2/3); (1, 0)} :� {v1, v2}.

We can interpret v1 � (1/3, 2/3) to mean assigning d1
and d2 to h1 with probability 1/3 and 2/3, respectively.

Figure 2. Geometric Presentation of Conic Scarf’s Lemma

Note. Cone (O, a, b, c) intersects with polytope (0,A,B,C,D,E).

Figure 3. Cone and Its Generators
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All solutions satisfying the proportionality constraints
at h1 can be expressed as a linear combination of v1
and v2.

There are no proportionality constraints imposed
on h2. This is the same as setting αh2

1 � 0. The set of
generators for h2 are

9h2 � {(1, 0), (0, 1)} :� {v3, v4}.

We interpret v3 � (1, 0) to mean assigning d1 to h2 with
probability one and d2 to h2 with probability zero.

4.3. Conic Version of Scarf’s Lemma
Associated with each hospital h ∈ H is a set 9h of
generators. Let 9 be the matrix whose columns cor-
respond to the generators in

⋃
h∈H 9h. Let ! be the

constraint matrix associated with (4) and (5). Each
row of the matrix ! ·9 corresponds to an element of
either D or H. The columns of ! ·9 correspond to the
set of generators. For each h ∈ H, a column in ! ·9
that corresponds to v ∈ 9h will have a “1” in the hth

row and v(d, h) in the dth row. All other entries in that

column will be zero. Let z ∈ R
|
⋃

h∈H 9h |
+ be a nonnega-

tive weight vector on the set of generators. The con-
straints ! ·9 · z ≤ b can be interpreted as follows:

• For each hospital h, the total weight of generators
in 9h is at most kh.

• For each doctor d, the weight of generators that
assigns d to a hospital is at most one.

Example 5. Consider Example 4. Suppose kh � 2. The
polyhedron 4 is displayed here.

v1 v2 v3 v4
d1

d2

h1

h2

1/3 2/3 1 0

2/3 1/3 0 1

1 1 0 0

0 0 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

· z ≤

1

1

2

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

To invoke Scarf’s lemma, we need each row of !9

to have a strict ordering over the columns, that is,
generators, in its support. The support of each gen-
erator corresponds to one hospital and a coalition of
doctors at most one of each type.

1. For each h ∈ H, we order the generators in 9h

lexicographically. Given v, v′ ∈ 9h, among the doctors
who are assigned by v, v′ with positive probability to
h, let d1 and d′1 be the lowest ranked doctors (accord-
ing to ≻h). If d1 ≻h d

′
1, then h ranks v over v′. We write

this as v ≻h v
′. If d1 � d′1, we compare v(d1, h) and

v′(d1, h). If v(d1, h) > v′(d′1, h), then h ranks v over v′, that
is, v ≻h v

′. If it is the reverse, then v′ ≻h v. If v(d1, h) �
v′(d′1, h), move to the next lowest ranked doctor in each
generator and so on. Because v �� v′, this procedure
must terminate in an unambiguous ordering.

2. For each d ∈ D and any v, v′ ∈ ∪h∈H9h, we rank v
above v′ if v assigns d to a higher ranked hospital

(according to≻d) than v′ does.Wewrite this as v ≻d v
′.

If v, v′ ∈ 9h for some h ∈ H, then v ≻d v
′ if v(d, h) >

v′(d, h) and the reverse otherwise. If v(d, h) � v′(d, h),
we order v and v′ in the same way that h would.

Example 6. Continuing Example 4, let h1 ≻d h2 for all
d ∈ D and d1 ≻h d2 for all h ∈ H. The order of each el-
ement of D ∪H over the set of generators is displayed
here.

v1 v2 v3 v4
d1

d2

h1

h2

1/3 2/3 1 0

2/3 1/3 0 1

1 1 0 0

0 0 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

· z ≤

1

1

2

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.; order :

v1 ≻d1 v2 ≻d1 v3

v2 ≻d2 v1 ≻d2 v4

v2 ≻h1 v1

v3 ≻h2 v4.

Consider the order for h1 on v1, v2. Because they
both assign d1 and d2 to h1, we need to compare the
probability of assigning d2, which is the worst doctor
for h1. Because v1 assigns d2 with higher probabil-
ity, v2 ≻h1 v1.

Consider the order for d1 on v1, v2, and v3. Because
v1, v2 assigns d1 to h1 and v3 assigns d1 to h2, thus, d1
prefers both v1 and v2 to v3. Between v1 and v2, the one
that assigns with a lower probability is better, and
thus, v1 ≻d1 v2.

Remark 5. By Theorem 4, there exists a dominating
solution of 4, call it z∗. Let

9
∗ � {v ∈ 9 : z∗v > 0} (8)

be the set of generators with positive z∗ weight. De-
note by 9∗

h the subset of generators in 9∗ that assigns
doctors to h and similarly denote by 9∗

d the subset of
generators in 9∗ that assign d to a doctor. Because z∗

is a dominating solution, for every generator v that
assigns a group of doctors d1, . . . ., dTh

to h, one of the
following must be true:
• The constraint 4 corresponding to h binds. That

is, h is fully allocated, and h ranks all the generators in
9∗

h over v.
• There is a di ∈ {d1, . . . ., dTh

} such that the con-
straint in 4 corresponding to di binds, and di ranks all
the generators in 9∗

di
over v.

In Example 6, the following is a dominating solu-
tion (that we interpret later):

z∗v1 � 1; z∗v2 � 1; z∗v3 � 0, z∗v4 � 0.

We can recover the corresponding matching x∗ by
setting x∗ :�9z∗:

x∗(d1, h1) � 1; x∗(d2, h1) � 1; x∗(d1, h2) � 0; x∗(d2, h2) � 0.

Notice, in this case, the matching is integral. If x∗ is
integral, it corresponds to a stable matching. In general,

Nguyen and Vohra: Stable Matching with Proportionality Constraints
Operations Research, 2019, vol. 67, no. 6, pp. 1503–1519, © 2019 INFORMS 1511



x∗ is fractional. In the next section, we provide an al-
gorithm to convert x∗ to an integral solution.

In the remainder of the paper, we refer to x∗ as a
fractional stable solution.

5. Algorithm
In the previous section, we showed how to obtain a
fractional matching from a dominating solution. In
particular, we let z∗ be a dominating solution and set
x∗ � 9z∗. We show here how to round x∗ into an in-
teger x̄ that satisfies (4) and (5) and almost satisfies (6).

5.1. Rounding

Lemma 2. Given x∗, there exists integral x̄ such that
• x∗(d, h) � 0 ⇒ x̄(d, h) � 0.
•

∑
h∈H x∗(d, h)⌊ ⌋ ≤

∑
h∈H x̄(d, h) ≤ 1 ∀d ∈ D.

•
∑

d∈D x∗(d, h)⌊ ⌋ ≤
∑

d∈D x̄(d, h) ≤ kh ∀h ∈ H.

•
∑

d∈Dh
t
x∗(d, h)

⌊ ⌋
≤
∑

d∈Dh
t
x̄(d, h) ≤

∑
d∈Dh

t
x∗(d, h)

⌈ ⌉

∀t � 1, . . . ,Th, ∀h ∈ H.
Furthermore, x̄ can be found by a polynomial time algorithm.

Lemma 2 shows that we can always round a
matching x∗ to x̄ such that capacities at the hospitals
are not violated, and the number of doctors for each
type is rounded either up or down to the closest in-
tegral number.11 This is essentially the best integer
solution that can be hoped for.

We show that the problem of finding x̄ can be
formulated as the problemof finding a feasibleflow in
a network, all of whose arc capacities are integral.
Integrability of x̄ follows immediately.

Introduce a source node σ, a sink node τ, one node
for each d ∈ D, h ∈ H, and Dh

t . For each d ∈ D, there is
an arc directed from σ to d with an upper bound arc
capacity of one. For each d, there is an arc directed to
Dh

t if d ∈ Dh
t and x∗(d, h) > 0 with an upper bound arc

capacity of one and a lower bound of
∑

h∈H x∗(d, h)⌊ ⌋.
For eachDh

t , there is an arc directed to hwith an upper
bound arc capacity of

∑

d∈Dh
t

x∗(d, h)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

and a lower bound arc capacity of

∑

d∈Dh
t

x∗(d, h)

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For each h ∈ H, there is an arc directed from h to τwith
an upper bound arc capacity of kh and a lower bound
arc capacity of

∑
d∈D x∗(d, h)⌊ ⌋.

Note that x∗ is a feasible flow in this network, so we
know that a feasible integer flow exists.

5.2. Modifying α
Denote by μ̄ the matching associated with x̄. Because
of rounding, the proportionality constraints might be
violated. We need to change α to make μ̄ feasible. In
particular, consider a group Dh

t .
• If, in the fractional solution,

∑
d∈Dh

t
x∗(d, h) �

αh
t

∑
d∈Dh x∗(d, h), then let

ᾱh
t �

∑
d∈Dh

t
x̄(d, h)

∑
d∈Dh x̄(d, h)

. (9)

• If
∑

d∈Dh
t
x∗(d,h)>αh

t

∑
d∈Dh x∗(d,h) but

∑
d∈Dh

t
x̄(d,h)<

αh
t

∑
d∈Dh x̄(d,h), then also let ᾱh

t be as before. Otherwise,

ᾱh
t �αh

t .
With this, our main result is the following.

Theorem 5. Given the fractional stable matching x∗, let μ̄
be the matching obtained from x∗ via Lemma 2. Then μ̄
is feasible and stable for the instance ({≻d}d∈D, {≻h}h∈H,
{ᾱh}h∈H).

The proof is given in Section 6. In the following, we
show proximity bounds for the new matching.

5.3. Proximity Bounds

We can use Lemma 2 to quantify the closeness of μ̄ to
x∗. By Lemma 2,

|μ̄(h)| ∈
∑

d∈D

x∗(d, h)

⌊ ⌋

,
∑

d∈D

x∗(d, h)

⌈ ⌉{ }

.

Thus, we never violate the capacity constraint of h.
Furthermore, the rounding bound also implies that

‖μ̄(h)| −
∑

d∈D

x∗(d, h)| ≤ 1 ∀h ∈ H.

ByLemma2, |μ̄(h)∩Dh
t | ∈

∑
d∈Dh

t
x∗(d,h)

⌊ ⌋
,
∑

d∈Dh
t
x∗(d,h)

⌈ }{
.

Hence ‖μ̄(h) ∩Dh
t | −

∑

d∈Dh
t

x∗(d, h)| ≤ 1 ∀Dh
t .

In fact, when the proportionality constraint associ-
ated with Dh

t binds, we can say something more:

‖μ̄(h) ∩Dh
t | − αh

t

∑

d∈D

x∗(d, h)| ≤ 1

because

|μ̄(h) ∩Dh
t | ∈ αh

t

∑

d∈D

x∗(d, h)

⌊ ⌋

, αh
t

∑

d∈D

x∗(d, h)

⌈ ⌉{ }

.

Notice that the total number of doctors assigned to
any h differs by at most one from the original frac-
tional quantity. The same is true for the number of
doctors of a particular type. The proportions, however,
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can behave quite differently. Using these proximity
bounds, it is straightforward to argue that

|αh
t − ᾱh

t | � αh
t −

|μ̄(h) ∩Dh
t |

|μ̄(h)|

⃒⃒
⃒⃒

⃒⃒
⃒⃒ ≤

2

1+
∑

d∈D x∗(d, h)
∀Dh

t .

Of course, if h were fully allocated under x∗, this
bound would reduce to 2

1+kh
. If the proportionality

constraint for Dh
t binds, this bound improves to

1 + αh
t

1 +
∑

d∈D x∗(d, h)
.

In all cases, the closeness of the realized proportions,
|μ̄(h)∩Dh

t |

|μ̄(h)| to αh
t , depend upon the size of |μ̄(h)|, the

number of doctors matched to h. If |μ̄(h)| is small, even
small changes in the number of doctors assigned to h
can have a large effect on the relevant proportions. If
large, then a change in one doctor more or less will
have a negligible effect on the relevant proportions.

6. Stability of μ̄
Recall that our algorithm starts from a dominating
solution, z∗, which is aweight vector of the generators.
The algorithm converts z∗ to x∗ :�9z∗, which is a
fractional matching between doctors and hospitals.
The solution x∗ is then rounded to an integral solution
x̄. We denote μ̄ to be the corresponding matching.

We now show that μ̄ is stable with respect to ᾱ. We
prove this by contradiction. Assume that it is not stable.
We construct a generator that is not dominated by z∗. We
use the notation of 9∗,9∗

h defined in Remark 5.
A group Dh

t reaches its lower bound in x∗ if the cor-
responding proportionality constraint binds, that is,

∑

d∈Dh
t

x∗(d, h) � αh
t

∑

d∈D

x∗(d, h).

The following observations are helpful in the proof.

Observation 1. If a group Dh
t reaches its lower bound

in x∗, then it also reaches its lower boundwith respect to
x̄ and the modified ᾱ defined in Equation (9).

Observation 1 comes directly from the definition
of ᾱ.

Observation 2. If a group Dh
t reaches its lower bound

in x∗, then, for every v ∈ 9∗
h and d ∈ Dh

t such that
v(h, d) > 0, v(h, d) � αh

t .

Observation 2 comes from the way we construct
the generators. In particular, for all generators v ∈ 9∗

h,
if v(h, d) > 0, then v(h, d) ≥ αh

t . Thus, if D
h
t reaches its

lower bound in x∗, then there cannot be a v ∈ 9∗
h such

that v(h, d) is strictly greater than αh
t .

Observation 3. If d is a waitlisted doctor at h under μ̄,
then any generator in 9h that assigns d to h cannot be
dominated via d.

If d is assigned by μ̄ to a hospital h′ such that h ≻d h
′,

this means that there is a generator v ∈ 9∗
h′ . This im-

plies that any generator assigning d to h is ranked
above v. If d is unassigned under μ̄, it means that the
constraint of d does not bind, that is,

∑
h∈H x∗(d, h) < 1.

Hence, the constraint corresponding to d in 4 also
does not bind. Thus, no generator can be dominated at
this constraint.

Proof of Theorem 5. Suppose μ̄ is not stable. This
means that either h does not reach its effective capacity
or there exists dr currently matched with h that can be
exchanged for a higher priority doctor da who is on h’s
waitlist. There are two cases in which dr can be replaced
by da. Either they are of the same type or of a different type
but dr is not protected. We construct a generator that is
not dominated by z∗, which leads to a contradiction.

Case 1. h is not at its effective capacity under μ̄.
From Remark 1, this means that

∑
d∈D x̄(d, h) < kh.

However, because of the rounding procedure, this
implies that

∑
d∈D x∗(d, h) < kh. Thus, no generator can

be dominated at h. It remains to create a generator v ∈
9h that is not dominated via anydoctor. This leads to a
contradiction because z∗ is a dominating solution.
Let {i1, . . . , ik}be the setof types that containwaitlisted

doctors. Choose one waitlisted doctor from each type to
be part of the generator v. Let them be di1 , . . . , dik . Also,
let v(di1 ,h) � 1−

∑
t ��i1 α

h
t and v(di2 ,h) �αh

i2
, . . . ,v(dik ,h) �

αh
ik
. By Observation 3, the generator that we are con-

structing cannot be dominated at di1 , ..,dik .
Denote the remaining set of types by {ik+1, . . . , iTh

}.
These types do not contain any waitlisted doctor
because h is not at its effective capacity; according to
Remark 1, their side constraints do not bind in the
matching μ̄. According to Observation 1, this means
that the side constraints of these types do not bind in
the fractional solution x∗. Because of Observation 2,
this means that, for each type t ∈ {ik+1, . . . , iTh

}, there
exists vt ∈ 9∗

h that assigns a doctor dt ∈ Dh
t to h with

probability higher than αh
t , that is, vt(dt, h) > αh

t . Let dt
be part of the generator v, and let v(dt, h) � αh

t . By the
way the preference order is defined for doctors, dt
prefers this new generator to vt. Thus, v cannot be
dominated at any doctor. This contradicts the fact
that z∗ is a dominating solution.

Case 2a. dr and da are of the same type.
Let vr ∈ 9∗

h be a generator that assigns dr to h. Let va
be the generator obtained from vr by assigning da to h
instead of assigning dr to hwith the same probability.
Clearly, because da ≻ dr, va is ranked above vr by h
and all doctors of different types than da. Because
of Observation 3, va is not dominated at da. Thus, z

∗

does not dominate va, a contradiction.

Case 2b. da ∈ Dh
a and dr ∈ Dh

r are not of the same type,
and dr is not protected under μ̄.
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Because dr is not protected under μ̄, in the fractional
solution, the side constraint of Dh

r does not bind (does
not reach its lower bound). Among all the doctors d
whose side constraints do not bind and x∗(d, h) > 0,
let dmin be the least preferred doctor according to h.
Assume dmin ∈ Dh

min. Clearly, da ≻h dr � dmin. If da and
dmin are of the same type, we return to Case 2a. As-
sume, therefore, that they are of different types.

Let vmin ∈ 9∗
h be a generator that assigns dmin to h.

Because x∗(dmin, h) > 0, such a vmin exists. There might
be several such generators; if so, choose one with the
highest probability of assigning dmin to h, that is, the
highest vmin(dmin, h). We construct va ∈ 9h bymodifying
vmin such that va isdominatedbyneitherhnoranydoctor.

a. va assigns da to hwith probability 1 −
∑

t��a α
h
t . By

Observation 3, va cannot be dominated via da.
b. Because the side constraint Dh

min does not bind in
the fractional solution, there exists v′min ∈ 9∗

h that as-
signs a doctor d′min ∈ Dh

min to hwith probability higher
thanαh

min (d
′
min and dmin can coincide). Letva assign d

′
min

to hwith probability αh
min. Thus, va does not dominate at

d′min.
c. va assigns the same doctor in the remaining

groups as in vmin with probability αh
t for group Dh

t .
With this choice, the sum of the components of v
added up over the doctors is one.

The set of doctors assigned by va and vmin are dif-
ferent only inDh

a andDh
min. To compare va and vmin, we

only need to compare these doctors. First, notice that
da ≻ dmin. Now, if d′min �� dmin, then d′min ≻h dmin because
of the choice of dmin. Thus, that h ranks the generators
according to the lexicographical order; therefore, va is
better than vmin because it replaces dmin with a better
doctor. For the case d′min � dmin, notice that va assigns
dmin with probability αh

min, which is less than the prob-
ability of vmin. Therefore, h also prefers va to vmin.
Hence, va cannot be dominated via h.

Furthermore, the doctors break ties among gener-
ators according to h’s lexicographical order; va cannot
be dominated via any doctor in the remaining groups.

Hence, we conclude that va ≻h vmin and cannot be
dominated by z∗, which is a contradiction.

7. Lower Bounds and Upper Bound
In some cases, the proportion of individuals of a
particular type matched to a school or hospital is
constrained to fall within some interval. To accom-
modate this, we extend the earlier analysis to include
both lower and upper bound proportionality con-
straints. Using the notation from prior sections, we
consider the following constraints.

αh
t · |μ(h)| ≤ |μ(h) ∩Dh

t | ≤ βht · |μ(h)| ∀t � 1, . . . ,Th,

where 0 ≤ αh
t ≤ βht ≤ 1,

∑

t

αh
t ≤ 1 ≤

∑

t

βht .
(10)

Call a matching that satisfies (10) feasible. If we choose
βht � 1 for all h and t, we recover (2). We maintain
the same notation as before, and departures are noted
as they arise.
We develop an algorithm to find a stable match-

ing that slightly violates the proportionality con-
straints (10). The main result is in Theorem 7. We first
define the notion of stability in Section 7.1. Section 7.2
describes the set of cone generators used in the al-
gorithm presented in Section 7.3. The main proof to
show that the matching we obtain by this algorithm
is stable is given in Section 7.4.

7.1. Stability

The presence of upper and lower bounds on the
relevant proportions requires a modification of the
definition of a hospital’s effective capacity with re-
spect to μ. To see why, fix a hospital h and a subset
S ⊂ {1, .. ,Th} of the types at that hospital. The upper
bounds for all types in {1, .. ,Th} \ S induce a lower
bound on the percentage of doctorswhose type is in S.
Specifically, the number of doctors with types in S
needs to be at least a 1 −

∑
t /∈ S β

h
t fraction of all the

doctors assigned to h. That is,

μ(h) ∩
⋃

s∈S

Dh
s

( )⃒⃒
⃒⃒
⃒

⃒⃒
⃒⃒
⃒ ≥ 1 −

∑

t /∈ S

βht

( )

· |μ(h)|. (11)

Given a matching μ, if, among the doctors in
⋃

s∈S D
h
s ,

there are no waitlisted doctors, then, h cannot hope to
increase the number of admitted doctors with types
in S. Therefore, from (11), the effective capacity of h is
at most

|μ(h) ∩ (
⋃

s∈S D
h
s )|

1 −
∑

t /∈ S β
h
t

.

This motivates the following extension of Definition 2.

Definition 8 (Effective Capacity). Consider a feasible
matching μ and a hospital h. Let T0 be the set of types t,
such that Dh

t contains no waitlisted doctor. Let

bound1 :� min
t∈T0

1

αh
t

|μ(h) ∩Dh
t |;

bound2 :� min
S⊂T0

1

1 −
∑

t /∈ S β
h
t

μ(h) ∩
⋃

s∈S

Dh
s

⃒⃒
⃒⃒
⃒

⃒⃒
⃒⃒
⃒.

The effective capacity of hospital h with respect to μ,
denoted by k

μ
h , is min{kh, bound1, bound2}. If T0 � ∅,

bound1 and bound2 are set to infinity. Similarly, if αh
t �

0 and 1 −
∑

t /∈ S β
h
t � 0, then bound1 and bound2 are set to

infinity, respectively.
As before, when μ is clear from the context, we omit

its mention when referring to a hospital’s effective
capacity.
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Remark 6. k
μ
h is an upper bound on the number of slots

that h can fill by accepting more waitlisted doctors
without violating the side constraints. Because μ is
feasible, it satisfies the capacity and the side constraints.
Thus, it is clear that |μ(h)| ≤ k

μ
h .

FromDefinition 8, if h is not at its effective capacity,
|μ(h)| < k

μ
h , the following three statements hold.

1. |μ(h)| < kh.
2. There is no t ∈ T0 such that the lower bound

proportionality constraint corresponding toDh
t binds,

that is, |μ(h)| � 1
αh
t

|μ(h) ∩Dh
t |.

3. There is no S ⊂ T0 such that all upper bound
proportionality constraints for types t /∈ S bind. That
is, |μ(h)| � 1

βht
|μ(h) ∩Dh

t | for all t /∈ S.

We must also extend Definition 3:

Definition 9 (Protected and Surplus Doctors). Given a
feasible matching μ, a doctor of type t is protected at
h ∈ H with respect to μ if the lower bound propor-
tionality constraint associated with Dh

t binds with re-
spect to its effective capacity.

A doctor of type t is surplus at hwith respect to μ if
the upper bound proportionality constraint associ-
ated with type Dh

t binds with respect to the hospital’s
effective capacity.

As before, when μ is clear from context, we omit the
qualifier “with respect to μ.”

As in Definition 3, if a type is protected (surplus) at
h, it means that h cannot be matched to fewer (more)
doctors of this type without reducing the number of
positions at h.

Now, consider a hospital h and two doctors da ≻h dr.
Assume that dr is currently matched with h, and da is
waitlisted at h. This means that h has an incentive
to exchange dr for da. The definition of bilateral sta-
bility allows for such a blocking coalition but re-
quires that, if h does so, it violates the side con-
straints. This means that h must either decrease the
number of protected doctors or increase the number
of surplus doctors. Specifically, we have the following
definition.

Definition 10 (Bilateral Stability). A feasible matching μ
is called bilaterally stable if the following two condi-
tions hold:

1. Every hospital with a nonempty waitlist is at its
effective capacity, that is, |μ(h)| � k

μ
h ∀h ∈ H.

2. For any da, dr ∈ D for which da is waitlisted for h,
μ(d′) � h, and da ≻h dr, then da, dr are of different types,
and either da is surplus or dr is protected.

The first condition does not permit a hospital to
increase its intake. The second says permitting h to
replace dr with da will violate (10).

As in Section 2.2, we show that (bilateral) stabil-
ity implies coalitional stability. A hospital’s choice

function in the presence of side constraints is de-
fined next.

Definition 11. The choice function of h on a subset
of acceptable doctors D∗, denoted Choiceh(D

∗), is the
subset of D∗ with the largest cardinality that satisfies
the capacity constraints of h and the proportionality
constraints. If there are multiple such subsets, then
Choiceh(D

∗) is the best one in the lexicographical order
according to ≻h.

With this, we have the following theorem.

Theorem 6. Let μ be a stable matching. Then, for any group
of doctors D∗ on the waitlist of h, Choiceh(μ(h) ∪D∗) � μ(h).

The proof of Theorem 6 is analogous to that of
Theorem 1 and is omitted.

7.2. Cone Generators

We take the same steps as before. The first is to de-
termine the generators of (10). Fix a hospital h ∈ H and
focus on

αh
t ·

∑

d∈D

x(h, d) ≤
∑

d∈Dh
t

x(h, d)

≤ βht ·
∑

d∈D

x(h, d) t � 1, . . . ,Th.
(12)

The generators are the extreme points of the system

∑Th

t�1

v(dt, h) � 1, αh
t ≤ v(dt, h) ≤ βht ∀t � 1, . . . ,Th. (13)

It is easy to see that an extreme point of (13) can be
determined using the following algorithm.

1. Select one doctor from each Dh
t and call it dt.

2. Choose an ordering of the selected doctors and
call it σ.

3. Set v(dt, h) � αh
t for i � 1, . . . ,Th.

4. In the order selected, increase the value of each
v(dt, h) as much as possible (up to βht ) until the re-
maining mass of 1 −

∑Th

t�1 α
h
t is exhausted.

With this algorithm, consider a generator for hos-
pital h. If we order the Th nonzero components in the
order that they are selected by the algorithm, they are
of the form

βhi1 , .. , β
h
ik
, γ, αh

ik+2
, . . . , αh

Th
,

where γ � 1 − βhi1 − . . . − βhik − αh
ik+2

− . . . − αh
Th
.

Denote the resulting extreme point by {vσ(d,
h)}d∈D,h∈H. Keep in mind that it is possible for two
distinct orderings to give rise to the same extreme
point. For subsequent arguments, it is useful to dis-
tinguish between the two and, hence, the need to
record the order.

Definition 12. A generator vσ ∈ 9h contains doctor d ∈
D if vσ(d, h) > 0. The order of a doctor d contained in

Nguyen and Vohra: Stable Matching with Proportionality Constraints
Operations Research, 2019, vol. 67, no. 6, pp. 1503–1519, © 2019 INFORMS 1515



generator vσ ∈ 9h is the order of d in σ and is denoted
σ(d). The order of d is undefined if the generator does
not contain d.

Example 7. Consider the example in Figure 1. Assume
βh11 � βh12 � βh13 � .45.

We describe one generator of this system.
1. Select d2 ∈ Dh1

1 , d6 ∈ Dh1
2 , d8 ∈ Dh1

3 .
2. Let σ be the order (d6, d2, d8).
3. Set vσ(d2,h1) � 1/3, vσ(d6,h1) � 1/3, vσ(d8,h1) � 1/5.

The remaining coordinates are set to zero.
4. The remaining mass is 1− 1/3− 1/3− 1/5 � 2/15,

which is distributed in the order of σ. This gives vσ(d6,
h1) � .45,vσ(d2,h1) � .35,vσ(d8,h1) � 1/5 � .2.

We say the generator vσ contains d2, d6, d8. The order of
the doctors in this generator are σ(d2) � 2, σ(d6) � 1, and
σ(d8) � 3.

7.3. Algorithm

7.3.1. Ranking of Columns in !9. We consider the
conic version of Scarf’s lemma as in Section 4.3. The
system ! ·9 · z ≤ b is constructed in the same way as
in Section 4.3. Each column of ! ·9 corresponds to a
generator vσ, and each row of ! ·9 corresponds to a
constraint for either a doctor or a hospital.

We now describe how each agent inD ∪H ranks the
columns of !9. (We use the word “rank” to distin-
guish between the ordering over the columns of !9

and !.)
• h ranks two generators vσ, v̄σ

′

∈ 9h according to
the lowest ranked doctor (according to ≻d) contained
in each of them. If the lowest ranked doctor of both
vσ and v̄σ

′

are the same, say dmin, then break ties by
comparing σ(dmin) and σ′(dmin). The lower the order,
the less preferred. If they are equal, move to the
second worst doctor contained in each and so on.

• d compares two generators vσ, v̄σ
′

that contain
d according to the hospital that each assigns d to
using ≻d. If v

σ, v̄σ
′

both assign d to the same hospital h,
break ties by comparing σ(d) and σ′(d). Specifically, if
σ(d) > σ′(d), then vσ is ranked above v̄σ

′

. If σ(d) � σ′(d),
then d uses h’s ordering over the generators to break
the tie.

7.3.2. Scarf’s Algorithm and Rounding. We use the
algorithm in Scarf (1967) to derive a dominating
z∗ ∈ 4. Set x∗ � 9z∗, and use Lemma 2 to round x∗ into
an integer x̄ that satisfies (4) and (5) and almost sat-
isfies (6). Let μ̄ be the corresponding matching.

Define ᾱ and β̄.

• If
∑

d∈Dh
t
x∗(d, h) � αh

t

∑
d∈Dh x∗(d, h), then let

ᾱh
t �

∑
d∈Dh

t
x̄(d, h)

∑
d∈Dh x̄(d, h)

. (14)

• If
∑

d∈Dh
t
x∗(d,h)>αh

t

∑
d∈Dh x∗(d,h) but

∑
d∈Dh

t
x̄(d,h)<

αh
t

∑
d∈Dh x̄(d,h), then let ᾱh

t be as in (14). Otherwise,

ᾱh
t �αh

t .
• Similarly, if

∑
d∈Dh

t
x∗(d, h) � βht

∑
d∈Dh x∗(d, h), then

let

β̄ht �

∑
d∈Dh

t
x̄(d, h)

∑
d∈Dh x̄(d, h)

. (15)

• If
∑

d∈Dh
t
x∗(d,h)< βht

∑
d∈Dh x∗(d,h) but

∑
d∈Dh

t
x̄(d,h)>

βht
∑

d∈Dh x̄(d,h), then also let β̄ht be as in (15). Otherwise,

β̄ht � βht .
An argument similar that in Section 5.3 yields the

following proximity bounds for ᾱ and β̄:

|αh
t −ᾱ

h
t | � αh

t −
|μ̄(h) ∩Dh

t |

|μ̄(h)|

⃒⃒
⃒⃒

⃒⃒
⃒⃒ ≤

2

1 +
∑

d∈D x∗(d, h)
∀Dh

t ,

and

|βht −β̄
h
t | � βht −

|μ̄(h) ∩Dh
t |

|μ̄(h)|

⃒⃒
⃒⃒

⃒⃒
⃒⃒ ≤

2

1 +
∑

d∈D x∗(d, h)
∀Dh

t .

Our main result is the following.

Theorem7. μ̄ is feasible and stable for the instance ({≻d}d∈D,
{≻h}h∈H, {ᾱ

h}h∈H, {β̄
h}h∈H).

7.4. Stability of μ̄
Recall that 9∗ � {vσ ∈ 9 : z∗vσ > 0}. For each hospital h,
the set of generators in9∗ associatedwith hospital h is
denoted 9∗

h.
A group Dh

t reaches its lower bound in x∗ if

∑

d∈Dh
t

x∗(d, h) � αh
t

∑

d∈D

x∗(d, h).

Similarly, Dh
t reaches its upper bound in x∗ if

∑

d∈Dh
t

x∗(d, h) � βht
∑

d∈D

x∗(d, h).

We use Observation 3 and the following one in the
proof.

Observation 4. Fix a hospital h and consider a partition
of the set of types into two groups such that group 1

contains Dh
i1
, . . . ,Dh

ik
and group 2 contains Dh

ik+1
, . . . ,Dh

iTh

if, for all doctors d in group 2 and all vσ ∈ 9∗
h, σ(d) ≥

k + 1. Then, either each member of group 1 reaches its
upper bound or each member in group 2 reaches its
lower bound.

Notice that Dh
t reaches its lower bound in x∗ if and

only if, for all generator vσ ∈ 9∗
h that contains d ∈ Dh

t ,
vσ(h, d) � αh

t . Similarly, Dh
t reaches its upper bound in
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x∗ if and only if for all generator vσ ∈ 9∗
h containing

d ∈ Dh
t , v

σ(h, d) � βht .
According to the algorithm producing the gener-

ators, if we order the Th nonzero components in the
order that they are selected by the algorithm, they are
of the form

βhi1 , .. , β
h
ik
, γ, αh

ik+2
, . . . , αh

Th
,

where γ � 1 − βhi1 − . . . − βhik − αh
ik+2

− . . . − αh
Th
.

Because of the assumption that, for all doctors d in
group 2 and all vσ ∈ 9∗

h, σ(d) ≥ k + 1, all doctors in
group 2 are always selected after all doctors in group
1. Thus, either all the types in group 1 reach their
upper bound, and if not, it is because the remaining
mass of 1 −

∑
t α

h
t is exhausted, and therefore, all types

in group 2 reach their lower bound.

Proof of Theorem 7. We are now ready to prove The-
orem 7. Suppose, for a contradiction, that μ̄ is not
stable. Let da, dr ∈ D be such that μ̄(dr) � h, μ̄(da) �� h,
and da ≻h dr, that is, da is waitlisted at h.12 There are two
cases to consider. In the first, h does not reach its ef-
fective capacity. In the second, we can exchange dr for
da without violating (10).

Our goal is to construct a generator that is not
dominated by z∗, which is a contradiction to the domi-
nation of z∗.

Case 1. h does not reach its effective capacity.

From Remark 6, this means that |μ̄(h)| < kh. Because
the rounding does not violate hospital capacity, the
capacity constraint at h does not bind in the fractional
solution, that is,

∑
d∈D x∗(d, h) < kh. Thus, no generator

can be dominated at h. It remains to create a generator
wσ′ ∈ 9h that is not dominated via any doctor. This
leads to a contradiction because z∗ is a dominating
solution.

The first step is to choose σ′. Order the types so that
all the types that contain awaitlisted doctor come first
and choose one waitlisted doctor from each of the
types to be part of the generator. Let {i1, . . . , ik} be the
set of these types. By Observation 3, the generator
that we are constructing cannot be dominated by the
constraints at these doctors.

Denote the remaining set of types by {ik+1, . . . , iTh
}. If

there is a doctor d ∈ Dh
ik+1

∪ . . . ∪Dh
iTh

and a vσ ∈ 9∗
h such

that σ(d) ≤ k, then take this doctor to be the next in the
order σ′. Hence, σ′(d) > σ(d). Therefore, wσ′ cannot be
dominated via d. Repeat until we cannot find such a
doctor. Without loss of generality, suppose this hap-
pens at the first instance. According to Observation 4,
either Dh

i1
, . . . . ,Dh

ik
reaches its upper bound in z∗ or

Dh
ik+1

, . . . . , Dh
iTh

reaches its lower bound in z∗ because

there is no waitlisted doctor in Dh
ik+1

∪ . . . ∪Dh
iTh
. Be-

cause of the rounding and modifying of α, this means

that the corresponding constraints in the rounded
matching μ̄ also bind. However, these types define
the effective capacity at h, which contradicts the fact
that h is not at its effective capacity.
By this argument, we create a generator wσ′ not

dominated via any doctor. This contradicts the fact
that z∗ is a dominating solution.

Case 2. da can be exchanged for dr.
• We argue that da and dr are not of the same type.

Suppose they are of the same type. Let vσ ∈ 9∗
h be a

generator containing dr. Let w
σ ∈ 9h be obtained from

vσ by shifting the probability weight from dr to da but
keeping the same order. Generatorwσ is ranked above
vσ by h and all doctors of types that differ from da and
dr. Moreover, because da is a waitlisted doctor, this
generator cannot be dominated via da. Thus, this new
generator is not dominated by z∗, a contradiction.
• Given that da ∈ Dh

a , dr ∈ Dh
r are not of the same

type, we argue that either Dh
a reaches its upper bound

or Dh
r reaches its lower bound in z∗.13 Suppose, for a

contradiction, otherwise. Then,Dh
a has not reached its

upper bound, andDh
r has not reached its lower bound

in z∗.
Among all doctors d that have a type that has not

reached its lower bound in z∗, and x∗(d, h) > 0 (doctor
dr is amember of this set), let dmin be the least preferred
according to ≻h. Let D

h
min be the set of doctors of the

same type as dmin. Let vσ ∈ 9∗
h be a generator con-

taining dmin such that dmin’s order, σ(dmin), is as small as
possible. Such a generator exists because x∗(d, h) > 0.

Claim 1. dmin, da are of different types; furthermore, if
d′a ∈ Dh

a is contained in a generator vσ
′

(d′a may be the
same as da), then σ(dmin) > σ(d′a).

If dmin and da are of the same type, we could, in vσ,
shift the probability weight from dmin to da. This pro-
duces a generator that is not dominated via h because
da ≻h dr �h dmin. It is clearly not dominated via da. Fi-
nally, it is not dominated via any doctor other than
{da, dmin} in the two generators, who face a tie and
break it in h’s favor.
If σ orders dmin before the type of d

′
a, that is, σ(dmin) <

σ(d′a), then switch the order of these two types, and if
d′a �� da, shift the probability weight from d′a to da. This
new generator is not dominated via da because of Ob-
servation 3. Second, because we have switched the
order of dmin and d′a, this new generator is not dom-
inated via dmin. Third, because da ≻h dr for all other
doctors and for h, the new generator is ranked above
vσ. Therefore, it cannot be dominated.
LetD∗ be the set of doctors who belong to types that

have not reached their lower bounds in z∗, and their
order in vσ is at least the order of σ(dmin). See Figure 4.
Because of Claim 1, Dh

a ∩D∗ � ∅.
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Suppose, among the doctors inD∗, there is a dt ∈ Dh
t

whose order under a different generator v̄σ
′

∈ 9∗
h is no

larger than σ(dmin). Notice that dt could be of the same

type as dmin, but dt �� dmin because dmin is the least

preferred under ≻h.
Create a new generator from v̄σ

′

by switching the
order of Dh

t and Dh
min and let dt be part of this new

generator (if dt, dmin are the same type, replace dmin

with dt). The new generator is not dominated via dt
because dt ranks it above v̄

σ′ . It is also ranked above vσ

by h because dmin has a higher order and, thus, is also
ranked higher by all other doctors because they break
ties according to ≻h. Hence, this new generator is not
dominated.

We are left with the case that the order of each
doctor inD∗ in every generator in9∗

h is at least σ(dmin).
This means that, for all generators in9∗

h, doctors inD∗

are ordered after D̄, where D̄ is the set of doctors
whose types are ordered before Dh

min under σ. Similar
to the argument in Observation 4, this means that
either D̄ reaches its upper bound or D∗ reaches its
lower bound. However, this is impossible because
Dh

min ∈ D∗ was chosen such that it does not reach its
lower bound, and Dh

a ∈ D̄ is assumed to not reach its
upper bound.

This concludes the proof.

8. Conclusion
It is common to require that a matching satisfy a
variety of distributional goals. These are sometimes
expressed as lower or upper bounds on the pro-
portion of agents of a particular type being matched.
This paper is the first that we are aware of to address
this problem. It uses a novel extension of Scarf’s
lemma to identify a stable matching that approxi-
mately satisfies such proportionality constraints. In
addition, ex post bounds on the deviation between the
realized and desired proportions are provided.
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Endnotes
1 See Case Studies of School Choice and Open Enrollment in Four
Cities, http://www.thecoweninstitute.com.php56-17.dfw3-1
.websitetestlink.com/uploads/Case-Studies-on-Choice-and
-Enrollment-11-2011-1490715209.pdf, last accessed August 6, 2019.
2Other school districts facing steep enrollment declines are Buffalo,
Philadelphia, Columbus (Ohio), Pittsburgh, Cleveland, Detroit, and
Kansas City.
3Besides these, some (e.g., Ágoston et al. 2018 and Gonczarowski
et al. 2018) have used heuristic and integer programming approaches.
However, no theoretical guarantees on performance are available.
4 If one is not careful, there is also a “circularity” problem, in that
stability is defined with respect to the modified choice function.
5One could formulate the problem of finding a stable matching as an
integer program and start with a fractional solution to it. However, such
fractional solutions are not guaranteed to be stable in the sense of Scarf.
6We assume the categories are disjoint. Ourmodel can be extended to
capture overlapping categories. The proportionality constraints as-
sociated with overlapping categories are cone constraints. The ap-
proximation guarantees depend on the structure of these categories.
7Our results extend to the case with both upper and lower bounds on
the proportions of each type to be matched as well. This is described
in Section 7. That section also describes an explicit algorithm for
determining the matching.
8 If αh

t � 0 for all h and t, this choice function reduces to being re-
sponsive: for any setD∗ ⊂ D, hospital h’s choice fromD∗ consists of the
(up to) kh highest priority doctors among the feasible doctors in D∗.
9 It is possible that another stable matching may have fewer agents
worse off and a larger number of assigned doctors. This is not un-
commonwhen the substitutes assumption fails as it does here. This is
because the rural hospital theorem does not hold.
10The number of types, Th, is typically a small constant. Hence, the
number of generators is polynomial in the number of doctors.
11This is similar to theorem 3 in Budish et al. (2013).
12 da, dr denote for the doctor to accept and the doctor to reject,
respectively.
13Because of the rounding procedure and the modifying of α’s, this
implies that either da is at surplus or dr is protected at the rounded
matching μ̄ with the modified ᾱ’s, β̄’s. This is what we need to
prove.
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