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ABSTRACT: We examine exciton diffusion in a triplet-sensitized organic photovoltaic
cell, where transport occurs via the long-lived triplet state of a fluorescent electron
donor. While the triplet state is optically dark, it is populated via sensitization by a guest
species capable of intersystem crossing. Here, the host material is metal-free
phthalocyanine (H2Pc), and the triplet-sensitizing guest is copper phthalocyanine
(CuPc). Optical excitation of H2Pc leads to the generation of singlet excitons which
rapidly undergo energy transfer to CuPc. Excitons on CuPc undergo intersystem
crossing to the triplet state followed by energy transfer back to the H2Pc triplet state.
The exciton diffusion length (LD) is extracted using an internal quantum efficiency ratio
methodology that permits accurate device-based measurements of exciton transport even in the presence of geminate recombination
losses. The donor layer LD varies with composition with a maximum LD of (13.4 ± 1.6 nm) observed at 20 vol % CuPc, an almost
60% increase over the case of the mobile H2Pc singlet. Despite this increase, further improvements may be possible as the neat-film
H2Pc triplet LD is estimated to exceed (20.7 ± 5.0) nm.

■ INTRODUCTION

The design of organic photovoltaic cells (OPVs) is strongly
dictated by the short exciton diffusion length (LD) of the
component active materials. Indeed, it is the short LD that led
to the development of the bulk heterojunction architecture to
increase exciton harvesting.1−10 Increased active material LD is
desirable as it could relax the spatial constraints on film
morphology in bulk heterojunctions or permit the realization
of efficient, planar heterojunction OPVs. Several works have
previously examined the potential for increased LD through the
use of long-lived triplet excitons.11−16 The challenge with the
use of such states is their low optical absorption, making them
less accessible under optical pumping.
Prior work has demonstrated the ability to overcome the

challenge of low optical absorption through the use of a host−
guest, triplet-sensitized OPV.16−27 In a triplet-sensitized OPV,
a guest molecule capable of rapid singlet−triplet intersystem
crossing is added to the donor layer in order to sensitize
triplets on the fluorescent donor host. In this configuration,
photogenerated host singlets undergo energy transfer to a
triplet-sensitizing guest, which rapidly forms triplets that are
subsequently transferred back to the long-lived host triplet
state. In prior demonstrations, the guest is a heavy-metal-
centered phosphor capable of rapid intersystem crossing.16−27

For example, Luhman and Holmes used a host−guest pairing
of N,N′-bis(naphthalen-1-yl)-N,N′-bis(phenyl)benzidine
(NPD) and tris[2-phenylpyridinato-C2,N]iridium(III) (Ir-
(ppy)3) to demonstrate an increase in LD from (6.5 ± 0.3)
to (11.8 ± 0.6) nm at 5% doping.18 Rand et al. investigated the

host−guest pairing of phenyl-substituted poly(p-phenylene
vinylene) (PPV) and platinum octaethylporphyrin (PtOEP)
and demonstrated an increase in LD from (4 ± 1) to (9 ± 1)
nm for an optimal doping of 5%.19 This approach has been
further applied to bulk heterojunction OPVs realizing
significant increases in photocurrent.20 Similarly, Angel and
Tang incorporated PtOEP into poly[2-methoxy-5-(2-ethyl-
hexyloxy)-1,4-phenylenevinylene (MEH-PPV) and found an
increase in LD from 2.0 to 5.0 nm.26 Despite prior
demonstrations of enhanced device performance using triplet
sensitizers, there are several challenges associated with
quantifying LD in these systems.
Previous demonstrations of triplet-sensitized OPVs have

often relied on fitting device external quantum efficiency
(ηEQE) spectra to extract LD. Device-based methods are
employed as the dark host triplets are not accessible using
conventional photoluminescence (PL) quenching measure-
ments.28−31 Values of LD extracted from fitting ηEQE spectra are
frequently underestimates due to unaccounted geminate
recombination losses.32−34 A second challenge with previous
work is the open question of how large an increase in LD is
practically possible. Prior reports have not separately
characterized the triplet LD of the fluorescent host nor
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typically is there discussion of how much exciton transport
occurs via the triplet of the sensitizer. To address these issues, a
device-based measurement technique for LD is employed that
is not impacted by unknown geminate recombination losses.35

This approach has been previously vetted against PL-based
methods for luminescent systems, showing good agreement for
the extracted values of LD. We further characterize a lower-
limit on the diffusion length of the host triplet allowing some
assessment of the upper limit for LD in sensitized systems.
Here, exciton transport is examined for a composite donor

layer consisting of a metal-free phthalocyanine (H2Pc) host
and a copper phthalocyanine (CuPc) sensitizer as a function of
the composition (Figure 1). The host H2Pc has a singlet

energy level of ES = 1.6 eV above the ground state calculated as
the cut-off wavelength of the extinction coefficient and a triplet
energy level ET = 1.07 eV.36 The guest CuPc has nominally the
same singlet energy as H2Pc and a slightly larger triplet energy
ET = 1.13−1.15 eV, permitting singlet energy transfer to CuPc
and subsequent triplet energy transfer to H2Pc.

36,37 Using
time-resolved two-photon photoemission, Dutton and Robey
have previously shown that intersystem crossing in CuPc
occurs on a subpicosecond timescale.38 Using transient
absorption spectroscopy, Caplins et al. found that in vapor-
deposited thin films of CuPc, intersystem crossing occurs
about 104 times faster than natural decay.39 This suggests that
the triplet yield in CuPc thin films is near-unity, allowing CuPc
to act as a potentially efficient sensitizer to populate triplets in
H2Pc. The use of CuPc as a sensitizer is advantageous in that
unlike Ir- and Pt-phosphors, CuPc is highly absorbing,
meaning the inclusion of the sensitizer does not reduce
donor layer absorbance.

■ EXPERIMENTAL SECTION
Figure 1b shows the OPV layer structures of interest for this
study with a host−guest donor layer of H2Pc:CuPc and an
acceptor layer of C60. The corresponding highest occupied and
lowest unoccupied molecular orbital (LUMO) energy levels

for each layer are shown in Figure 1c.40−42 Layers of 1,3-bis(N-
carbazolyl)benzene (mCP) and bathocuproine (BCP) act as
exciton blocking layers to prevent quenching at the electrodes.
A 1 nm-thick layer of MoOx is deposited before the 100 nm-
thick Al cathode to increase the cathode work function and
reduce the built-in electric filed, minimizing exciton bulk
ionization process at short circuit.35,43,44

Layers were deposited by high vacuum thermal evaporation
on indium-tin-oxide-coated glass substrates with a sheet
resistance of 8−12 Ω/□. Substrates were sequentially cleaned
with tergitol, acetone, and isopropanol, followed by exposure
to UV−ozone ambient for 15 min prior to deposition. The
circular device active area is 0.785 mm2 defined by the cathode
area. The materials mCP (99.5%), CuPc (99%), Ir(ppy)3
(99%), and tris(4-carbazoyl-9-ylphenyl)amine (TCTA)
(99.5%) were purchased from Luminescence Technology
Corporation. C60 (99.9%) was purchased from MER
Corporation. H2Pc (98%) was purchased from Sigma-Aldrich
Corporation. BCP (98%), MoO3 (99%), and Al shot
(99.999%) were purchased from Alfa Aesar. NPD (99%) was
synthesized by the Dow Chemical Company and purified by
temperature-gradient sublimation.45,46

Thin film PL spectra were collected under pumping by a
laser at a wavelength of λ = 405 nm using a Princeton
Instruments FERGIE spectrometer. Low temperature measure-
ments were carried out in a liquid He optical cryostat. Film
thickness, optical constants (except H2Pc and CuPc), and
reflectivity spectra were measured using a J.A. Woollam
variable-angle spectroscopic ellipsometer. Reflectivity measure-
ments were performed at an incident angle of 15° to the
substrate normal. The optical constants of neat H2Pc and
CuPc were extracted by fitting transmission (at normal
incidence) and reflectance (at 15°) using an optical transfer
matrix model.47 The optical constants of mixed H2Pc:CuPc
films were calculated using a linear superposition based on
neat-film optical constants. Device external quantum efficiency
curves were measured under illumination from a 300 W Oriel
Xe lamp equipped with a Cornerstone 130 1/8 m
monochromator and a Stanford Research Systems SR540
optical chopper. Error bars for LD represent a 95% confidence
interval extracted from fitting.

■ RESULTS AND DISCUSSION
Prior to characterizing exciton diffusion in OPVs based on
mixtures of H2Pc:CuPc, it is important to first verify that the
triplet of the host is in fact being pumped via energy transfer
from CuPc. A measurement of increased LD in mixtures alone
is not sufficient as the lifetime and diffusivity of the H2Pc
singlet are both likely a function of the composition.48−53 To
first test the singlet energy transfer from H2Pc to CuPc, PL
spectra for a neat film of H2Pc (∼300 nm) and an equal
mixture of H2Pc:CuPc (∼200 nm) were compared (Figure 2).
In the neat film, H2Pc is found to exhibit a measurable PL at
temperatures of T = 300 K and T = 10 K with an increased
intensity as the temperature is reduced.54 In contrast, no PL is
detected from the mixture, suggesting that excitons generated
on H2Pc are effectively transferred to the CuPc guest. Further
considering the ultrafast intersystem crossing rate (∼500 fs) of
CuPc, it is likely that all the singlets are converted into CuPc
triplets.38,39 We further argue that given the exothermic
energetic alignment for triplet energy transfer from CuPc to
H2Pc, a thermodynamically significant H2Pc triplet population
should accumulate because of the sensitization effect.

Figure 1. (a) Singlet (S) and triplet (T) excitonic energy levels of
H2Pc and CuPc. (b) Device architecture for H2Pc:CuPc−C60 planar
heterojunction OPVs. The H2Pc:CuPc thickness x varies from 8 to 28
nm. (c) Energy-level diagram for the devices in (b). The LUMO
levels are estimated using the optical gap for mCP and taken from
prior reports of inverse photoelectron spectroscopy for H2Pc, CuPc,
C60, and BCP.
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As noted earlier, the LD of dark excitons is often estimated
by fitting ηEQE spectra.29,31,47,55 Photoconversion can be
divided into four sequential processes each with a correspond-
ing efficiency namely optical absorption (ηA), exciton diffusion
and dissociation (ηD), charge-transfer (CT) state separation
(ηCS), and free carrier collection (ηFC). While ηFC ≈ 100%
under short-circuit conditions, ηCS is not rigorously unity, and
charge separation competes with geminate recombina-
tion.33−35,56−58 As such, assuming ηCS ≈ 100% and fitting
ηEQE only for optical generation (ηA) and exciton diffusion
(ηD) can yield an underestimate to the material-relevant LD.
Here, an alternate device-based method is applied that is based
on fitting ratios of the donor-to-acceptor internal quantum
efficiency (ηIQE) as a function of the layer thickness. The ηIQE
is the ratio of the number of collected charge carriers to the
number of absorbed photons, which equals to ηEQE divided by
ηA. This method circumvents unknown recombination losses
as losses associated with the CT state are identical for the
donor and acceptor, and hence cancel in the ratio to yield
material-relevant LD as35

η
η

η η
η η

η
η
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·
·

=IQE
D

IQE
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D
D

CS

D
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CS

D
D

D
A
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where the superscripts D and A denote donor and acceptor
efficiencies, respectively. Figure 3a,b shows ηEQE spectra
collected at short circuit for the device in Figure 1b with
donor layers consisting of either neat H2Pc or 80 vol %
H2Pc:20 vol % CuPc, respectively. Figure 3c,d shows the
absorption efficiency spectra (ηA) of the active layers calculated
using an optical transfer matrix formalism.47 Comparing the
ηEQE spectra, the doped device shows an increase in the
efficiency of the donor relative to the acceptor. The interfacial
CT state energies (ECT) are nominally ∼1.06 and ∼1.08 eV for
H2Pc−C60 and CuPc−C60, respectively.

59,60 Prior work has
suggested that despite a potentially small energetic driving
force, triplet dissociation is facilitated by an entropic driving
force or the presence of an interfacial dipole that may locally
impact the energetic alignment.60

In order to calculate the change in LD responsible for the
observed increase in donor ηEQE, Figure 4a,b shows the ηIQE
spectra for the devices of Figure 3. The donor-to-acceptor ηIQE
ratios of Figure 4c are calculated by dividing ηIQE at λ = 700

nm (primarily donor absorption) by that at λ = 340 nm
(primarily acceptor absorption). Through eq 1, ηD ratios can
be determined as a function of donor thickness and iteratively
fit for the donor and acceptor layer LD. With knowledge of LD,
the absolute ηEQE can be fit using the previously unknown
value of ηCS as a fit parameter except for a range of λ = 410−
550 nm, where prior work has noted a possible relaxation
bottleneck for bulk CT state excitons in C60.

35 The associated
fits of ηEQE are shown in Figures S4−S10.
Using the aforementioned device-based method, donor and

acceptor LD values are extracted as a function of the donor
layer composition, as shown in Figure 5. It is worth noting that
while the dissociation efficiency of the donor−acceptor CT
state may vary in compositions, this would not impact the
ability to extract LD in a self-consistent manner. The donor LD
increases from a value of (8.5 ± 0.4) nm for a neat film of
H2Pc to a maximum of (13.4 ± 1.6 nm) at 20 vol % CuPc
(Figure 4c). For compositions beyond the maximum, the value
of LD decreases with the increasing CuPc content. This trend
likely suggests a trade-off between exciton transport on
different states in the donor layer. If the guest concentration
is small enough that the separation between H2Pc and CuPc

Figure 2. Thin film PL spectra for neat H2Pc (∼300 nm) and films of
H2Pc doped with 50 vol % CuPc (∼200 nm) films on Si substrates.
The pump wavelength is λ = 405 nm.

Figure 3.Measured external quantum efficiency (ηEQE) and calculated
absorption efficiency (ηA). The ηEQE measured at short circuit as a
function of the donor layer thickness for devices containing a donor
layer of H2Pc (a) or 80 vol % H2Pc:20 vol % CuPc (b). (c,d)
Calculated ηA for the devices in (a,b), respectively.
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molecules exceeds the singlet exciton LD and host−guest
Förster radius, the efficiency of energy transfer to the guest is
reduced and diffusion occurs via the H2Pc singlet. If instead
the host (H2Pc) concentration is small, triplets are confined to
and diffuse on CuPc. It is thus reasonable to expect the
optimum composition to be H2Pc-rich because the short-range
Dexter energy transfer of triplets from CuPc to H2Pc is likely
the rate-limiting step. The C60 acceptor LD in Figure 5b shows
no systematic variation in composition and is comparable to
previously reported values.35 This suggests that only the
diffusion efficiency of the donor layer is impacted by changes
in the donor layer concentration.
It is interesting that the LD values of neat H2Pc and CuPc are

comparable despite the difference in the diffusing exciton spin

state. It was previously reported that the exciton lifetime in
CuPc is about 35 times larger than that of H2Pc.

39 This
suggests that the corresponding diffusion coefficient for triplet
excitons in CuPc is ∼1/35 that of singlet excitons in H2Pc.
This difference may reflect the short-range Dexter energy
transfer responsible for triplet diffusion. It also reemphasizes
the need to populate the longer lived triplet states in a
fluorescent host rather than using the shorter lived triplets
present in materials with rapid intersystem crossing. Based on
the extracted LD value of 8.2 nm and the previously reported
lifetime 8.6 ns, the diffusion coefficient for triplets in CuPc is
calculated to be 7.8 × 10−5 cm2/s, comparable to previous
measurements of triplet diffusion.13,39

An important question is whether the observed increase in
the donor layer LD fully utilizes the long-lived triplets in H2Pc.
Several factors must be considered when answering this
question including an assessment of the intrinsic triplet LD in
H2Pc. A lower limit on the triplet LD in a neat film of H2Pc is
determined using a photocurrent measurement capable of
selectively injecting triplets.28,61 The relevant device architec-
tures are shown in Figure 6a,b, while the associated molecular
orbital energy levels are shown in Figure S11a.36,40−42,62−64 In
these structures, a mixed layer of NPD:Ir(ppy)3 is optically
pumped with photogenerated Ir(ppy)3 triplets (ET = 2.4 eV)
transferred to the NPD triplet state (ET = 2.3 eV). Triplets that

Figure 4. Extracting intrinsic LD based on fitting thickness-dependent
ratios of the internal quantum efficiency. The ηIQE spectra calculated
as a function of the donor layer thickness from the ηEQE for devices
containing a donor layer of H2Pc (a) or 80 vol % H2Pc:20 vol % CuPc
(b). (c) Calculated diffusion efficiency ratio (λ = 700 nm to λ = 340
nm) as a function of the donor layer thickness for the devices (a,b),
respectively. The value of LD is extracted from the fit (solid lines).

Figure 5. Extracted LD of the donor and acceptor as a function of the
donor concentration. The LD values of the donor (a) and acceptor (b)
are extracted simultaneously based on fitting thickness-dependent
ratios of donor−acceptor ηIQE.

Figure 6. Extraction of the triplet diffusion length of H2Pc. Relevant
architectures enabling direct injection into the H2Pc triplet both
without (a) and with (b) a triplet blocking layer of TCTA. (c)
Experimental ηEQE/ηCS spectra for devices without (black line) and
with a (red line) triplet blocker. The triplet injection layer is a uniform
mixture of Ir(ppy)3:NPD. (d) Calculated Δ(ηEQE/ηCS) spectrum
(symbols) and the absorption efficiency ηA (solid line) of the
Ir(ppy)3:NPD layer with absorption occurring only in Ir(ppy)3.
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migrate across the adjacent neat layer of NPD are subsequently
injected into the triplet state of H2Pc. Injected triplets that are
harvested from H2Pc will lead to an increase in external
quantum efficiency over wavelengths where Ir(ppy)3 absorbs.
Extinction spectra for all active materials are shown in Figure
S11b. A control architecture is also measured (Figure 6b)
where half of the neat NPD layer is replaced with the triplet
exciton blocker TCTA (ET = 2.8 eV), frustrating triplet
injection from NPD into H2Pc. This control structure is used
to decouple the direct optical excitation of H2Pc and C60 in
Figure 6a.
To extract the triplet LD of H2Pc using the architectures of

Figure 6, it is necessary to know the number of triplets injected
from the neat layer of NPD into H2Pc and the number of
triplets dissociated at the H2Pc−C60 interface. The number of
triplets injected can be calculated based on the number of
photogenerated triplet excitons in Ir(ppy)3 and the diffusion
efficiency of the neat NPD layer. Assuming that all triplets in
Ir(ppy)3 are injected into the neat layer of NPD, triplet
diffusion in NPD can be modeled using a previously measured
value for the diffusion length (LD = 25 nm), leading to an
upper limit on the injected exciton density and ultimately a
lower limit on the triplet diffusion length of H2Pc.

28 The
number of triplets dissociated from H2Pc is thus proportional
to the difference in ηEQE/ηCS between devices with and without
the triplet blocker of TCTA. Here, the ηEQE is divided by ηCS
to decouple changes in the geminate recombination loss. The
value of ηCS can be extracted by simulating the measured ηEQE
spectra at the donor-absorption using the LD values of Figure
5. The resulting ratios of ηEQE/ηCS are shown in Figure 6c for
the architectures of Figure 6a,b. In comparing devices with and
without a triplet blocking layer, a measurable increase in
response is observed between wavelengths of 325 and 500 nm.
The increase between 325 and 410 nm reflects absorption on
TCTA, NPD, and Ir(ppy)3:NPD, leading to the injection of
both singlets and triplets into H2Pc. Between 410 and 500 nm,
the enhancement comes more exclusively from absorption on
Ir(ppy)3 and reflects triplet injection into H2Pc. By fitting the
ΔηEQE/ηCS spectrum in Figure 6d, a lower limit for the triplet
LD of H2Pc is obtained to be (20.7 ± 5.0) nm.
The value of LD extracted for the triplet in neat films of H2Pc

may suggest that further gains are possible with further
optimization of the sensitization scheme. Since the triplet
energy level difference between the host H2Pc and the guest
CuPc is small (∼0.06−0.08 eV), reverse energy transfer back
to the CuPc triplet state may occur, reducing the overall LD.
Triplet confinement to H2Pc may be improved by using a
sensitizer with higher triplet energy. However, it is also
important to point out that the actual situation may be more
complicated as the addition of CuPc to H2Pc will impact the
intermolecular packing and spacing between H2Pc molecules
as well as the triplet lifetime. These factors may conspire to set
a different upper limit on the H2Pc triplet LD in mixed films.
Further detailed spectroscopic studies are needed to assess
these additional contributions to the maximum achievable
value of LD.

■ CONCLUSIONS
We characterize exciton transport in triplet-sensitized OPVs
based on the mixed donor system of H2Pc:CuPc as a function
of composition. Using an internal quantum efficiency ratio
methodology to decouple recombination losses, the composite
donor layer LD is measured as a function of the sensitizer

concentration. The measured trend indicates an exciton
transport tradeoff between the energy transfer from host
singlets to guest singlets and the energy transfer from guest
triplets to host triplets. The optimal CuPc concentration is 20
vol % and the donor LD is increased from (8.5 ± 0.4 nm) to
(13.4 ± 1.6 nm). Despite a nearly 60% enhancement,
additional gains are likely possible because the triplet LD of
H2Pc is measured to be >(20.7 ± 5.0) nm. This suggest that
there is still room to further exploit long-lived triplets, likely by
employing a sensitizer with a higher triplet energy level to
promote the formation of host triplets.
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