
Neural reuse in multifunctional neural networks for control tasks

Lauren V. Benson1,2, Madhavun Candadai1,2 and Eduardo J. Izquierdo1,2

1Cognitive Science Program, Indiana University Bloomington
2The Luddy School of Informatics, Computing, and Engineering, Indiana University Bloomington

Corresponding email: lvbenson@iu.edu

Abstract

Living organisms perform multiple tasks, often using the
same or shared neural networks. Such multifunctional neu-
ral networks are composed of neurons that contribute to dif-
ferent degrees in the different behaviors. In this work, we
take a computational modeling approach to evaluate the ex-
tent to which neural resources are specialized or shared across
different behaviors. To this end, we develop multifunctional
feed-forward neural networks that are capable of performing
three control tasks: inverted pendulum, cartpole balancing
and single-legged walker. We then perform information le-
sions of individual neurons to determine their contribution to
each task. Following that, we investigate the ability of two
commonly used methods to estimate a neuron’s contribution
from its activity: neural variability and mutual information.
Our study reveals the following: First, the same feed-forward
neural network is capable of reusing its hidden layer neurons
to perform multiple behaviors; second, information lesions
reveal that the same behaviors are performed with different
levels of reuse in different neural networks; and finally, mu-
tual information is a better estimator of a neuron’s contribu-
tion to a task than neural variability.

Introduction
As artificial intelligence, evolutionary robotics, and neuro-
science become increasingly integrated, investigative efforts
to understand the operation of neural networks is becom-
ing increasingly important. An universal feature across liv-
ing organisms is their ability to perform multiple behav-
iors. A predominant view of multifunctionality in neu-
ral networks involves utilizing distinct sub-networks within
a larger neural network to perform the different behav-
iors (Dickinson, 1995; Tani et al., 2004; Bassett et al., 2011;
Schrum and Miikkulainen, 2014). However, it has also been
shown that the same dynamical neural network can be mul-
tifunctional in the presence of neuromodulation or plastic-
ity (Chao et al., 2008; Sporns and Alexander, 2002; Yo-
der and Izquierdo, 2018) or even in its absence (Izquierdo
and Bührmann, 2008; Williams and Beer, 2013; Agmon
and Beer, 2014; Candadai and Izquierdo, 2018; Setzler and
Izquierdo, 2017; Vasu and Izquierdo, 2017). In this work,
we set out to artificially evolve neural networks for mul-

tiple control tasks without any assumptions of modularity
or reuse and then investigate the degree to which neural
resources are specialized or shared across tasks. Within
evolutionary robotics, multifunctionality in neural networks
has been primarily studied within the context of open-loop,
input-output tasks (Yang et al., 2019a; Hong et al., 2020).
Related work by Yang et al. (2019b) revealed functionally-
specific clustering behavior when the same recurrent neu-
ral network is trained on various open-loop tasks. However,
most tasks performed by living organisms are closed-loop
behaviors involving a continuous interaction between the
neural network and the environment. While efforts in evo-
lutionary robotics have tackled learning to perform multiple
closed-loop control tasks, to our knowledge artificial evolu-
tion has not been used to train non-modular multifunctional
networks for more than two control tasks.

Our goals for this work are three-fold. The first aim
is to extend previous efforts to evolve feed-forward neural
networks to solve multiple closed-loop control tasks. Our
second aim is to characterize the degree of neural reuse in
the resulting successful multifunctional networks. We char-
acterize neural reuse by estimating the contribution of each
neuron to a task using information lesions on the hidden neu-
rons of the neural network. However, in reality lesion studies
may not be feasible and one must rely on analyzing the neu-
ral traces for insight into the agent’s behavior. Our final aim
is examine two methods that are commonly used to estimate
a neuron’s contribution to a task from neural activity alone:
neural variability (Renart and Machens, 2014; Masquelier,
2013; Yang et al., 2019b), and mutual information (Wibral
et al., 2017; Gabrié et al., 2018).

Methods

The goal of this paper is to train a neural network to perform
multiple control tasks and then to analyze the resulting net-
works to study the extent to which neurons are reused across
tasks. This section describes the tasks, the neural network
model, the evolutionary optimization algorithm and finally
the analysis methodologies used in this work.
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Figure 1: Task and neural network design. [A] Inverted pendulum task where the goal is to swing up the pendulum and keep in
balanced. [B] Cartpole balancing task where the goal is to control the cart to keep the pole balanced [C] Single-legged walker
task where the goal is control the foot swings and cover maximum distance in a fixed time. [D] Neural network architecture
with distinct sensory and action units for each task and 2 hidden layers that are common across tasks.

Inverted pendulum The inverted pendulum swing-up
task is a classical control task where the goal is to bal-
ance a pendulum by swinging it up with the least ef-
fort (Fig. 1A). Sensory observations for this task include
[cos(θ), sin(θ), ω], where θ is the angle of the pendulum
from the vertical and ω is its angular velocity. Controlling
the pendulum involves applying a torque in the range [−2, 2]
at the center. Performance was evaluated by estimating the
average cost over two trials each lasting 10 seconds, where
is cost is estimated based on the applied torque. In each trial,
the pendulum is initialized at the bottom (θ = π) with an an-
gular velocity of -1 and 1 respectively. For full specifications
of the task in detail, see Brockman et al. (2016).

Cartpole balancing The cartpole balancing task is an-
other classic control task that involves balancing a pole that
is attached to a cart moving along a one-dimensional track.
(Fig. 1B). Sensory observations for this task include the an-
gle of the pole (θ), the pole’s angular velocity (ω), the cart’s
position (x), and it’s velocity (ẋ). The cart is controlled by
applying a force to the cart in the range [−1, 1], where the
sign of the force determines the direction from which it is
applied. Performance was evaluated as the average duration
for which the pole was balanced over 4 trials that can each
last up to 50 seconds. The pole was considered dropped if it
falls beyond 12 degrees of the vertical, or if the cart moves
more than 2.4 units from its initialized position. For full
specifications of the task in detail, see Barto et al. (1983)

Single-legged walking The third control task imple-
mented was the single-legged walker, where the goal is to
control move a body along a one-dimensional rail by con-
trolling a single-jointed leg (Fig. 1C). Sensory observations
for this task include the angle of the leg (θ), the angular ve-
locity (ω), and the binary foot state (the foot is either up
or down at any given time). The leg is controlled by ap-
plying forces on its forward-backward swing, its up-down

swing and by putting the foot up or down. The walker’s
body changes position only when the foot is in the down
state. The walker is initialized with its leg geometry in the
forward position each time. Performance is evaluated as the
average distance covered over 9 trials that each lasted 110
seconds. For full specifications of the task in detail, see Beer
and Gallagher (1999).

Neural network As the neural controller of the agent, we
used a feed-forward neural network with two hidden layers
containing 5 neurons. The input layer had 10 units corre-
sponding to the total number of sensory inputs of all tasks
and similarly the output layer had 4 units corresponding to
the actions of each task (Fig. 1D). The hidden layer activa-
tions were set to be ReLU, f(x) = max(0, x) and output
layer activations were sigmoidal, f(x) = 1/(1+ exp(−x)).

Evolutionary algorithm Parameters of the neural net-
work model were optimized using a real-valued microbial
genetic algorithm Harvey (2009). The trend in machine
learning has been to create increasingly sophisticated op-
timization algorithms and to attribute increases in perfor-
mance to the bells and whistles. For this work we em-
ployed a deliberately minimal version of an artificial evolu-
tionary algorithm to demonstrate selection, inheritance, and
variation are sufficient to generate neural networks capable
of multifunctional behavior. The parameters optimized in-
cluded the weights between all layers and the biases of each
neuron, totaling 115 parameters. We first evolve neural net-
works for a single task, where the fitness is given by the
performance of the neural network in that task. We then
evolve a neural network to solve all three tasks. In this case,
the fitness of the individual was given by the product of fit-
ness in each task. This guarantees good performance across
all tasks. Each evolutionary search was initialized with 50
random individuals and evolved over 50000 tournaments.
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Information lesions Information lesions have appeared in
the neuroscience literature in a variety of a context to study
particular brain functions (Vaidya et al., 2019; Koenigs et al.,
2007). In our work, we use information lesions to deter-
mine the role that each neuron plays in each task for any one
multifunctional neural network. We use this as the ‘ground
truth’ of neural reuse for that neural network. The idea is to
systematically disable each neuron in the hidden layer and
study its consequence on behavioral performance. Using ab-
lations to cut off all outgoing information from each neuron
has too harsh of an effect on the system, creating opportuni-
ties for unjustified neural activity. Instead, we created infor-
mation lesions by fixing the neuron’s outputs to a constant
value. This value is chosen by performing a sweep across
the entire range of that neuron’s activations to determine the
value that has the most impact on behavioral performance.

Neural variability A systematic information lesion anal-
ysis is not always possible in an experimental setting. In
this work, we examine less intrusive predictive measures
that rely on neural activity alone. As a first predictive mea-
sure for whether a neuron contributes to performing a behav-
ior, we calculated the variance in a neuron’s activity during
the course of a task. Intuitively, higher variance in activ-
ity is indicative of greater involvement in the task. This is
given by the variance of the state of the neuron for that task,
1/n

∑n
i=1(xi−µ)2 where µ refers to the mean neural activ-

ity of the given neuron, xi refers to an ith sample of neural
activity and n refers to the total number of samples.

Mutual information As a second predictive measure of a
neuron’s role in a behavior, we determined the mutual in-
formation between the sensory input and a neuron’s activity.
Again, it is intuited that the mutual information is directly
proportional to the contribution of a neuron in a task. Mu-
tual information (MI) is given by:

MI =
∑

y∈Y

∑

x∈X

p(x, y) log
p(x, y)

p(x)p(y)
(1)

where X and Y correspond to the sensory input and neural
activity respectively, p(x, y) refers to their joint probability
and p(.) their marginal probabilities. MI was estimated us-
ing the infotheory package (Candadai and Izquierdo, 2019)
in which probability densities were estimated using an
average-shifted histogram approach (Scott, 1985).

Results
To what degree are multifunctional neural networks either
reusing neural resources or dedicating specialized circuitry
for each task? In order to address this question, we first
set out to artificially evolve an ensemble of neural networks
on multiple control tasks. We then characterized the de-
gree of reuse and specialization in the neurons of the mul-
tifunctional networks using informational lesions. Finally,

we evaluated two statistical measures on their abilities to es-
timate function from neural traces.

Evolving neural networks for each individual task
In order to evolve a neural network capable of solving mul-
tiple tasks, we first verified that each of the tasks could be
evolved using a similar neural network and fitness func-
tions. This first experiment allowed us to ensure that: (a) the
size and architecture of the neural network is appropriate
for solving each task; (b) the task-specific parameters and
constraints of the sensory inputs are likewise appropriate for
solving each task; and (c) the fitness function used for each
task reliably results in successfully evolved neural networks.
For each task, we performed 10 independent evolutionary
runs with different random seeds for 150 generations. In
preliminary analysis, we noted that neural networks that per-
formed the task successfully had a fitness of 0.93 or higher.
The fitness for each task was normalized to run between 0
and 1. For the inverted pendulum, 9 out of the 10 evolution-
ary runs produced neural networks that could solve the task
with a fitness greater than the 0.93 threshold. The best neu-
ral network for this task obtained a fitness of 0.96. All 10 of
the runs for the cartpole balancing task resulted in success-
ful neural networks, with the best neural network obtaining
a fitness of 0.99. Of the three, the single-legged walking
task was the hardest to solve, with only four of the 10 runs
producing neural networks with a fitness greater than 0.93.
However, the best neural network for this task also obtained
a fitness of 0.99. Given the success obtained with the size
and architecture of the neural network, the arrangement of
the sensory input and motor output, and the shape of the
fitness evaluations, it is in principle possible that a single
neural network can solve all three tasks.

Evolving neural networks for multiple tasks
The majority of work training artificial neural networks to
solve tasks has focused on single tasks, however biologi-
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Figure 2: Performance of the filtered ensemble on individ-
ual tasks. Each point represents the performance on a fine-
grained set of starting conditions of each circuit in the en-
semble, for each of the tasks. The neural network with the
highest overall fitness is shown in black. All neural networks
in this set are successful multifunctional neural networks.
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Figure 3: Behavior of the best performing neural network. Top row: Performance maps as a function of the starting conditions
for each task. Bottom row: Behavioral traces for a sample of starting conditions for each task. [A] Performance as a function of
the initial angular velocity and angle of the pendulum in the inverted pendulum task. The color represents performance. Yellow
represents perfect performance and dark blue represents 80% performance. [B] Performance as a function of the initial angular
velocity and angle of the pole in the cartpole balancing task showing perfect performance throughout. The position and velocity
of the cart was also varied systematically, with the performance averaged across those two dimensions. [C] Performance as a
function of the initial angular velocity and angle of the leg in the single-legged walker. Yellow represents perfect performance
and green represents 95% performance. [D] Sample trials from the inverted pendulum task showing the best neural network
swinging the pendulum up to 0 (equivalent to 360 and −360). [E] Sample trials from the cartpole balancing task showing the
best neural network oscillating the pole and maintaining it near the vertical. [F] Sample trials from the single-legged walker
showing leg angle over time, indicating successful walking behavior by the best neural network.

cal neural networks can produce multiple different behav-
iors seamlessly. The next step in this work was to evolve the
same neural network to solve all three tasks. The motivation
for this step is two-fold. First, we would like to further de-
velop a methodology to generate multifunctional neural net-
works for control tasks. Second, we will use the generated
multifunctional neural networks to investigate neural reuse,
and the tools of analysis that allow us study neural reuse. All
evolutionary runs achieved some success on the three tasks.
Out of these 100 runs, 32 neural networks solved the three
tasks with a combined fitness greater than 0.80, within a fit-
ness domain of [0,1]. We selected the ensemble of neural
networks evolved in those runs to analyze in more detail.

Ensemble performance on individual tasks
The fitness of these neural networks was calculated as the
product of their performance across the three tasks on a rel-
atively small subset of starting conditions (27 starting con-
ditions in total). To ensure that the neural networks in the
ensemble could indeed solve each of the tasks robustly, we
analyzed their performance on a finer grained set of starting
conditions for each of the tasks. Specifically, we examined

the performance across 10 different starting angles for the
pendulum/pole/leg, and across 10 different starting angular
velocities (300 conditions total). Next, we filtered the en-
semble to those that had a performance of 0.85 or higher
on each of the individual tasks on the finer-grained analy-
sis. This resulted in a total of 25 neural networks (Fig. 2).
Given their high level of performance across a wide range
of starting conditions, consistently for each of the tasks, the
neural networks in this filtered ensemble can be used for our
analysis of neural reuse. The neural network with the high-
est overall fitness had a performance of 0.97 on the inverted
pendulum task, 1.0 on the cartpole balancing task, and 0.98
on the single-legged walking task.

Behavior of the best performing neural network
In order to further validate the meaning of these performance
scores across the three tasks, we visualized the robustness
across starting conditions and behavior for one neural net-
work (Fig. 2), the best performing one from the ensemble.
We examined the robustness of the neural network for the
inverted pendulum (Fig. 2A), the cartpole balancing task
(Fig. 2B), and the single-legged walker (Fig. 2C) across a
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Figure 4: Neural reuse in the best and the ensemble of multifunctional neural networks. [A] Task performance after information
lesions were performed on each neuron in each task. For each neuron (horizontal axis), orange represents performance in
inverted pendulum after lesioning that neuron, blue in cartpole balancing and green in single-legged walker. A neuron is said
to significantly contribute to a task if performance drops below a chosen threshold of 0.85 upon information lesioning of that
neuron. [B] Neural network representation (same architecture as in figure 1D) of each neuron’s contribution to the three tasks.
Tasks are represented by the same colors as in Panel A. White denotes contribution to all tasks and black denotes contribution
to none. When a neuron contributes to more than one task it is colored using both colors. Of the 8 hidden layer neurons that
are contributing to at least one task 7 are reused, in the best neural network. [C] Number of specialized neurons contributing to
one of the three tasks versus number of reused neurons contributing to at least two of the three tasks. Each dot represents one
of the 25 filtered neural networks. All neural networks show high levels of reuse rather than specialization.

wide range of starting angles for the pole/leg and starting
angular velocities. Overall, the performance of the neural
network is consistently good across the full range of starting
conditions for all three tasks. We also examined the behavior
of this neural network over time, for a subset of starting con-
ditions for the three tasks (Fig. 2D-F). We specifically exam-
ined the starting angles for the pole/leg in each task, and, as
expected, the behavior of the neural network in each of the
tasks is consistent with its performance: the inverted pendu-
lum gets balanced regularly (Fig. 2D), the pole is maintained
near the top of the cart (Fig. 2E), and the leg is moved back
and forth, while the foot is lifted and lowered to produce
forward movement (Fig. 2F).

Neural reuse in multifunctional neural networks

The main contribution of this paper is to better understand
how neural networks are multifunctional. The work up to
this point allowed us to arrive at an ensemble of neural net-
works that can solve multiple tasks to a high degree of com-
petency. The main advantage of this is that we now have
complete access to these multifunctional neural networks to
further examine how they accomplish this feat. The goal of
this section is to characterize which neurons in the network
contribute to which tasks and to study the variance observed
across different neural networks in the ensemble. In order
to do this, we systematically lesion each interneuron in the
neural networks and measure its effect on performance for
each task (Fig. 4). We do this analysis first for the best per-
forming neural network (Fig. 4A and B), and then we gen-
eralize the analysis for the rest of the neural networks in the

ensemble (Fig. 4C). Instead of a traditional lesion, where the
target neuron is fixed to zero, we performed an information
lesion, effectively allowing for the target neuron to take the
fixed value that maximized performance. Although more
computationally costly, an information lesion allows us to
more finely dissect the functional role of each neuron in the
network.

In order to understand the effect of information lesions
on the different tasks, we first analyzed the results from the
analysis on the best performing neural network (Fig. 4A).
As expected, each neuron participates in each of the tasks to
different degrees. Interestingly, the performance disruption
from the information lesions is relatively binary: a lesion
to any one specific neuron either disrupts the performance
for a task gravely (for example the performance drops more
than 50% of its usual level), or it does not affect it much
(for example the neural network remains with a performance
above 80%). This suggests a natural range to define a thresh-
old. For the purpose of this analysis, we consider a neuron
involved in a task if the information lesion disrupts perfor-
mance below 85%. When we take all three tasks into con-
sideration, each neuron can be categorized into one of seven
categories: the neuron does not contribute to any task, it con-
tributes to only one of the three tasks, it contributes to only
two of the tasks, or it contributes to all three tasks. In the
case of the best performing neural network (Fig. 4B), we can
see that two neurons (7 and 8) do not contribute to any task;
only one neuron (3) is dedicated to a single task; four neu-
rons are dedicated to two tasks (neurons 3, 5, and 8 are dedi-
cated to the inverted pendulum and single-legged walker and
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Figure 5: Estimating neural reuse from neural activity. Top row: Analysis of best and ensemble using neural variability. Bottom
row: Analysis of best and ensemble using mutual information [A1] Normalized neural variability in each neuron estimated from
its activity during each task. As opposed to information lesions, higher values correspond to greater contribution. Hence, a
neuron is said to contribute to a task if it has neural variability over 0.15. [B1] Neural network representation (same architecture
as in figure 1D) of each neuron’s contribution to the three tasks. Tasks are represented by colors same as in panel A. White
denotes contribution to all tasks and black denotes contribution to none. When a neuron contributes to more than one task it
is colored using both colors. According to neural variability, 7 out of 10 hidden layer neurons in the best neural network are
reused. [C1] Number of specialized neurons contributing to one of the three tasks versus number of reused neurons contributing
to at least two of the three tasks. Each dot represents one of the 25 filtered neural networks. Neural variability is relatively
more rigid in designating reuse. [A2] Same as A1 but for mutual information. [B2] Same as B2 but for mutual information.
According to mutual information, 7 out of 10 hidden layer neurons in the best neural network are reused. [C2] Same as C1 but
for mutual information. Mutual information shows a higher level of reuse compared to neural variability.

neuron 6 is dedicated to the cartpole balancing and Single-
legged walker); and three neurons (1, 4, and 9) are dedicated
to all three tasks. The main point of interest with this anal-
ysis is that most of the neurons are highly multi-functional:
the neurons are reused across multiple tasks.

Is the degree of neural reuse observed in the best per-
forming multifunctional neural network similar for other
neural networks in the ensemble? In order to examine the
degree of reuse and specialization across the full ensemble
of successful neural networks, we further simplified the cat-
egories of each neuron to either not involved in any task or
if involved, then either specialized or reused, depending on
whether the neuron was involved in one or multiple tasks,
respectively. Interestingly, we found a relatively consistent
pattern of neural reuse that evolved across the multifunc-
tional neural networks in the ensemble (Fig. 4C): the ma-
jority of neurons in nearly all of the neural networks were
being reused across two or all three tasks.

Estimating neural reuse from neural activity
Although we have demonstrated that performing an exhaus-
tive lesion study allows us to determine the degree of neural
reuse in an artificial system, such a level of manipulation
would not be practical for most living organisms. In this
last section, we analyze the degree to which we can esti-
mate neural reuse using only neural traces generated from
ongoing behavioral recordings. Specifically, we examine
two of the primary methods used to analyze neural traces:
neural variance and mutual information between each neu-
ron and the sensory stimuli. We first examined the neural
variability (Fig. 5A1) and mutual information (Fig. 5A2) for
the best performing neural network across the three tasks.
Note that in the informational lesions studies, low values
represented likely involvement of that neuron in that task,
whereas in the neural variance and mutual information anal-
ysis the opposite is true: high values represent likely in-
volvement in a task. Following the analysis done for the
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lesions, we categorized each of the neurons as contributing
to different subsets of the tasks (Figs. 5B1 and 5B2), respec-
tively for each metric. We used the same threshold (85%)
as in the lesion studies to classify neuron involvement. Note
that 85% here is represented as 15% given the inverse logic
of the data. The analysis of the best neural network reveals
a similar pattern for both neural variance and mutual infor-
mation. Neural variance estimates perfectly the role of 3
out of the 10 neurons (1, 5, and 9), and partially the role
of 5 neurons (2, 3, 4, 6, and 10). Mutual information also
estimates perfectly the role of 3 neurons (1, 4, 9) and par-
tially the role of 5 (2, 4, 5, 6, and 10). Finally, in order to
examine the estimates of the degree of reuse and specializa-
tion across the full ensemble of successful neural networks,
we again simplified the categories of each neuron to either
specialized or reused (Figs. 5C1 and 5C2, respectively for
each metric). Qualitatively, the neural variance analysis sug-
gests there is a relatively balanced set of neural networks in
the ensemble across the specialized and reused spectrum;
whereas the mutual information analysis suggests the neural
networks are mostly comprised of neurons with multifunc-
tional roles. From the lesion analysis, we know the latter is
closer to the ground truth, as visualized by the comparison
of Figs. 4C, 5C1 and 5C2. Finally, in order to assess the rela-
tive merit of the two metrics quantitatively, we measured the
Euclidean distance between each of the two metrics (neural
variance and mutual information) against the information le-
sion, across all 25 neural networks in the ensemble, using the
raw data in Figures 4A, 5A1, and 5A2 (see Fig. 6A), as well
as for the categorical data in Figures 4C, 5C1, and 5C2 (see
Fig. 6B). For both the raw data (Fig. 6A) and the categor-
ical data (Fig. 6B), the the mutual information consistently
estimated the information lesion data more closely.

Discussion
Our work extends previous studies in understanding multi-
functionality by developing a neural network that can per-
form multiple control tasks and by investigating its extent of
neural reuse. Our results show that (1) evolutionary algo-
rithms can be employed to successfully evolve feed-forward
neural networks to solve multiple control tasks, (2) using
information lesions to study neural reuse in our multifunc-
tional neural networks reveals that those with similar behav-
ioral performance nevertheless differ in the extent of special-
ization and reuse, and (3) mutual information outperforms
neural variability as a method to evaluate neural reuse using
only the neural activity.

Our work has both practical and theoretical implica-
tions. From a practical perspective, the evolutionary algo-
rithm used in our work demonstrates that this rather straight-
forward alternative to several contemporary algorithms in
artificial intelligence (Ruder, 2017) can generate multifunc-
tional neural networks. Furthermore, evaluating perfor-
mance on all tasks at every generation prevents potential

A B

Figure 6: Comparing metrics for estimating neural reuse.
Euclidean distance between the normalized metrics (neural
variance and mutual information) and the information le-
sions for both the raw and categorical data. [A] Euclidean
distance of normalized mutual information in each neuron
for each task, and normalized variance of each neuron for
each task (from the normalized fitness values after lesion-
ing each neuron) plotted against one another. Each dot is
a neural network from the ensemble. Most dots lie above
the diagonal denoting that mutual information estimates are
closer in euclidean distance to lesion scores than neural vari-
ability. [B] Euclidean distance of the number of specialized
and reused neurons given by mutual information and neural
variability to that given by the information lesions plotted
against each other. Each dot is a neural network from the
ensemble. Like in panel A, mutual information estimates
are closer in euclidean distance to lesion scores than neural
variability.

issues that may arise with the use of reinforcement learn-
ing and backpropagation, such as catastrophic interference.
From a theoretical standpoint, the information lesions per-
formed in our analysis is a lesioning approach that is an
unbiased alternative to ablating the neuron altogether. Fur-
thermore, our preliminary investigations provide provide in-
sights into the relative abilities of other statistical methods
to infer the ground truth obtained from the lesion studies.

The work presented in this paper provides ample op-
portunities for future expansion. In our analysis of a neu-
ron’s contribution to each task, the information lesion anal-
ysis was considered the “ground truth.” In experimental set-
tings, such a systematic set of lesions across all components
of a system is challenging and often not feasible. For this
reason, we examined two measures that relied only on the
system’s activity over time while performing the multiple
behaviors. Specifically, we used neural variability and mu-
tual information as estimators of a neuron’s role in a behav-
ior from neural activity alone. A limitation of the current
work is that we only considered the role of each individual
neuron. This assumes that a neuron’s contribution to a be-
havior is independent of other neurons in the neural network.
In future work, we intend to inspect these neural networks
over different combinations of grouped neurons, rather than
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exclusively on an individual level. This may reveal addi-
tional insight into redundant or synergistic reuse of neurons
in individual tasks as well as across tasks. We also plan to
inspect our neural reuse classifications over a wider range of
thresholds. Furthermore, in this paper, we analyzed patterns
of neural reuse in a feed-forward neural network of a partic-
ular size and architecture, and we would like to expand this
analysis to neural networks of different sizes and architec-
tures. To what extent do the patterns that we have identified
suggest similar patterns in neural networks with larger or
smaller hidden layers? We are also interested in continuing
to investigate the multifunctionality of these neural networks
by adding more closed-loop control tasks to the framework,
and the resulting neural reuse patterns. We would also like
to continue to use neural traces to predict the levels of neu-
ral reuse identified from information lesions with additional
statistical methods. Finally, we intend to further harness the
sophisticated behavioral capabilities of biological systems
by expanding our neural model to include continuous-time
dynamical recurrent neural networks. Developing these syn-
ergies between artificial models and living organisms paves
the way for designing increasingly realistic and behaviorally
robust artificial systems.

Data availability
The simulation code and data files are publicly
available in our research group’s GitHub account:
github.iu.edu/EASy/BensonALife2020.
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