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Abstract

Living organisms learn on multiple time scales: evolution-
ary as well as individual-lifetime learning. These two learn-
ing modes are complementary: the innate phenotypes devel-
oped through evolution significantly influence lifetime learn-
ing. However, it is still unclear how these two learning meth-
ods interact and whether there is a benefit to part of the system
being optimized on a different time scale using a population-
based approach while the rest of it is trained on a different
time-scale using an individualistic learning algorithm. In this
work, we study the benefits of such a hybrid approach using
an actor-critic framework where the critic part of an agent
is optimized over evolutionary time based on its ability to
train the actor part of an agent during its lifetime. Typically,
critics are optimized on the same time-scale as the actor us-
ing the Bellman equation to represent long-term expected re-
ward. We show that evolution can find a variety of differ-
ent solutions that can still enable an actor to learn to perform
a behavior during its lifetime. We also show that although
the solutions found by evolution represent different functions,
they all provide similar training signals during the lifetime.
This suggests that learning on multiple time-scales can effec-
tively simplify the overall optimization process in the actor-
critic framework by finding one of many solutions that can
still train an actor just as well. Furthermore, analysis of the
evolved critics can yield additional possibilities for reinforce-
ment learning beyond the Bellman equation.

Introduction
Animals are not born tabula rasa; they do not learn ev-
erything from scratch. Conversely, animals are not born
equipped with all skills required to perform different behav-
iors. Instead, our genotypes encode innate knowledge that
enables us to learn during our lifetime. This knowledge is
expressed via the physical structure of our brains and bod-
ies, as well as through basic, instinctual behaviors and drives
such as suckling or hunger. It is optimized over evolutionary
time such that it increases our chances of survival. Impor-
tantly, unlike lifetime learning that happens through rewards
and supervisory signals, this a priori knowledge is acquired
based on relative fitness of individuals in relation to a popu-
lation. Thus, natural intelligence is shaped via a wide arsenal
of learning approaches including evolutionary learning over

generations of populations (Mitchell, 1998), and individual
lifetime learning through reinforcement (Sutton and Barto,
2018), supervision (Mitchell et al., 1997) and others (Dick-
inson, 1980). Each of these methodologies have indepen-
dently inspired learning algorithms with the aim of devel-
oping artificially intelligent systems with the robustness and
flexibility of living organisms. However, these approaches
tend to get used separately as optimization methodologies
for artificial systems and only recently there is a growing in-
terest in developing hybrid methodologies that incorporate
evolutionary as well as lifetime learning. In such a situation,
it is unclear what the roles of these two learning paradigms
are. In this work we set out to explore what is learned
when evolutionary approaches and reinforcement learning
approaches are combined.

Actor-critic models of learning (Barto et al., 1983) pro-
vide a framework to model learning on an individual’s
timescale. The critic, usually modeled using a neural net-
work, is often interpreted as a model of the world and rep-
resents the quality, Q, of taking an action given an environ-
mental state. Such representations are often called Q-tables,
Q-networks, or Q-maps. Typically, they are implemented
by optimizing to predict the long-term expected reward for
a given state and action. Throughout this paper, we use the
term Q-maps to refer to the state/action-quality mapping, but
we do not enforce the implementation mentioned above. On
the other hand, the actor, also modeled as a neural network,
generates actions to perform the behavior and thus serve as
sensorimotor maps. The actor learns to act in an environ-
ment based on training signals from the critic. This model,
thus, provides distinct sub-models that separate the repre-
sentation of the task space (critic) from the performance of
the behavior (actor). As such, we utilize these models to ex-
plore how evolution of task objective and learning to behave
during the lifetime can interact.

In contemporary reinforcement learning strategies, the ac-
tor and critic are trained concurrently on the same time-scale
(Fig. 1A). The critic is trained using rewards from the en-
vironment and the actor is trained to take the actions that
would maximize the critic’s assessment (Grondman et al.,
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Figure 1: A schematic of the different actor-critic learning approaches [A] Reinforcement learning (RL) involves training both
the actor and critic concurrently. [B] Evolutionary algorithms (EA) involve directly selecting an actor from a population over
generations. [C] Our evolved Q-maps (eQ) approach involves evolving the critic over generations while training the actor during
the lifetime. [D] A schematic of the eQ algorithm within a single generation. Critic, while remaining fixed, uses environmental
states and proposed actions to generate training signals to modify the actor. Actor and environment engage in a two-way
interaction.

2012). This is an entirely lifetime-learning approach to per-
forming a task. Notably, the critic’s objective is given by the
Bellman equation that represents the expected long-term re-
ward for taking a particular action in a given environmental
state (Bellman, 1952). This approach and its variants have
been shown to successfully perform a variety of tasks (Mnih
et al., 2013; Silver et al., 2017; Mousavi et al., 2016). On
the other hand, purely evolutionary approaches in Artificial
Life generally directly evolve the parameters of the actor to
perform the behavior without use of a critic (Floreano et al.,
2008; Stanley et al., 2019) (Fig. 1B). This approach involves
a population of actors that are selected based on their relative
fitness. Thus, it is a purely population-based evolutionary
approach and has also been shown to successfully perform a
variety of tasks (Salimans et al., 2017; Such et al., 2017).

Approaches that combine evolutionary and lifetime learn-
ing have been explored in theoretical (Baldwin, 1896; Hin-
ton and Nowlan, 1987; Suzuki and Arita, 2000; Nolfi and
Parisi, 1996; Todd et al., 2020) as well in applied contexts
within the actor-critic domain Ackley and Littman (1991).
Recently, with the advent of deep reinforcement learning
there has been a renewed interest in combining the two ap-
proaches with promising results (Houthooft et al., 2018; Fer-
nando et al., 2017; Khadka and Tumer, 2018; Pourchot and
Sigaud, 2018). While in some cases, the critics in these
hybrid approaches have continued to be constrained to the
Bellman equation, in other cases the critics have been part
of the evolutionary learning. One approach that this work
draws from is the Evolved Policy Gradients (EPG) algo-
rithm (Houthooft et al., 2018), where the critic is evolved
to generate training signals for an actor.

In this work, we aim to investigate how employing a com-

bination of lifetime learning and evolution can be beneficial.
Using the actor-critic framework we explore the different
ways evolution can represent task information (critics) be-
yond the Bellman equation to train actors during their life-
time. Specifically, we devised a simplified evolutionary rein-
forcement learning approach we call evolved Q-maps or eQ,
that utilizes an evolutionary strategy for the critics, which
then train the actors during their lifetime (Fig. 1C). We com-
pare the evolved critics with those obtained from an entirely
lifetime learning approach, Deep Deterministic Policy Gra-
dients (DDPG) (Lillicrap et al., 2015). In order to develop
Q-maps that are tractable for analysis, we used the classi-
cal inverted pendulum task (Brockman et al., 2016) as our
target behavior. Our analysis revealed the following: First,
eQ and DDPG are equally good in training actors to per-
form a task. Second, while Q-maps from eQ were faster to
train fresh random actors of the same architecture, Q-maps
from DDPG performed slightly better at training actors with
different architectures than they were trained using. Third,
while the Q-maps obtained from DDPG were all similar
to each other, Q-maps from eQ were significantly different
from them and also diverse within themselves. Finally, al-
though the Q-maps from the eQ were encoding a diverse set
of functions, the training signal they provided to the actors
were very similar to each other as well to the training signal
provided by the DDPG Q-maps. This suggests that several
solutions beyond the Bellman equation exist to generate Q-
maps that can train actors. Furthermore, although there may
be several approaches to representing a task, the set of pos-
sible representation may be constrained by the rather narrow
scope of the training signals that can enable learning to per-
form the behavior.
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Methods
The goal of this work is explore the space of possible crit-
ics (Q-maps) over an evolutionary time-scale such that they
can enable an actor to successfully learn to perform a behav-
ior during the lifetime. This involves developing the actor-
critic agent model, the environment or task, the evolutionary
training of the critics, and lifetime learning of actors. These
components of the model are described in this section. Fur-
ther, we compare the evolved Q-maps with Q-maps obtained
from a purely lifetime learning approach, Deep Determinis-
tic Policy Gradients (DDPG), which is described at the end
of this section.

Task design
For our experiments, we train and evaluate our agents on the
classical inverted pendulum task. This is one of the easiest
classic control tasks; in it an agent must exert a torque on the
fulcrum of a rod pendulum in order to balance the pendulum
facing upwards. There are three variables that characterize
the behavior of the system: the current angle of the pendu-
lum from the vertical in radians, denoted θ, the current an-
gular velocity of the pendulum in radians counterclockwise
per second, denoted ω, and the counterclockwise torque ex-
erted on the pendulum, denoted τ . The angular velocity is
limited to 8 radians per second and the torque is limited to 2
Newton-meters. The observation of the system given to the
agent comprises the x- and y-coordinates of the tip of the
pendulum and the angular velocity of the pendulum. (Coor-
dinates are used rather than the angle itself to preserve conti-
nuity.) Each timestep, the agent provides the torque exerted
as a single numerical value. Finally, the agent is provided
with a reward signal that penalizes the pendulum falling or
moving very quickly, or (to a lesser extent) a large torque be-
ing exerted. Over a standard 10-second episode with 50 sim-
ulated timesteps per second, the ideal reward given perfect
initial conditions is 0; the expectation of ideal reward over
randomly sampled initial conditions is in the ballpark of -
130. We use this task because it is simple, low-dimensional,
easy to interpret, and popular. See Figure 2(A) for a graphi-
cal depiction of the task and its variables.

An “episode” of the task involves resetting the environ-
ment with random initial conditions and stepping through
one trial of agent-task interaction until a termination condi-
tion has been reached. Time is broken into discrete steps,
and processing is traded between the agent and the task. Ev-
ery timestep, a task provides an agent with an observation
(known as S for state), a reward signal (known as R for re-
ward), and a flag for whether or not its trajectory was just
reset (known as T for termination). In return the agent pro-
vides the task with a pattern of motor activations (known
as A for action). Together, all of the information from a
single timestep transition can be collected in a tuple of the
form (St, At, Rt→t+1, Tt→t+1, St+1), known colloquially
as a SARTS tuple.

Agent model
Our model consists of agents, which include a Q-map critic
neural network and an actor neural network. Each agent’s
critic had a feed-forward neural network connecting the
task’s 3-unit sensory input to two layers of 20 and 10 hid-
den units respectively, followed by a single-unit quality as-
sessment output. A 1-unit proposed action input was con-
catenated to the first layer of hidden units. (Adding action
inputs to the first hidden layer is a technique used in the
DDPG algorithm to boost the magnitude of gradients.) This
critic architecture is much smaller than typical for the DDPG
algorithm, and results in somewhat unstable performance in
DDPG; however, it facilitates the evolutionary algorithm and
produces more compact and analyzable networks. The ac-
tor architecture is lifted directly from the paper introducing
DDPG: the 3-unit sensory input, followed by two layers of
400 and 300 hidden units, followed by a 1-unit motor out-
put. All units use the rectified linear unit signal function
except for the critic’s output, which has a linear response,
and the actor’s output, which uses the hyperbolic tangent
signal function. Q(S,A) denotes the Q-map’s representa-
tion of the quality of an action given a particular state, and
A(S) denotes the actor’s preferred action given a particular
state.

Over the course of simulation, agents’ nervous systems
may or may not change. Much artificial evolution assumes
that an agent’s neural network weights are fixed by their
genotypes and do not change over the course of each gen-
eration. If the organism’s nervous system changes over
time, then simulation is split into “training” and “evaluation”
phases (as may be familiar from reinforcement learning se-
tups). During the evaluation phase, the nervous system is
kept fixed to whatever extent possible.

Evolved Q-maps (eQ)
Actor fitting Q-maps are representations of the value of
taking certain actions in an environmental state. However,
they cannot make decisions on what action an agent should
take. Given a Q-map, an actor needs to be fit to the values
represented by the Q-map to develop an agent that can act
in an environment. The following actor-fitting algorithm is
shared by all agents in this work.

The actor neural network is initialized with random pa-
rameters. Training episodes begin with the actor performing
actions in the environment, with a small amount of corre-
lated action noise added as in the DDPG algorithm. In or-
der to improve the actor over the course of the training pe-
riod, each agent maintains an “experience buffer” that con-
tains a large number of SARTS tuples accumulated over sev-
eral episodes. Every timestep, a number of SARTS tuples
are sampled at random from the experience buffer, and the
weights of the actor network are optimized to maximize the
critic’s assessment of the quality of the proposed action A′

t

given the observation St. Practically, this involves taking the
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Figure 2: [A] a schematic of the inverted pendulum task, including the internal state variables θ and ω as well as the action
variable τ . [B] Optimization curves for 20 runs of the DDPG algorithm. [C] Optimization curves for 20 runs of the eQ
algorithm.

gradient ofQ(St, A
′
t) with respect toA′

t, and then backprop-
agating that gradient through the actor network to obtain a
weight update that we perform according to the Adam opti-
mization algorithm (Kingma and Ba, 2014), a popular gra-
dient descent algorithm that includes optimizations such as
momentum in weight updates and a decaying learning rate.
Intuitively, the actor tunes its actions so as the maximize the
value that the critic provides.

It is important to note that as described here, actor fit-
ting keeps the critic’s Q-map fixed and uses it only to update
the actor’s flexible sensorimotor map. Actor fitting does not
make use of reward signals from the environment, or indeed,
any information from the environment beyond the distribu-
tion of states that occurs in its experience buffer.

Critic evolution We propose a simplified version
of Houthooft et al. (2018) for artificially evolving Q-maps
based on the fitness of the actions they favor, which we
will term eQ for the remainder of the paper. In the eQ
algorithm, a population of N = 160 critic networks is
maintained, along with a single set of initial weights for an
actor network. Every generation, N actor networks will
be initialized from the set of initial weights, each paired
with a critic, and then the actors will be fit to the critics
based on the algorithm described above over the course
of 50 training episodes. Following that, the fitness of the
critics are evaluated by assessing the actors on 100 training
episodes using a common, fixed set of initial conditions. To
maintain similarity with DDPG, actors use time-correlated
action noise as described in the following subsection during
fitting and no action noise during assessment. At the end
of each generation, an elitist fraction of the top 8 critics are
kept as is, and 19 copies of them are made with increasing
levels of Gaussian mutation noise added to the parameters
of each copy. The standard deviation of the noise ranges
from 0.08 to 0.8 units in the parameter space of the neural
network. This gives a new population of 160 critics for the

next generation.

Deep Deterministic Policy Gradients (DDPG)
Deep Deterministic Policy Gradients is one of the most pop-
ular reinforcement learning algorithms. It is used to learn
a deterministic policy in which each stimulus corresponds
with exactly one action. Although this is not explored in the
present work, DDPG is often used to learn a policy that re-
ceives raw image data as input and processes this data using
a deep convolutional neural network.

In the DDPG algorithm, the actor is fitted to the critic
as described above. However, the critic’s Q-map is updated
concurrently with the actor to fit the Bellman equation, using
gradient descent. Under the Bellman equation, the critic’s
quality assessment of an action given a state is optimized
to represent the total expected long-term reward of picking
that action from that state: the immediate reward, plus the
best available long-term reward given the successor state fol-
lowing this transition, subject to some time discount factor.
Given a successor state, the expected long-term reward of
the actor’s preferred action is used as a proxy for the state’s
best available long-term reward. In order to stably estimate
the best available long-term reward at the successor state,
“target networks” that track the critic and actor networks are
used to determine this value, rather than determining it di-
rectly from the current critic and actor networks.

Q(St, At)⇐ Rt→t+1 + γQtarget(St+1, A
′
target(St+1))

(1)
DDPG is highly dependent on time-correlated action

noise to allow for exploration in action space. In time-
correlated noise, such as the Ornstein-Uhlenbeck noise used
by most implementations of DDPG, some amount of noise
is added to a decaying accumulator each time step, and the
accumulated noise is added to the agent’s proposed action
each time step. This ensures that the action at time t re-
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mains predictive of the action at time t+ 1, which is crucial
to distinguishing the effects of different actions for the pur-
poses of the Bellman equation. We use Ornstein-Uhlenbeck
noise with a variance σ of 0.2 and a decay factor θ of 0.15.
Action noise is disabled during the evaluation period after
actor fitting. Consult Lillicrap et al. (2015) for more details
about the DDPG algorithm.

In order to obtain similarly performing critics from the
eQ algorithm and the DDPG algorithm, each run of DDPG
included a population of 160 actor/critic pairs. DDPG was
carried out for 5000 episodes, at which point the popula-
tion’s performance had stabilized. From each run of each
algorithm, the critic whose actor performed the best during
run-end assessment was extracted for analysis.

Both DDPG and eQ algorithms share the same basic dy-
namic: the actor is fitted to the critic’s assessments of its
proposed actions over recent state transitions, and the critic
is influenced by the actor’s actions and the environment’s
dynamics. The key differences between the algorithms are
the mechanisms in which and the time scale on which the
critic is influenced. In DDPG, the critic’s Q-map is fitted
to the Bellman equation on recent experiences, with updates
every time step of every episode. In eQ, critics that fit actors
to do well in the environments provided are deemed more fit
and selected for every generation.

Results
Our primary goal is to compare the space of Q-maps that
produce adaptive behaviors with the space of Q-maps that
fit the Bellman equation. First we use the eQ and DDPG al-
gorithms to generate Q-maps in these spaces for the inverted
pendulum task. This is one of the simplest continuous con-
trol tasks, and thus allows us to interpret Q-map representa-
tions of the task. We then compare the eQ and DDPG critics
on four levels: their ability to produce an actor that performs
a task, their ability to produce a critic that can train any actor
to perform a task, the actual map of state-action values that
the critic neural networks encode, and finally the training
signal that they provide to the actor.

Performance of eQ and DDPG
Given the two approaches to generating Q-maps, we first
evaluate their relative performance as methods of producing
actors. We generated 20 critic/actor pairs using the eQ algo-
rithm and 20 using the DDPG algorithm. The training curves
for these two algorithms show that both eQ and DDPG gen-
erate critics that can train actors to perform the inverted pen-
dulum task (Fig. 2).

Robustness of eQ and DDPG critics
While eQ- and DDPG-based optimization of critics were
performed with a fixed actor initialization, the optimized
critics should theoretically be able to train any random actor.
To evaluate this, we performed the actor fitting algorithm on

Actor Period DDPG eQ
[3,5,1] 50eps -1129.5 ± 194.5* -1347.2 ± 176.8*
[3,5,1] 5000eps -287.3 ± 265.7 -409.7 ± 290.0

[3,20,10,1] 50eps -701.6 ± 342.1* -961.6 ± 384.7*
[3,20,10,1] 5000eps -206.9 ± 158.8 -238.4 ± 222.4

[3,400,300,1] 50eps -338.8 ± 253.0 -259.7 ± 188.6
[3,400,300,1] 1000eps -207.8 ± 159.5 -238.5 ± 165.6

Table 1: DDPG (N=20) and eQ (N=20) critic performance
training new actors (10 per critic). Includes training period
of 50 episodes (as in eQ) and training until convergence.
(*Significant to 95% confidence.)

all forty of our obtained critics with 10 fresh actor initial-
izations. Furthermore, we set out to test the robustness of
these critics by evaluating their ability to train actors with
two other architectures. Altogether, we repeated the actor
fitting with three different hidden layer actor architectures:
with two hidden layers of 400 and 300 units respectively
(the original architecture, denoted by [3, 400, 300, 1]); with
two hidden layers of 20 and 10 units respectively (denoted
by [3, 20, 10, 1]); and finally with one hidden layer of 5
neurons (denoted by [3, 5, 1]). Since smaller networks ex-
hibit more forgetting problems and less readily fit complex
functions, we considered these to be increasing challenges
for the critic networks. To obtain smooth training curves
that directly measured actor performance, we trained in 25-
episode bursts interspersed with 100-episode testing phases
using a fixed, standardized set of 100 initial conditions.

Performance of actors averaged over 100 evaluation
episodes after 50 episodes of training and at convergence
can be found in Table 1. We found that at convergence, ac-
tors trained by DDPG critics did marginally better than those
trained by eQ critics on average, irrespective of actor archi-
tecture. In addition, [3, 5, 1] and [3, 20, 10, 1] actors trained
by DDPG critics did better throughout training (Fig. 3B,C),
with statistically significant differences at 50 episodes for
both architectures (Welch’s t-test, p < 0.05). However, for
the first 250 episodes, eQ critics train [3, 400, 300, 1] actors
better than DDPG critics (Fig. 3A), though the difference at
50 episodes is marginal. The fact that eQ critics perform bet-
ter than DDPG ones on the conditions they were optimized
under but worse on other conditions indicates that eQ critics
are more narrowly specialized than DDPG critics.

DDPG eQ
DDPG 0.76 ± 0.12 -0.03 ± 0.24

eQ -0.03 ± 0.24 0.07 ± 0.53

Table 2: DDPG/eQ Q-map correlations: the average pair of
two DDPG Q-maps exhibits a strong positive correlation,
but other Q-maps are on average uncorrelated. Refer to Fig-
ure 5A.
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Figure 3: [A] eQ critics train new [3, 400, 300, 1] actors more quickly than DDPG critics. [B] On the other hand, DDPG critics
consistently do better than eQ critics training new [3, 20, 10, 1] actors [C] and [3, 5, 1].

DDPG eQ
DDPG 0.53 ± 0.12 0.45 ± 0.13

eQ 0.45 ± 0.13 0.47 ± 0.13

Table 3: DDPG/eQ training signal correlations are all
around 0.5, indicating on average moderate positive corre-
lations between the training signals from any two critics.
Refer to Figure 5B.

Comparison of Q-map activations

DDPG critics are optimized to represent the task per the
Bellman equation. However, no such constraint is placed
on the representation learned by the eQ critics since they are
optimized solely based on the performance of their actors.
Therefore, it is possible that eQ critics discover solutions
beyond the Bellman equation. To study this, we directly
compare the representations learned by the critics optimized
using eQ and DDPG algorithms by comparing the activation
maps over the entire range of state-action inputs. The ac-
tivation maps are sampled uniformly across the state-action
space with 200 angles, 9 angular velocities, and 40 torques
spanning the valid range. This yields 72,000 observed acti-
vation values for each critic. Because the output neurons of
the networks have linear signal functions, there are no strict
bounds on the activation values, which range from −422.0
to 321.0 for eQ critics and −424.5 to 2.4 for DDPG critics.
An illustrative example of the Q-map of a DDPG critic is
shown in Figure 4A,B,C and that of an eQ critic is shown
in Figure 4D,E,F. Representations of DDPG critics are in-
terpretable based on the Bellman equation by having higher
values for more favorable state-action pairs, and notably for
more favorable states. For instance, when the angular veloc-
ity, ω, is 0 an angle of 0 has the highest value (pendulum
is balanced at the top), but when the angular velocity is −8
an angle of 2.5 has the highest value (swinging upwards).
However, eQ critics are not interpretable in the same way
suggesting that they do not represent the same objective as
the Bellman equation.

To quantitatively compare the representations of the 20
eQ and 20 DDPG critics, we performed a two-part analysis
on the activation maps. To prepare, we calculate the corre-
lation of the activation maps of each pair of critics – do the
same state-action pairs lead to high or low activity for both
critics? Then we performed a clustering analysis, which al-
lows us to visually observe which activation maps appear by
correlation to represent similar interpretations of the state-
action space. Finally, we calculated the average correla-
tion between different critics within each treatment group
and the average correlation between critics across the treat-
ment groups, which lets us easily represent how self-similar
each group is and whether the two groups are more dissim-
ilar from each other than they are internally. The clustering
analysis revealed that DDPG critics are much more strongly
correlated with each other than they are to the eQ critics,
forming a single cluster before joining the rest of the critics
(Fig. 5A). The average correlation analysis (Table 2) further
revealed that while DDPG critics tend to agree quite strongly
about which state-action pairs are the most favorable with a
strong positive linear correlation, eQ critics have near-zero
correlations with either each other or with DDPG critics, in-
dicating that they do not converge to a single shared repre-
sentation of the full state-action space. The eQ-eQ correla-
tion has a higher standard deviation than the eQ-DDPG cor-
relation, indicating that eQ critics have stronger linear cor-
relations with each other (both positive and negative) than
they do with DDPG critics.

Comparison of training signals
Each critic supplies a training signal to its paired actor by
the derivative of its Q-map activation with respect to pro-
posed action. Since the representations of the critics are so
significantly different between eQ and DDPG, we set out to
compare the training signals that they provide to the actors.
The training signal at state S and action A is δQ(S,A)/δA.
This derivative ranged from -9.9 to 7.4 for eQ critics and -
85.8 to 89.7 for the DDPG critics, with mean magnitude 1.3
(eQ) and 4.8 (DDPG). The derivative is sampled across an-
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Figure 4: Illustrative example of a DDPG Q-map (A-C), an eQ Q-map (D-F); DDPG training signals (G-I) and eQ training
signals (J-L). In Q-maps, deeper blue indicates a lower value Q(S,A) relative to Q-values elsewhere in the state-action space;
for the DDPG critic, more favorable states and actions are generally lighter than less favorable states and actions, but for the
eQ critic there is no discernible pattern of activations by state. In training signal maps, blue indicates that a more clockwise
(negative) torque is favorable and red indicates that a more counterclockwise (positive) torque is favorable.

gle, angular velocity, and torque as described in the previous
subsection. An illustrative example of the training signals of
a DDPG critic is shown in Figure 4G,H,I and that of an eQ
critic is shown in Figure 4J,K,L. Both represent qualitatively
similar decision boundaries.

The same quantitative analyses are performed on training
signal maps as were performed for Q-maps. The clustering
analysis (Fig. 5B) found that 11 of the 20 DDPG critics ini-
tially clustered together but that the remaining 9 DDPG crit-
ics were evenly intermingled with the eQ critics. This means
that critics were intermingled overall, but that several DDPG
critics exhibited a similar training pattern. Unlike in the raw
activation case, the cluster of DDPG critics does not show a
greater internal correlation than other – intermingled – clus-
ters of critics. Consistent with these results, the average cor-
relation analysis (Table 3) reveals that the training signals
of DDPG-DDPG critic pairs exhibit a slightly higher corre-
lation than that of eQ-DDPG or eQ-eQ critic pairs. All of
these correlations are around 0.5, a moderate positive corre-
lation. This suggests that although the two groups of critics
encode different representation of the task, they ultimately
provide similar training signals to the actor.

Discussion
In summary, using our simplified actor-critic model of evo-
lutionary reinforcement learning, we demonstrate that there

is a degenerate mapping between the evolved representation
of the state-action space and the training signal that enables
lifetime learning. Specifically, by evolving critics to train ac-
tors and comparing the evolved critics to the lifetime-learned
critics, we demonstrate the following: First, an evolutionary
reinforcement learning approach, eQ, is able to generate ac-
tors that are just as good as those generated by DDPG in
performing the Inverted Pendulum task. Second, evolved Q-
maps train fresh actors better than DDPG Q-maps under the
conditions they were optimized for, but waiting for actors’
convergence or varying the actor’s architecture reverses this
trend. This indicates that while both strategies produce func-
tional critics, eQ produces more specialized Q-maps than
DDPG. Third, most Q-maps generated by DDPG correlate
strongly with each other but on average, Q-maps generated
with eQ are correlated neither with each other nor with those
generated by DDPG. Finally, any two Q-maps’ training sig-
nals will have a moderate positive correlation across the
state-action space, regardless of which way they were gen-
erated. The evolutionary reinforcement learning approach
allowed us to explore other objectives for the critic beyond
the Bellman equation. As a result, we found a diverse set of
Q-maps that were just as good in their ability to train actors,
broadening the definition of a useful critic beyond those that
fit the Bellman equation. This opens up avenues of future
research to characterize the functions that the evolved critics
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eQ
DDPG

Figure 5: In general, while Q-maps from DDPG and eQ are very different, the gradients they supply to train actors are very
similar. [A] Q-map activations from DDPG cluster together first before forming a cluster with eQ maps. [B] Hierarchical
clustering of gradients from Q-maps reveals little discernible clustering of gradients from DDPG and eQ.

represent to potentially discover new reinforcement learning
training methods.

Our work on whether training signals from eQ critics are
meaningfully different from training signals from DDPG
critics contributes to the literature of evaluating actor-critic
models. From our results showing the variability of solu-
tions that an algorithm can produce, we argue that it is advis-
able to report both within- and between-algorithm variability
when comparing two algorithms. In related work, Houthooft
et al. (2018) find that their evolved policy gradients algo-
rithm produces training signals with a Spearman correlation
of 0.5 to those of a standard reinforcement learning algo-
rithm, and use this fact to argue that the two algorithms gen-
erate training signals “related to, but different from” each
other. In our work, we found that multiple runs of DDPG
produced critics whose training signals are only correlated
to this level. Given the wide range of reinforcement learn-
ing algorithms under study, each of which might result in a
different level of variability between runs, reporting within-
algorithm variability will help to provide a richer picture of
the differences between different algorithms.

This work provides evidence in support of the on-
going movement towards algorithms generating algo-
rithms (Clune, 2019). In this work, we used a specific evo-
lutionary/lifetime learning algorithm, replacing a machine
learning objective with an unconstrained fitness-maximizing
objective. We believe that further analysis of models ob-
tained from such approaches has the potential to yield sev-
eral new algorithms that would be impractical to discover
through manual incremental development of existing al-
gorithms. While this approach has focused on the actor-
critic framework, there have been other non-actor-critic ap-
proaches to lifetime reinforcement learning (Lapan, 2018)
that can be explored in a similar fashion. Altogether, hy-
brid approaches combining evolutionary and lifetime learn-
ing have demonstrated great promise towards the aim of de-

veloping new algorithms for developing artificial systems
with the robustness and flexibility of natural systems.

Data availability
The simulation code and data files are publicly
available in our research group’s GitHub account:
github.iu.edu/EASy/LeiteALife2020.
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