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Abstract

Artificial Life has a long tradition of studying the interaction
between learning and evolution. And, thanks to the increase
in the use of individual learning techniques in Artificial In-
telligence, there has been a recent revival of work combin-
ing individual and evolutionary learning. Despite the breadth
of work in this area, the exact trade-offs between these two
forms of learning remain unclear. In this work, we system-
atically examine the effect of task difficulty, the individual
learning approach, and the form of inheritance on the per-
formance of the population across different combinations of
learning and evolution. We analyze in depth the conditions in
which hybrid strategies that combine lifetime and evolution-
ary learning outperform either lifetime or evolutionary learn-
ing in isolation. We also discuss the importance of these re-
sults in both a biological and algorithmic context.

Introduction
There are two approaches to generating adaptive behav-
ior: evolution and learning. The robustness and flexibil-
ity of life on earth demonstrates that there is an advantage
to combining the two. Baldwin (1896) argued that charac-
teristics acquired during the individual’s lifetime can alter
the course of evolution, despite not being inherited, and
simulation work in Artificial Life (ALife) has been consis-
tent with this observation. Hinton and Nowlan (1987) were
the first to demonstrate how learning alters evolution in an
idealized simulation model. This work has been extended
in several different directions, including by analzying dy-
namic environments (Suzuki and Arita, 2000, 2004), neu-
ral networks (Todd and Miller, 1991; Nolfi and Parisi, 1996;
Littman, 1996), and ontogenetic development (Belew, 1990;
Sendhoff and Kreutz, 1999). Of particular relevance to our
contribution is the work of Hinton and Nowlan (1987) and
its adaptation to the NK-landscape framework developed by
Kauffman and Levin (1987). While previous ALife research
has shown that combining lifetime and evolutionary learning
can outperform either type in isolation, only very specific in-
stantiations of lifetime and evolutionary learning have been
studied in detail.

In the field of Artificial Intelligence (AI), meanwhile, the
majority of work has focused on the use of learning and

evolution as optimization techniques to tune the parame-
ters of large neural systems: either evolution-inspired pop-
ulation search algorithms (Husbands et al., 1997; Stanley
et al., 2019), or gradient descent as an individual learn-
ing technique in the form of supervised learning (Mitchell
et al., 1997) or reinforcement learning (Sutton and Barto,
2018). Notably, Ackley and Littman (1991) explored early
on the potential for combining the two and demonstrated
the benefits of the hybrid approach in a discrete reinforce-
ment learning task. More recently, the hybrid approach has
bloomed within the deep learning and deep reinforcement
learning literature (Fernando et al., 2017; Houthooft et al.,
2018; Khadka and Tumer, 2018; Pourchot and Sigaud, 2018;
Leite et al., 2020). However, these systems are more com-
plex than necessary to systematically examine the trade-off
between learning and evolution. Furthermore, unlike Hin-
ton and Nowlan (1987)’s stochastic lifetime learning, the
learning used to train artificial neural networks in supervised
and reinforcement learning involves estimating the direction
of steepest (de)ascent. In living systems, lifetime learning
could be anywhere on the spectrum between steepest ascent
and stochastic hill-climbing. Understanding the interaction
between learning and evolution will require understanding
the effect of different levels of determinism in individual
learning.

Following the Modern Synthesis, the large majority of
simulation work developed to understand the interaction
between learning and evolution does not consider the in-
heritance of acquired characteristics, with a few excep-
tions (Gruau and Whitley, 1993; Whitley et al., 1994). How-
ever, to understand the interaction between evolution and
learning in the broader perspective of AI, we must also con-
sider a Lamarckian perspective, as algorithms selected for
AI need not follow biological constraints. We also note that
while there may not seem to be clear biological motivation
for Lamarckian inheritance, in the broader context of evolv-
ing populations, there are some ways for acquired character-
istics to be effectively inherited, such as behavioral inheri-
tance through social learning and language-based informa-
tion transmission (Jablonka et al., 1998).
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We extend previous work in four important directions.
First, we focus our research on a balanced trade-off between
learning and evolution. That is, for each population we fix
the total number of learning events and systematically vary
how those events are distributed between individual lifetime
learning and distributed evolutionary learning. Second, we
examine the effect of task-difficulty on the optimal trade-off
between learning and evolution. Third, we examine both
Lamarckian and non-Lamarckian conditions as a way to as-
sess their effect on the interaction between learning and evo-
lution. Finally, we compare the effect of steepest ascent ver-
sus stochastic ascent for individual learning on its interaction
with evolution.

Methods

In this section we describe our idealized model of lifetime
and evolutionary learning. Following previous work (Cur-
ran et al., 2007a,b), we model the population as a set of in-
dividual genotypes and corresponding phenotypes moving
in a fitness landscape. Specifically, we modeled a group of
50 individuals exploring the problem space through lifetime
and evolutionary learning. In this section, we describe the
NK fitness landscape, the lifetime learning forms examined,
the forms of inheritance examined, and the method by which
the total number of optimization events was held constant.

NK fitness landscape We follow previous work in model-
ing evolution and learning in tunably rugged NK-landscape
first developed by Kauffman and Levin (1987). Each land-
scape is determined by the number of dimensions (N ) and
the number of epistatic interactions for each dimension (K).
Each dimension corresponds to a single locus in the geno-
type and contributes some amount to the overall fitness. The
contribution of a specific dimension, however, also depends
on the values at K other dimensions. In this way, the param-
eter K determines the “smoothness” of the fitness landscape.
The simplest problem space, K = 0, contains a single global
optimum, but as K increases, the problem space becomes
more rugged and difficult. When K is at its highest possi-
ble (K = N − 1), the problem is effectively random. For
the simulations presented below, we fixed the dimensional-
ity (N = 15) and varied systemically the number of epistatic
interactions across the full range (K between 0 and 14). For
each problem space, scores were normalized to run between
0 and 1, with 0 corresponding to the worst possible solu-
tion and 1 corresponding to the best solution as determined
by an exhaustive search of the landscape. Following previ-
ous work (Lazer and Friedman, 2007; Barkoczi and Galesic,
2016), we elevated the scores to the power of 8 to widen
the distribution of solutions. Due to the variability of dif-
ferent instantiations of each NK landscape, each condition
was tested on the same set of 5,000 landscapes and starting
conditions.

Lifetime learning We consider two distinct types of learn-
ing: lifetime learning events at the level of the individual
and evolutionary learning events at the level of the popula-
tion. During a lifetime learning event, each individual in the
population independently attempts to improve its fitness by
examining its local area in the NK landscape and altering
its phenotype, with no consideration of the rest of the pop-
ulation. We primarily examine two types of lifetime learn-
ing: stochastic hill-climbing and steepest hill-climbing. For
stochastic hill-climbing, an individual flips a random bit of
its phenotype (i.e. takes a single ”step” in the landscape). If
the resulting phenotype corresponds to a higher fitness than
the current fitness of the individual, then the change is kept.
Otherwise, the original phenotype is retained. For steepest
hill-climbing, an individual instead examines all N single
bit-flips of the phenotype and keeps the change that results in
the highest fitness (or the original phenotype, if all changes
lead to worse fitness). We also briefly analyze intermediate
hill-climbing approaches in which an individual examines
some number of single-bit flips of the phenotype between
one (purely stochastic) and N (full steepest-ascent). In an
intermediate case, each individual randomly selects some
number of random genes, observes the fitness of each single
bit-flip, and either keeps the change that gives the highest
fitness, or its original phenotype if none are better.

Evolutionary learning During an evolutionary learning
event, a new population of individuals is generated from
the current population through the typical genetic algorithm
processes of selection, recombination, and mutation. First,
each individual is ranked according to their phenotypic fit-
ness (we note that in conditions with no learning events, the
phenotype is simply the same as the genotype). A portion
of the highest-fitness individuals referred to as the elite (top
10%) have their genotypes passed directly to the new pop-
ulation. The remainder of the new individuals are created
by selecting two “parents” from the population based on
their fitness rank. The two parent genotypes are randomly
combined to form the new genotype. Finally, each locus of
the new genotype individually undergoes a bit-flip mutation
with a probability of 1/N = 0.0667. Each phenotype for the
new generation of individuals is set equal to the new geno-
type.

Inheritance We distinguish here between Darwinian (in
this sense meaning that non-genetic traits are not inherited)
and Lamarckian inheritance. The Darwinian case proceeds
exactly described above – during learning events individu-
als make alterations to their phenotypes, while reproduction
events operate over the underlying and unchanging geno-
types. In the Lamarckian case, however, changes made to
the phenotype during learning events are actually reflected
in the individual’s genotype and go on to affect the behavior
of future reproduction events directly. While the Lamarck-
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ian condition has no direct parallels in biology, the combi-
nation of individual and distributed search methods is still of
some algorithmic interest.

Learning event scheduling In all experiments, we use a
simple scheduling regime to holding the total number of
events constant (e=100) while varying the proportion of
learning and evolution. At one extreme, we have a popula-
tion that only learns, and hence has 100 learning events. At
the other, we have a population that only evolves, and hence
has 100 reproduction events. In between, there are many
possibilities that mix learning and evolution to different de-
grees by varying the number of learning events preceding
each reproduction event. For instance, in the 4 : 20 sched-
ule there are 4 learning events preceding every reproduction
event, leading to 20 reproduction events. Altogether, the fol-
lowing schedules were evaluated: 0:100, 1:50, 4:20, 9:10,
19:5, 49:2, 100:0. Importantly, in every schedule the to-
tal number of learning events (e) remains constant, allowing
comparisons across different schedules. It should be noted
that the number of numerical operations does not necessar-
ily remain constant across experimental trials (as stochastic
individual learning involves fewer comparisons than steep-
est individual learning). While this might have an effect on
analyses of algorithmic performance, our primary interests
are more theoretical.

Results
While previous work has demonstrated the advantages of
combining lifetime and evolutionary learning over either in
isolation, we systemically explore the conditions in which
these advantages manifest. Specifically, we begin by analyz-
ing the performance of populations across different propor-
tions of individual and evolutionary learning. Afterwards,
we analyze in turn the effects of task difficulty, type of in-
heritance, and type of lifetime learning.

Performance across different combinations of
lifetime and evolutionary learning
We begin by discussing results for the Darwinian inheritance
condition with steepest-ascent hill-climbing, while varying
the proportion of learning and evolution events. This is
partly motivated by biology: in a biological setting, each
evolutionary learning event corresponds to the birth of a
new generation of individuals and so the number of life-
time learning events is roughly analogous to each individ-
ual’s lifespan. Further, there is a tradeoff associated with the
selection of a lifespan. A longer lifespan allows for indi-
viduals to better learn to exploit their environments, while
a shorter lifespan allows for a greater number of novel ge-
netic strategies to be explored within a fixed period of time.
In Figure 1, we see the best fitness of the population over
time for different proportions of learning and evolution and
a fixed task difficulty (K=6). In all settings, performance

tends to increase over time and nears optimal performance
after 100 events. In hybrid settings involving both evolu-
tionary and lifetime learning events, we observe gradual in-
creases in fitness punctuated by sharp decreases with every
evolutionary learning event. This is unsurprising, given that
evolutionary learning events do not record any of the phe-
notypic improvements made during prior lifetime learning
events. Nevertheless, fitness quickly recovers from each of
these dips. Indeed, the two extreme trajectories of exclu-
sively lifetime learning (the orange line) and of exclusively
evolutionary learning (the purple line), while smooth, do not
achieve the optimal performance overall. This indicates that
hybrid approaches (or intermediate lifespans) allow individ-
uals to better reach the optimal areas of the fitness landscape.

0:100

1:50

4:20

9:10

19:5

49:2

100:0

L:E

Figure 1: Performance across different proportions of life-
time and evolutionary learning, as function of total learn-
ing events (held constant). Different proportions shown in
different colors (e.g. pure evolution in purple, pure learn-
ing in orange, hybrid in blue). All populations used Dar-
winian inheritance, steepest hill-climbing, and a landscape
with K = 6.

Performance across task difficulty
Does the hybrid approach combining lifetime and evolu-
tionary learning always outperform the approaches that con-
sider only one form of learning? Are there some conditions
for which certain combinations of lifetime and evolution-
ary learning work better than other ones? We address these
questions in the context of task difficulty by examining the
performance of the different conditions analyzed in the pre-
vious section across fitness landscapes with different levels
of epistatic interactions (”ruggedness”, or K), and present
results in Figure 2. We observe that the ruggedness of the
landscape has a significant effect on the population’s per-
formance. In simple environments with small K values, all
strategies perform equally well. However, as the landscape
becomes more rugged, we observe a greater disparity in per-
formance between the extreme strategies and the optimal
hybrid strategy. Indeed, the difference in performance be-
tween extreme strategies and hybrid strategies becomes in-
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creasingly pronounced as the task difficulty increases. This
indicates that such hybrid strategies may be most helpful in
complex environments. In the case presented in Figure 2,
the optimal proportion of lifetime learning events to evolu-
tionary learning events was 4:20, and the optimal proportion
does not seem to vary as a function of task difficulty.
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Figure 2: Performance across task difficulty. Maximum fit-
ness reached by an individual in the population as function
of different proportions of lifetime and evolutionary learn-
ing. Different task difficulties (K) shown as different col-
ored traces. Darwinian inheritance. Steepest gradient ascent
individual learning

Effect of inheritance on learning
Next we examine the effect of Lamarckian inheritance, in
which individuals change their genotypes directly through
learning. The motivations for this are twofold, one biolog-
ical and one algorithmic. First, while genes do not acquire
characteristics during an individuals lifetime, there are other
mechanisms of inheritance that allow for information ac-
quired during a lifetime to be passed to offspring, such as so-
cial learning or external information encoded in the environ-
ment. Second, the performance of hybrid strategies is also
of interest to the field of AI, in which the choice of which
characteristics to have inherited by members of a population
is an open one. In Figure 3 we see that regardless of the
distribution between learning and reproduction events, the
best overall fitness steadily increases over time. This follows
from the fact that individuals are not forced to start learning
over again with each evolutionary learning event – they get
to “keep” some of the experience they gained through indi-
vidual learning. Overall, we find that while pure learning
slightly outperforms pure evolution, hybrid strategies still
often outperform both extremes, as with the Darwinian In-
heritance condition. This offers some indication that algo-
rithmic optimization strategies may benefit from combining
localized and distributed search methods.

Interestingly, the absolute fitness scores for individuals in
the Darwinian and Lamarckian inheritance conditions are
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Figure 3: Effect of inheritance on learning. Panel A: Per-
formance across different proportions of lifetime and evo-
lutionary learning, as function of total learning events (held
constant). Different proportions shown in different colors.
Intermediate task difficulty (K = 6). Panel B: maximum
fitness reached by an individual in the population as function
of different proportions of lifetime and evolutionary learn-
ing. Different task difficulties (K) shown in different col-
ors. Both: Lamarckian inheritance. Steepest-ascent hill-
climbing individual learning

roughly equivalent. This is somewhat surprising, given that
individuals in the Lamarckian condition are able to accumu-
late learning improvements through multiple generations.
One possible explanation is that individuals in the Darwinian
inheritance condition have a selective pressure to be near
areas of steep incline in the landscape, which would allow
them to reach a high fitness with relatively few individ-
ual learning events and make up for the apparent advantage
gained by individuals in the Lamarckian inheritance condi-
tion.

Effect of the type of lifetime learning
Finally, we examine the effect of different types of individ-
ual learning events on population performance. While in
many settings it is appropriate to view individual learning as
a process of identifying directions of steepest gradient as-
cent or descent, in others a more stochastic model is a bet-
ter fit. For instance, while many modern optimization algo-
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rithms move the weights in the exact direction of the com-
puted gradient, the gradient is often calculated over a subset
of all data, leading to a stochastic estimate. In Figure 4, we
show the best fitness achieved by the population for different
schedules and task difficulties (as in Figure 2) using stochas-
tic hill-climbing for individual learning events. In the Dar-
winian inheritance condition, we see that hybrid strategies
no longer outperform extreme strategies for any settings of
K. Instead, there is a slight tendency for more learning to
perform better. However, hybrid strategies do still outper-
form mixed strategies in the Lamarckian inheritance condi-
tion, though the difference is less than for steepest-ascent
hill-climbing. What accounts for this difference? One pos-
sibility is that the ability for individuals in the Darwinian
inheritance condition to take advantage of areas in the land-
scape of steep ascent is negated when individuals must im-
prove themselves stochastically and cannot reliably exploit
these directions. The individuals in the Lamarckian inher-
itance condition are potentially less affected by stochastic
hill-climbing because they rely less on identifying such ar-
eas of steep ascent.

To further explore the effect of different types of life-
time learning, we systemically varied the number of genes
examined during lifetime learning between the stochastic
case and the steepest case for a single task difficulty (K=6),
and present the results in Figure 5. We see that in the
Darwinian inheritance condition, increasing the number of
genes considered caused hybrid strategies to outperform ex-
treme strategies, with more genes considered corresponding
to a greater difference in performance. Effectively, we see
the smooth emergence of the “inverted-U” shape that char-
acterizes our earlier experiments. By contrast, in the Lamar-
ckian condition, we observe that hybrid strategies outper-
form their extreme counterparts regardless of the number of
genes considered during lifetime learning, though the num-
ber of genes considered does correlate with the performance
difference. In both conditions, the overall best performance
unsurprisingly increases with the number of genes consid-
ered.

Conclusion
We have shown that for simple NK-fitness landscapes, the
best performance is not achieved by either individual hill-
climbing or distributed evolutionary selection, but rather by
a mixture of the two. Further, the benefit of these hybrid
strategies becomes more pronounced as the landscape be-
comes more difficult. In the Darwinian inheritance condi-
tion, we also observe that the type of lifetime learning can
have a dramatic impact on its interaction with evolutionary
learning. The results from the Darwinian inheritance condi-
tion offer some insight into the mechanisms of optimization
underlying biological agents, while the Lamarckian inheri-
tance condition offers some potential motivation for novel
algorithms in artificial intelligence and machine learning.
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Figure 4: Effect of the type of lifetime learning. Panel A:
maximum fitness reached by an individual in the population
as a function of different proportions of lifetime and evo-
lutionary learning. Different task difficulties (K) shown as
different colored traces. Darwinian inheritance. Stochastic
hill-climbing individual learning. Panel B: the same, but for
Lamarckian inheritance.

A question of primary importance concerning our results
is why? That is, why do hybrid strategies perform better
than pure learning or pure evolution? There are many po-
tential explanations, but perhaps a reasonable one is that
hybrid strategies do a better job of balancing exploitation
and exploration in search. As we modeled it, lifetime learn-
ing involves taking advantage of local improvements in fit-
ness, and spends no time exploring potentially suboptimal
changes. Evolutionary learning, which operates primarily
through mutation and recombination, involves substantially
more exploration, with only the selection step acting to ex-
ploit advantages. As has been observed in many contexts,
neither pure exploitation nor exploration achieves optimal
results. Thus, it may be the case that hybrid strategies serve
to offer a more balanced search strategy that is ultimately
more successful, especially as task difficulty increases. Fu-
ture work could involve validating this hypothesis by mea-
suring how often each strategy performs exploitative or ex-
ploratory updates.
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Figure 5: Further effect of type of lifetime learning. Panel
A: maximum fitness reached by an individual in the popu-
lation as a function of different proportions of lifetime and
evolutionary learning. Intermediate task difficulty (K=6).
Darwinian inheritance. Different number of genes consid-
ered during lifetime learning shown as different colored
traces. Panel B: the same, but for Lamarckian inheritance.

Another promising area of future research is to investi-
gate further modifications of other relevant search parame-
ters, such as the number of parents involved in genetic re-
production, the mutation rate, and whether individual learn-
ing events are able to “explore” or perform non-optimal up-
dates. Another reasonable extension is the exploration of
more complex fitness landscapes through the use of more
powerful algorithms and models. For instance, deep neural
networks could be used to investigate the trade-off between
individual learning and evolutionary learning for simulated
walking agents. Another path is to investigate whether hy-
brid strategies offer benefits over pure strategies for multi-
task learning and optimization. In either case, it will
be worthwhile to explore both the biologically-motivated
Darwinian inheritance condition and the algorithmically-
motivated Lamarckian inheritance condition.

Data availability
The simulation code and data files are publicly
available in our research group’s GitHub account:
github.iu.edu/EASy/ToddALife2020.
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