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Abstract—We present SSS, a scalable transactional key-value
store deploying a novel distributed concurrency control that
provides external consistency for all transactions, never aborts
read-only transactions due to concurrency, all without special-
ized hardware. SSS ensures the above properties without any
centralized source of synchronization. SSS’s concurrency control
uses a combination of vector clocks and a new technique,
called snapshot-queuing, to establish a single serialization order
where transactions are guaranteed to read from the latest non-
concurrent transaction externally visible to clients. We compare
SSS against high performance key-value stores, Walter, RO-
COCO, and a two-phase commit baseline. SSS outperforms 2PC-
baseline by as much as 7x using 20 nodes; and ROCOCO by as
much as 2.2x with long read-only transactions using 15 nodes.

Index Terms—Transactions, Distributed Database, Consistency

I. INTRODUCTION

A distributed transactional system that ensures a strong level

of consistency greatly simplifies programmer responsibility

while developing applications. A strong level of consistency

that clients interacting with a transactional system often desire

is referred to external consistency [8], [13], [19].

Roughly, under external consistency a distributed system

behaves as if all transactions were executed sequentially, all

clients observed the same unique order of transactions com-

pletion (also named external schedule in [19]), in which every

read operation returns the value written by the latest write

operation. By relying on the definition of external consistency,

a transaction terminates when its execution is returned to its

client; therefore the order defined by transaction client returns

matches the transaction serialization order.

The latter property carries one great advantage: if clients

communicate with each other outside the system before or

after the transactional execution, they cannot be confused

about the possible mismatch between transaction order they

observe and the transaction serialization order provided by the

concurrency control inside the system. Simply, if a transaction

T is returned to its client, the serialization order of T will be i)
after any other transaction T ′ that returned to its client before

T started, and ii) before any transaction T ′′ that will start after

T and will return to its client subsequently. This correctness

criterion is also known as strict serializability if we restrict the

consideration to only transaction’s begin and commit events.

To picture the value of external consistency, consider an

online document sharing service and two clients, C1 connected

to server N1 and C2 connected to another server N2, whose

goal is to synchronize the same document D. Let us assume

D is replicated on two nodes for availability. C1 modifies D
and performs its synchronization. After C1 is notified about

the completion of its synchronization operation, it informs C2

that its modifications are permanent. Now C2 queries D to

observe the changes. Since the underlying distributed system

is asynchronous and clients C1 and C2 are on two different

nodes, they cannot observe a shared timeline, therefore oper-

ations on the two replicas of D can arrive in opposite orders,

which might cause clients to observe different serialization

orders [9], [36]. Only if the service is external consistent, then

C2’s expectation is met (i.e., C2 observes the modification of

C1); otherwise the possible outcomes include the case where

C2 does not observe C1, which might confuse C2. Note that

if the service provides Serializable [6] operations, C2 will not

be guaranteed to observe the outcome of C1.

In this paper we present SSS, a key-value store that im-

plements a novel distributed concurrency control providing

external consistency and assuming off-the-shelf hardware. Two

features enable high performance and scalability in SSS,

especially in read-dominated workloads:

• SSS supports read-only transactions that never abort due

to concurrency, therefore the return value of all their

read operations should be consistent at the time the

operation is issued. We name them as abort-free hereafter.

This property is very appealing because many real-world

applications produce significant read-only workload [4].

• SSS provides availability and fault tolerance by deploying

a general partial replication scheme where each key is

replicated on multiple nodes without predefined partition-

ing schemes (e.g., sharding [20], [38]). To favor scalabil-

ity, SSS does not rely on ordering communication prim-

itives, such as Total Order Broadcast or Multicast [16].

The core components that make the above properties pos-

sible in SSS are the following:

• SSS uses a vector clock-based technique to track depen-

dent events originated on different nodes. This technique

is similar to the one used by existing distributed transac-

tional systems, such as Walter [32] and GMU [29], and
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allows SSS to track events without a global source of

synchronization.

• SSS uses a new technique, which we name snapshot-
queuing, that works as follows. Each key is associated

with a snapshot-queue. Only transactions that will surely

commit are inserted into the snapshot-queues of their

accessed keys in order to leave a trace of their existence

to other concurrent transactions. Read-only transactions

are inserted into their read keys’ snapshot-queues at

read time, while update transactions into their modi-

fied keys’ snapshot-queues after the commit decision

is reached. Only update transactions can wait for read-

only transactions if they belong to the same snapshot-
queue. Read-only transactions leverage their membership

into snapshot-queue to inform update transactions. This

technique is similar to the one in [7] where readers

leave a trace of their execution for subsequent update

transactions.

A transaction in a snapshot-queue is inserted along with a

scalar value, called insertion-snapshot. This value repre-

sents the latest snapshot visible by the transaction on the

node storing the accessed key, at the time the transaction

is added to the snapshot queue. SSS concurrency control

orders transactions with lesser insertion-snapshot before

conflicting transactions with higher insertion-snapshot in

the external schedule.

SSS uses snapshot-queues to propagate established serial-

ization orders among concurrent transactions as follows.
If a read-only transaction TR reads a key x subsequently

modified by a concurrent committed transaction TW , x’s

snapshot-queue is the medium to record the existence of an

established serialization order between TR and TW . With that,

any other concurrent transaction accessing x can see this

established order and define its serialization accordingly. In

addition, TW ’s client response is delayed until TR completes

its execution. This delay is needed so that other update

transactions can be serialized along with read-only transactions

in a unique order where reads always return values written by

the last update transaction that returned to its client before.
Failing in delaying TW ’s response would result in a dis-

crepancy between the external order and the transaction se-

rialization order. In fact, the external order would show TW

returning earlier than TR but TR is serialized before TW .
For non-conflicting update transactions that have dependen-

cies with concurrent read-only transactions accessing common

keys, since these transactions are aware of each other through

the snapshot-queues of accessed keys, SSS prevents read-only

transactions to observe those update transactions in different

orders. This problem was previously discovered in [2], [29]).
On the flip side, delaying update transactions might have

a domino effect on limiting the level of concurrency in the

system, which might lead to poor performance. The snapshot-

queue technique prevents that: it permits a transaction that

is in a snapshot-queue to expose its written keys to other

transactions while it is waiting for the completion of the

concurrent read-only transaction(s) holding it. This feature

enables progress of subsequent conflicting transactions, hence

retaining the high throughput of the system.

Update transactions in SSS are serialized along with read-

only transactions. They always read the latest version of a

key and buffer write operations. Validation is performed at

commit time to abort if some read key has been overwritten

meanwhile. The Two-Phase Commit protocol (2PC) [8], [10],

[29], [32], [37] is used to atomically lock and install written

keys. These keys are externally visible when no concurrent

read-only transactions caused the update transaction to wait

due to snapshot-queuing, if any.

We implement SSS in Java and compared against two recent

key-value stores, Walter [32] and ROCOCO [26], and one

baseline where all transactions, including read-only, validate

read keys and use 2PC to commit [6]. We name this competitor

2PC-baseline. Overall, SSS is up to 7× faster than 2PC-

baseline and up to 2.2× faster than ROCOCO under read-

dominated workloads and long (i.e., 16 read keys) read-only

transactions. Also, when the percentage of read-only transac-

tions is dominant and the node count is high, SSS is only

18% slower than Walter, which provides a weaker isolation

level than external consistency and even serializability. When

compared to the overall update transaction latency, in our

experiments we assessed in less than 28% the average waiting

time introduced by SSS due to the snapshot-queuing.

This paper makes the following contributions:

• SSS implements the first distributed transactional proto-

col for general purpose replicated systems where read-

only transactions read consistently the latest committed

version of objects without relying on a single synchro-

nization service and without aborting.

• SSS’s synchronization technique to serialize read-only

and update transactions is the first to merge the semantics

of vector clocks with visible read operations to produce

the snapshot-queuing technique.

• SSS solves the problem of serializing two non-conflicting

update transactions in different orders when multiple

conflicting read-only transactions execute on different

nodes [2], without relying on a single synchronization

service and without aborting the read-only transactions.

II. SYSTEM MODEL & ASSUMPTIONS

SSS assumes a system as a set of nodes that do not share

either memory or a global clock. Nodes communicate through

message passing and reliable asynchronous channels, meaning

messages are guaranteed to be eventually delivered unless a

crash happens at the sender or receiver node. There is no

assumption on the speed and on the level of synchrony among

nodes. We consider the classic crash-stop failure model: sites

may fail by crashing, but do not behave maliciously. A site

that never crashes is correct; otherwise it is faulty. Clients are

assumed to be colocated with nodes in the system; this way

a client is immediately notified of a transaction’s commit or

abort outcome, without additional delay. Clients are allowed

to interact with each other while they are not executing
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transactions through channels that are not provided by the

system’s APIs.

Data Organization. Every node Ni maintains shared objects

(or keys) adhering to the key-value model [29]. Multiple

versions are kept for each key. Each version stores the value

and the commit vector clock of the transaction that produced

the version. SSS does not make any assumption on the data

clustering policy; simply every shared key can be replicated in

one or more nodes, depending upon the chosen replication de-

gree. For object reachability, SSS implements a local look-up

function using consistent hashing, a commonly used technique

to map keys with nodes [30].

Transaction execution. We model transactions as a sequence

of read and write operations on shared keys, preceded by

a begin, and followed by a commit or abort operation. A

client begins a transaction on the colocated node and the

transactions can read/write data belonging to any node; no

a-priori knowledge on the accessed keys is assumed. SSS’s

concurrency control ensures the ACID properties and targets

applications with a degree of data replication.

Every transaction starts with a client submitting it to the

system, and finishes its execution informing the client about

its final outcome: commit or abort. Transactions that do not

execute any write operation are called read-only, otherwise

they are update transactions. SSS requires programmer to

identify whether a transaction is update or read-only.

III. SSS CONCURRENCY CONTROL

In this section we describe the SSS concurrency control,

followed by two execution examples.

A. Metadata

Transaction vector clocks. In SSS a transaction T holds two

vector clocks, whose size is equal to the number of nodes

in the system. One represents its actual dependencies with

transactions on other nodes, called T.VC; the other records the

nodes where the transaction read from, called T.hasRead.

T.VC represents a version visibility bound for T . Once a

transaction begins in node Ni, it assigns the vector clock of

the latest committed transaction in Ni to its own T.VC. Every

time T reads from a node Nj for the first time during its

execution, T.VC is modified based on the latest committed

vector clock visible by T on Nj . After that, T.hasRead[j]
is set to true.

Transaction read-set and write-set. Every transaction holds

two private buffers. One is rs (or read-set), which stores

the keys read by the transaction during its execution, along

with their value. The other buffer is ws (or write-set), which

contains the keys the transaction wrote, along with their value.

Snapshot-queue. A fundamental component allowing SSS to

establish a unique external schedule is the snapshot-queuing

technique. With that, each key is associated with an ordered

queue (SQueue) containing: read-only transactions that read

that key; and update transactions that wrote that key while a

read-only transaction was reading it.

Entries in a snapshot-queue (SQueue) are in the form

of tuples. Each tuple contains: transaction identifier T.id,

the insertion-snapshot, and transaction type (read-only or

update). In general, the insertion-snapshot for a transaction

T enqueued on some node Ni’s snapshot-queue is the value

of T ’s vector clock in position ith at the time T is inserted

in the snapshot-queue (see Section III-B and III-C for the

actual value of the insertion snapshot, which varies depending

upon the transaction type). Transactions in a snapshot-queue

are ordered according to their insertion-snapshot.

A snapshot-queue contains only transactions that will com-

mit; in fact, besides read-only transactions that are abort-free,

update transactions are inserted in the snapshot-queue only

after their commit decision has been reached.

Transaction transitive anti-dependencies set. An update

transaction maintains a list of snapshot-queue entries,

named T.PropagatedSet, which is populated during the

transaction’s read operations. This set serves the purpose

of propagating anti-dependencies previously observed by

conflicting update transactions.

Node’s vector clock. Each node Ni is associated with a

vector clock, called NodeVC. The ith entry of NodeVC is

incremented when Ni is involved in the commit phase of a

transaction that writes some key replicated by Ni. The value

of jth entry of NodeVC in Ni is the value of the jth entry

of NodeVC in Nj at the latest time Ni and Nj cooperated in

the commit phase of a transaction.

Commit repositories. CommitQ is an ordered queue, one

per node, which is used by SSS to ensure that non-conflicting

update transactions are ordered in the same way on the nodes

where they commit. CommitQ stores tuples <T , vc, s> with

the following semantics. When an update transaction T , with

commit vector clock vc, enters its commit phase, it is firstly

added to the CommitQ of the nodes participating in its commit

phase with its status s set as pending.

When the transaction commit phase concludes successfully,

the status of the transaction is changed to ready. A ready

transaction inside the CommitQ is assigned with a final vector

clock produced during the commit phase. In each node Ni,

transactions are ordered in the CommitQ according to the

ith entry of the vector clock (vc[i]). This allows them to

be committed in Ni with the order given by vc[i]. Although

the commitment of non-conflicting transactions in a sequential

way on a node might reduce performance, it is indeed needed

to guarantee a single serialization order with respect to the

nodes replicating the same keys [29].

When T commits, it is deleted from CommitQ and its vc
is added to a per node repository, named NLog. We identify

the most recent vc in the NLog as NLog.mostRecentVC.

Overall, the presence of additional metadata to be trans-

ferred over the network might appear as a barrier to achieve

high performance. To alleviate these costs we adopt metadata

compression. In addition, while acknowledging that the size

of vector clocks grows linearly with the system size, there

are existing orthogonal solutions to increase the granularity of

such a synchronization to retain efficiency [24], [35].
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B. Execution of Update transactions
Update transactions in SSS implements lazy update [34],

meaning their written keys are not immediately visible and

accessible at the time of the write operation, but they are

logged into the transactions write-set and become visible

only at commit time. In addition, transactions record the

information associated with each read key into their read-set.
Read operations of update transactions in SSS simply return

the most recent version of their requested keys (Lines 24-27

of Algorithm 6). At commit time, validation is used to verify

that all the read versions have not been overwritten.
An update transaction that completes all its operations and

commits cannot inform its client if it observes anti-dependency

with one or more read-only transactions. In order to capture

this waiting stage, we introduce the following phases to

finalize an update transaction (Figure 1 pictures them in a

running example).
Internal Commit. When an update transaction successfully

completes its commit phase, we say that it commits internally.

In this stage, the keys written by the transactions are visible

to other transactions, but its client has not been informed yet

about the transaction completion. Algorithms 1 and 2 show

the steps taken by SSS to commit a transaction internally.
SSS relies on the Two-Phase Commit protocol (2PC) to

internally commit update transactions. The node that carries

the execution of a transaction T , known as its coordinator,

initiates 2PC issuing the prepare phase, in which it contacts

all nodes storing keys in the read-set and write-set. When a

participant node Ni receives a prepare message for T , all keys

read/written by T and stored by Ni are locked. If the locking

acquisition succeeds, all keys read by T and stored by Ni are

validated by checking if the latest version of a key matches

the read one (Lines 28-34 Algorithm 1). If successful, Ni

replies to T ’s coordinator with a Vote message, along with

a proposed commit vector clock. This vector clock is equal

to Ni’s NodeV C where NodeV C[i] has been incremented.

Finally, T is inserted into Ni’s CommitQ with its T.V C.
After receiving each successful Vote, T ’s coordinator com-

putes the commit vector clock (commitV C) by calculating the

maximum per entry (Line 18 of Algorithm 1). This update

makes T able to include the causal dependencies of the latest

committed transactions in all 2PC participants. After receiv-

ing all Vote messages, the coordinator determines the final

commit vector clock for T as in (Lines 18-24 of Algorithm 1),

and sends it along with the 2PC Decide message.
Lines 16-26 of Algorithm 2 shows how 2PC participants

handle the Decide message. When Ni receives Decide
for transaction T , Ni’s NodeV C is updated by computing

the maximum with commitV C. Importantly, at this stage the

order of T in the CommitQ of Ni might change because the

final commit vector clock of T has been just defined, and it

might be different from the one used during the 2PC prepare

phase when T has been added to CommitQ.
In Algorithm 2 Lines 27-34, when transaction T becomes

the top standing of Ni’s CommitQ, the internal commit of

T is completed by inserting its commit vector clock into the

Algorithm 1 Internal Commit by Transaction T in node Ni

1: upon boolean Commit(Transaction T) do
// Check if T is a read-only transaction

2: if (T.ws=φ) then
3: for (k ∈ T.rs) do
4: Send Remove[T ] to all replicas(k)
5: end for
6: T.outcome← true
7: return T.outcome
8: end if

// Start 2PC if T is an update transaction
9: commitV C ← T.V C

10: T.outcome← true
11: send Prepare[T ] to all Nj ∈ replicas(T.rs ∪ T.ws) ∪Ni

12: for all (Nj ∈ replicas(T.rs ∪ T.ws) ∪Ni) do
13: wait receive Vote[T.id, V Cj , res] from Nj or timeout

// Check if T’s 2PC commit decision was successful
14: if (¬res ∨ timeout) then
15: T.outcome← false
16: break;
17: else
18: commitV C ← max(commitV C, V Cj)
19: end if
20: end for
21: xactV N ← max{commitV C[w] : Nw ∈ replicas(T.ws)}

// Finalize T’s commit vector clock
22: for all (Nj ∈ replicas(T.ws)) do
23: commitV C[j]← xactV N
24: end for
25: send Decide[T, commitV C, outcome] to all Nj ∈ replicas(

T.rs ∪ T.ws) ∪Ni

26: return T.outcome
27: end

28: boolean validate(Set rs, VC T.VC)
// Check if T’s read keys are not overwritten

29: for all (k ∈ rs) do
30: if (k.last.vc[i] > T.V C[i]) then
31: return false
32: end if
33: end for
34: return true

NLog and removing T from CommitQ. When transaction’s

vector clock is inserted into the node’s NLog, its written keys

become accessible by other transactions. At this stage, T ’s

client has not been informed yet about T ’s internal commit.

Pre-Commit. An internally committed transaction sponta-

neously enters the Pre-Commit phase after that. Algorithm 3

shows detail of Pre-commit phase. At this stage, T evaluates

if it should hold the reply to its client depending upon the

content of the snapshot-queues of its written keys. If so, T
will be inserted into the snapshot-queue of its written keys in

Ni with commitV C[i] as insertion-snapshot.
If at least one read-only transaction (Tro) with a lesser

insertion-snapshot is found in any snapshot-queue SQueue
of T ’s written keys, it means that Tro read that key before

Tw internally committed, therefore a write-after-read depen-

dency between Tro and Tw is established. In this case, T is

inserted into SQueue until Tro returns to its client. With the

anti-dependency, the transaction serialization order has been

established with Tro preceding Tw. Informing immediately

Tw’s client about Tw’s completion would expose an external

order where Tw is before Tro, which might violates external

consistency if another non-conflicting update transaction T ′w
is observed by a conflicting read-only transaction T ′ro in a

different serialization order (e.g., the case in Figure 2).

Tracking only non-transitive anti-dependencies is not
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Algorithm 2 Internal Commit by Transaction T in node Ni

1: upon receive Prepare[Transaction T ] from Nj do
// Check if T passes lock acquisition and validation

2: boolean outcome← getExclusiveLocks(T.id, T.ws)
∧getSharedLocks(T.id, T.rs) ∧validate(T.rs, T.V C)

3: if (¬outcome) then
4: releaseLocks(T.id, T.rs, T, ws)
5: send Vote[T.id, T.V C, outcome] to Nj

6: else
7: prepV C ← NLog.mostRecentV C
8: if (Ni ∈ replicas(T.ws)) then
9: NodeV C[i] + +

10: prepV C ← NodeV C
11: CommitQ.put(< T, prepV C, pending >)
12: end if
13: send Vote[T.id, prepV C, outcome] to Nj

14: end if
15: end
16: upon receive Decide[T, commitV C, outcome] from Nj atomically do
17: if (outcome) then

// Update NodeVC and CommitQ if T is decided to commit
18: NodeV C ← max(NodeV C, commitV C)
19: if (Ni ∈ replicas(T.ws)) then
20: CommitQ.update(< T, commitV C, ready >)
21: end if
22: else
23: CommitQ.remove(T )
24: releaseLocks(T.id, T.ws, T.rs)
25: end if
26: end
27: upon ∃ < T, vc, s >:< T, vc, s >= commitQ.head ∧ s = ready do

// Finalize internal commit of T
28: for all (k ∈ T.ws : Ni ∈ replicas(k)) do
29: apply(k,val,vc)
30: end for
31: NLog.add(< vc >)
32: CommitQ.remove(T )
33: releaseLocks(T.id, T.ws, T.rs)
34: end

Algorithm 3 Start Pre-commit by Transaction T in node Ni

1: for all (k ∈ T.ws) do
2: if (Ni ∈ replicas(k)) then
3: k.SQueue.insert(< T.id, T.commitV C[i], “W” >)

4: for all (T
′ ∈ T.PropagatedSet) do

5: k.SQueue.insert(< T
′
.id, T

′
.snapshot, “R” >)

6: end for
7: end if
8: end for

enough to preserve correctness. If T reads the update done

by Tw′ and Tw′ is still in its Pre-commit phase, then T has a

transitive anti-dependency with Tro′ (i.e., Tro′
rw−→ Tw′

wr−→ T ).

SSS records the existence of transactions like Tro′ during T ’s

execution by looking into the snapshot-queues of T ’s read

keys and logging them into a private buffer of T , called

T.PropagatedSet. The propagation of anti-dependency hap-

pens during T ’s Pre-commit phase by inserting transactions in

T.PropagatedSet into the snapshot-queues of all T ’s written

keys (Lines 4-6 of Algorithm 3).

External Commit. Transaction T remains in its Pre-commit

phase until there is no read-only transaction with lesser

insertion-snapshot in the snapshot-queues of T ’s written keys.

After that, T is removed from these snapshot-queues and

an Ack message to the transaction 2PC coordinator is sent

(Lines 1-7 of Algorithm 4).

The coordinator can inform its client after receiving Ack
from all 2PC participants. At this stage, update transaction’s

external schedule is established, therefore we say that SSS

Algorithm 4 End Pre-commit of Transaction T in node Ni

1: for all (k ∈ T.ws) do
2: if Ni ∈ replicas(k) then

// T waits for all existing anti-dependent transactions to be removed from snapshot-
queues of T.ws.

3: wait until (∃ < T
′
.id, T

′
.snapshot,− >:

k.SQueue.contains(< T
′
.id, T

′
.snapshot,− >)∧

T
′
.snapshot < T.commitV C[i])

4: k.SQueue.remove(< T.id, T.commitV C[i], “W” >)
5: send Ack [T, vc[i]] to T.coordinator
6: end if
7: end for

commits the update transaction externally.

C. Execution of Read-Only Transactions

In its first read operation (Algorithm 5 Lines 5-7), a read-

only transaction T on Ni assigns NLog.mostRecentVC to

its vector clock (T.V C). This way, T will be able to see the

latest updated versions committed on Ni. Read operations

are implemented by contacting all nodes that replicate the

requested key and waiting for the fastest to answer.

When a read request of T returns from node Nj , T sets

T.hasRead[j] to true. With that, we set the visibility upper

bound for T from Nj (i.e., T.V C[j]). Hence, subsequent read

operations by T contacting a node Nk should only consider

versions with a vector clock vck such that vck[j] < T.V C[j].
After a read operation returns, the transaction vector clock

is updated by applying an entry-wise maximum operation

between the current T.V C and the vector clock associated

with the read version (i.e., V C∗) from Nj . Finally, the read

value is added to T.rs and returned.

Algorithm 6 shows SSS rules to select the version to be

returned upon a read operation that contacts node Ni.

The first time Ni receives a read from T , this request should

wait until the value of Ni’s NLog.mostRecentVC[i] is

equal to T.V C[i] (Line 5 Algorithm 6). This means that all

transactions that are already included in the current visibility

bound of T.V C[i] must perform their internal commit before

T ’s read request can be handled.

After that, a correct version of the requested key should be

selected for reading. This process starts by identifying the set

of versions that are within the visibility bound of T , called

V isibleSet. This means that, given a version v with commit

vector clock vc, v is visible by T if, for each entry k such

that T.hasRead[k] = true, we have that vc[k] ≤ T.V C[k]
(Algorithm 6 Line 6).

It is possible that transactions associated with some of these

vector clocks are still in their Pre-Commit phase, meaning they

exist in the snapshot-queues of T ’s requested key. If so, they

should be excluded from V isibleSet in case their insertion-

snapshot is higher than T.V C[i]. The last step is needed to

serialize read-only transactions with anti-dependency relations

before conflicting update transactions.

This condition is particularly important to prevent a well-

known anomaly, firstly observed by Adya in [2], in which read-

only transactions executing on different nodes can observe two

non-conflicting update transactions in different serialization
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Algorithm 5 Read Operation by Transaction T in node Ni

1: upon Value Read (Transaction T, Key k) do
2: if (∃ < k, val >∈ T.ws) then
3: return val
4: end if

// T’s vector clock is initialized with the latest committed vector clock in Ni

5: if (is first read of T ) then
6: T.V C ← NLog.mostRecentV C
7: end if
8: target← {replicas(k)}

// isUpdate is a boolean showing whether T is read-only or update
9: send READREQUEST[k, T.V C, T.hasRead, T.isUpdate]

to all Nj ∈ target
10: wait Receive READRETURN [val, V C∗, PropagatedSet]

from Nh ∈ target
11: T.hasRead[h]← true
12: T.V C ← max(T.V C, V C∗)
13: T.rs← T.rs ∪ {< k, val >}
14: T.PropagatedSet← T.PropagatedSet ∪ PropagatedSet
15: return val
16: end

Algorithm 6 Version Selection Logic in node Ni

1: upon Receive READREQUEST[T, k, T.V C, hasRead, isUpdate] from Nj

do
2: PropagatedSet← φ
3: if (¬isUpdate) then
4: if (¬hasRead[i]) then
5: wait until NLog.mostRecentVC[i] ≥ T.VC[i]
6: V isibleSet← {vc : vc ∈ NLog∧

∀w(hasRead[w] ⇒ vc[w] ≤ T.VC[w])}
7: ExcludedSet← {T ′

:< T
′
.id, T

′
.snapshot, “W” >∈

k.SQueue⇒ T
′
.snapshot > T.V C[i])}

8: V isibleSet← V isibleSet\ExcludedSet
9: maxV C ← vc : ∀w, vc[w] = max{v[w] : v ∈ V isibleSet}

10: k.SQueue.insert(< T.id,maxV C[i], “R” >)
11: ver ← k.last
12: while (∃w : hasRead[w] ∧ ver.vc[w] >

maxV C[w] ∨ ∃vc ∈ ExcludedSet : ver.vc = vc
∧vc[i] > maxV C[i]) do

13: ver ← ver.prev
14: end while
15: else
16: maxV C ← T.V C
17: k.SQueue.insert(< T.id,maxV C[i], “R” >)
18: ver ← k.last
19: while (∃w : (hasRead[w] ∧ ver.vc[w] > maxV C[w])) do
20: ver ← ver.prev
21: end while
22: end if
23: else
24: maxV C ← NLog.mostRecentV C

25: PropagatedSet={T ′
:<T

′
.id,T

′
.snapshot,“R”>∈ k.SQueue}

26: ver ← k.last
27: end if
28: Send READRETURN[ver.val, maxVC,PropagatedSet ] to Nj

29: end

order [29]. Consider a distributed system where nodes do

not have access to a single point of synchronization (or an

ordering component), concurrent non-conflicting transactions

executing on different nodes cannot be aware of each other’s

execution. Because of that, different read-only transactions

might order these non-conflicting transactions in a different

way, therefore breaking the client’s perceived order. SSS

prevents that by serializing both these read-only transactions

before those update transactions.

At this stage, if multiple versions are still included in

V isibleSet, the version with the maximum V C[i] should be

selected to ensure external consistency.

Once the version to be returned is selected, T is inserted

in the snapshot-queue of the read key using maxV C[i] as

insertion-snapshot (Line 10 of Algorithm 6). Finally, when

the read response is received, the maximum per entry between

maxV C (i.e., V C∗ in Algorithm 5) and the T.V C is com-

puted along with the result of the read operation.

When a read-only transaction T commits, it immediately

replies to its client. After that, it sends a message to the nodes

storing only the read keys in order to notify its completion.

We name this message Remove. Upon receiving Remove, the

read-only transaction is deleted from all the snapshot-queues

associated with the read keys. Deleting a read-only transaction

from a snapshot-queue enables conflicting update transactions

to be externally committed and their responses to be released

to their clients.

Because of transitive anti-dependency relations, a node

might need to forward the Remove message to other nodes

as follows. Let us assume T has an anti-dependency with a

transaction Tw, and another transaction Tw′ reads from Tw.

Because anti-dependency relations are propagated along the

chain of conflicting transactions, T exists in the snapshot-

queues of Tw’s and Tw′ ’s written keys. Therefore, upon

Remove of T , the node executing Tw is responsible to forward

the Remove message to the node where Tw′ executes for

updating the affected snapshot-queues.

When a read operation is handled by a node that already

responded to a previous read operation from the same transac-

tion, the latest version according to maxV C is returned, and T
can be inserted into the snapshot-queue with its corresponding

identifier and maxV C[i] as insertion-snapshot.

D. Examples

External Consistency & Anti-dependency. Figure 1 shows

an example of how SSS serializes an update transaction T1 in

the presence of a concurrent read-only transaction T2. Two

nodes are deployed, N1 and N2, and no replication is used

for simplicity. T1 executes on N1 and T2 on N2. Key y is

stored in N2’s repository. The NLog.mostRecentVC for

Node 1 is {5,4} and for Node 2 is {3,7}.
T1 performs a read operation on key y by sending a remote

read request to N2. At this point, T1 is inserted in the snapshot-

queue of y (Q(y)) with 7 as insertion-snapshot. This value

is the second entry of N2’s NLog.mostRecentVC. Then

the update transaction T2 begins with vector clock {3,7},
buffers its write on key y in its write-set, and performs its

internal commit by making the new version of y available,

and by inserting the produced commit vector clock (i.e.,

T2.commitV C={3,8}) in N2’s NLog. As a consequence of

that, NLog.mostRecentV C is equal to T2.commitV C.

Now T2 is evaluated to decide whether it should be inserted

into Q(y). The insertion-snapshot of T2 is equal to 8, which is

higher than T1’s insertion-snapshot in Q(y). For this reason,

T2 is inserted in Q(y) and its Pre-commit phase starts.

At this stage, T2 is still not externally visible. Hence

T2 remains in its Pre-Commit phase until T1 is removed

from Q(y), which happens when T1 commits and sends the

Remove message to N2. After that, T2’s client is informed

about T2’s completion. Delaying the external commit of T2
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Fig. 1. SSS execution in the presence of an anti-dependency. Orange boxes
show the content of the data store. Gray boxes show transaction execution.
Dashed line represents the waiting time for T2. The red crossed entries of
Q(y) represent their elimination upon Remove.

prevents clients from observing the internal completion of T2,

until T1 returns to its client.

External Consistency & Non-conflicting transactions.

Figure 2 shows how SSS builds the external schedule in the

presence of read-only transactions and non-conflicting update

transactions. There are four nodes, N1, N2, N3, N4, and four

concurrent transactions, T1, T2, T3, T4, each executes on the

respective node. By assumption, T2 and T3 are non-conflicting

update transactions, while T1 and T4 are read-only.

Fig. 2. Handling read-only transactions along with non-conflicting update
transactions. We omitted snapshot-queue entries elimination upon Remove to
improve readability.

SSS ensures that T1 and T4 do not serialize T2 and T3 in

different orders and they return to their clients in the same

way they are serialized by relying on snapshot-queuing. T1

is inserted into Q(x) with insertion-snapshot equals to 7.

Concurrently, T4 is added to the snapshot-queue of y with

insertion-snapshot equals to 10. The next read operation by

T1 on y has two versions evaluated to be returned: y0 and

y1. Although y1 is the most recent, since T4 returned y0

previously (in fact T4 is in Q(y)), y1 is excluded and y0 is

returned. Similar arguments apply to T4’s read operation on x.

The established external schedule serializes T1 and T4 before

both T2 and T3.

E. Additional Considerations of SSS

Garbage Collection. A positive side effect of the Remove
message is the implicit garbage collection of entries in the

snapshot-queues. In fact, SSS removes any entry representing

transactions waiting for a read-only transaction to finish upon

receiving Remove, which cleans up the snapshot-queues.

Starvation. Another important aspect of SSS is the chance

to slow down update transactions, possibly forever, due to

an infinite chain of conflicting read-only transactions issued

concurrently. We handle this corner case by applying admis-

sion control to read operations of read-only transactions in

case they access a key written by a transaction that is in

a snapshot-queue for a pre-determined time. In practice, if

such a case happens, we apply an artificial delay to the read

operation (exponential back-off) to give additional time to

update transaction to be removed from the snapshot-queue.

In the experiments we never experienced starvation scenarios,

even with long read-only transactions.

Deadlock-Freedom. SSS uses timeout to prevent deadlock

during the commit phase’s lock acquisition. Also, the wait-

ing condition applied to update transactions cannot generate

deadlock. This is because read-only transactions never wait

for each other, and there is no condition in the protocol

where an update transaction blocks a read-only transaction.

The only wait condition occurs when read-only transactions

force update transactions to hold their client response due to

snapshot-queuing. As a result, no circular dependency can be

formed, thus SSS cannot encounter deadlock.

Fault-Tolerance. SSS deploys a protocol that tolerates fail-

ures in the system using replication. In the presented version

of the SSS protocol, we did not include either logging of

messages to recover update transactions’ 2PC upon faults,

or a consensus-based approach (e.g., Paxos-Commit [21]) to

distribute and order 2PC messages. Solutions to make 2PC

recoverable are well-studied. To focus on the performance

implications of the distributed concurrency control of SSS and

all its competitors, operations to recover upon a crash of a node

involved in a 2PC have been disabled. This decision has no

correctness implication.

IV. CORRECTNESS

Our target is proving that every history H executed by SSS,

which includes committed update transactions and read-only

transactions (committed or not), is external consistent.

We adopt the classical definition of history [2]. For under-

standing correctness, it is sufficient to know that a history

is external consistent if the transactions in the history return

the same values and leave the data store in the same state

as they were executed in a sequential order (one after the

other), and that order does not contradict the order perceived
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by clients, namely the precedence relations between non-

concurrent transactions as observed by clients (similar to the

real-time order relations [27] in strict serializability).

We decompose SSS’s correctness in three statements, each

highlighting a property guaranteed by SSS. Each statement

claims that a specific history H ′, which is derived from H ,

is external consistent. In order to prove that, we rely on the

characteristics of the Direct Serialization Graph (DSG) [2]

which is derived from H ′. Note that DSG also includes

order relations between transactions’ external commit. Every

transaction in H ′ is a node of the DSG graph, and every

dependency of a transaction Tj on a transaction Ti in H ′ is an

edge from Ti to Tj in the graph. The concept of dependency

is the one that is widely adopted in the literature: i) Tj read-

depends on Ti if a read of Tj returns a value written by

Ti, ii) Tj write-depends on Ti if a write of Tj overwrites

a value written by Ti; iii) Tj anti-depends on Ti if a write

of Tj overwrites a value previously read by Ti. We also map

transactions relations as observed by clients to edges in the

graph: if Ti commits externally before Tj starts, then the graph

has an edge from Ti to Tj . A history H ′ is external consistent

iff the DSG does not have any cycle [2], [6].

In our proofs we use the binary relation ≤ to define an

ordering on pair of vector clocks v1 and v2 as follows: v1 ≤ v2
if ∀i, v1[i] ≤ v2[i]. Furthermore, if there also exists at least

one index j such that v1[j] < v2[j], then v1 < v2 holds.

Statement 1. For each history H executed by SSS, the his-
tory H ′, which is derived from H by only including committed
update transactions in H , is external consistent.

In the proof we show that if there is an edge from

transaction Ti to transaction Tj in DSG, then Ti.commitV C
< Tj .commitV C. This statement implies that transactions

modify the state of the data store as they were executed in a

specific sequential order (provided by CommitQ), which does

not contradict the transaction external commit order. Because

no read-only transaction is included in H ′, the internal commit

is equivalent to the external commit (i.e., no transaction

is delayed). The formal proof is included in the technical

report [23].

Statement 2. For each history H executed by SSS, the his-
tory H ′, which is derived from H by only including committed
update transactions and one read-only transaction in H , is
external consistent.

The proof shows that a read-only transaction always ob-

serves a consistent state by showing that in both the case of

a direct dependency or anti-dependency, the vector clock of

the read-only transaction is comparable with the vector clocks

of conflicting update transactions. This statement implies that

read operations of a read-only transaction always return values

from a state of the data store as the transaction was executed

atomically in a point in time that is not concurrent with any

conflicting update transaction. The formal proof is included in

the technical report [23].

Statement 3. For each history H executed by SSS, the
history H ′, which is derived from H by including committed

update transactions and two or more read-only transactions
in H , is external consistent.

Since Statement 2 holds, SSS guarantees that each read-

only transaction appears as it were executed atomically in a

point in time that is not concurrent with any conflicting update.

Furthermore, since Statement 1 holds, the read operations

of that transaction return values of a state that is the result

of a sequence of committed update transactions. Therefore,

Statement 3 implies that, given such a sequence S1 for a read-

only transaction Tr1, and S2 for a read-only transaction Tr2,

either S1 is a prefix of S2, or S2 is a prefix of S1. In practice,

this means that all read-only transactions have a coherent view

of all transactions executed on the system. The formal proof

is included in the technical report [23].

V. EVALUATION

We implemented SSS in Java from the ground up and

performed a comprehensive evaluation study. In the software

architecture of SSS there is an optimized network component

where multiple network queues, each for a different message

type, are deployed. This way, we can assign priorities to

different messages and avoid protocol slow down in some

critical steps due to network congestion caused by lower

priority messages (e.g., the Remove message has a very

high priority because it enables external commits). Another

important implementation aspect is related to snapshot-queues.

Each snapshot-queue is divided into two: one for read-only

transactions and one for update transactions. This way, when

the percentage of read-only transactions is higher than update

transactions, a read operation should traverse few entries in

order to establish its visible-set.

We compare SSS against the following competitors: 2PC-

baseline (2PC in the plots), ROCOCO [26], and Walter [32].

All these competitors offer transactional semantics over key-

value APIs. With 2PC-baseline we mean the following imple-

mentation: all transactions execute as SSS’s update transac-

tions; read-only transactions validate their execution, therefore

they can abort; and no multi-version data repository is de-

ployed. As SSS, 2PC-baseline guarantees external consistency.

ROCOCO is an external consistent two-round protocol

where transactions are divided into pieces and dependencies

are collected to establish the execution order. ROCOCO

classifies pieces of update transactions into immediate and

deferrable. The latter are more efficient because they can be

reordered. Read-only transactions can be aborted, and they

are implemented by waiting for conflicting transactions to

complete. Our benchmark is configured in a way all pieces

are deferrable. ROCOCO uses preferred nodes to process

transactions and consensus to implement replication. Such

a scheme is different from SSS where multiple nodes are

involved in the transaction commit process. To address this

discrepancy, in the experiments where we compare SSS and

ROCOCO, we disable replication for a fair comparison. The

third competitor is Walter, which provides PSI a weaker

isolation level than SSS. Walter has been included because

it synchronizes nodes using vector clocks, as done by SSS.
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(a) 20% (b) 50% (c) 80%

Fig. 3. Throughput varying % of read-only transactions. Number of nodes in X-axes.

All competitors have been re-implemented using the same

software infrastructure of SSS because we want to provide

all competitors with the same underlying code structure and

optimization (e.g., optimized network). For fairness, we made

sure that the performance obtained by our re-implementation

of competitors matches the trends reported in [32] and [26],

when similar configurations were used.

In our evaluation we use YCSB [12] benchmark ported

to key-value store. We configure the benchmark to explore

multiple scenarios. We have two transaction profiles: update,

where two keys are read and written, and read-only trans-

actions, where two or more keys are accessed. In all the

experiments we co-locate application clients with processing

nodes, therefore increasing the number of nodes in the system

also increases the amount of issued requests. There are 10

application threads (i.e., clients) per node injecting transactions

in the system in a closed-loop (i.e., a client issues a new

request only when the previous one has returned). All the

showed results are the average of 5 trials.

We selected two configurations for the total number of

shared keys: 5k and 10k. We selected these ranges since they

give us the appropriate level of contention on snapshot-queues

in the case of 20% read-only transactions (write-dominated

work load) and 80% read-only transactions (read-dominated

work load). With the former, the observed average transaction

abort rate is in the range of 6% to 28% moving from 5 nodes

to 20 nodes when 20% read-only transactions are deployed.

In the latter, the abort rate was from 4% to 14%. Unless

otherwise stated, transactions select accessed objects randomly

with uniform distribution.

As test-bed, we used CloudLab [31], a cloud infrastructure

available to researchers. We selected 20 nodes of type c6320

available in the Clemson cluster [1]. This type is a physical

machine with 28 Intel Haswell CPU-cores and 256GB of

RAM. Nodes are interconnected using 40Gb/s Infiniband HPC

cards. In such a cluster, a network message is delivered in

around 20 microseconds (without network saturation), there-

fore we set timeout on lock acquisition to 1ms.

In Figure 3 we compare the throughput of SSS against 2PC-

baseline and Walter in the case where each object is replicated

in two nodes of the system. We also varied the percentage of

read-only transactions in the range of 20%, 50%, and 80%. As

expected, Walter is the leading competitor in all the scenarios

because its consistency guarantee is much weaker than external

consistency; however, the gap between SSS and Walter reduces

from 2× to 1.1× when read-only transactions become predom-

inant (moving from Figure 3(a) to 3(c)). This is reasonable

because in Walter, update transactions do not have the same

impact in read-only transactions’ performance as in SSS due

to the presence of the snapshot-queues. Therefore, when the

percentage of update transactions reduces, SSS reduces the

gap. Considering the significant correctness level between PSI

(in Walter) and external consistency, we consider the results

of the comparison between SSS and Walter remarkable.

Performance of 2PC-baseline is competitive when compared

with SSS only at the case of 20% read-only. In the other

cases, although SSS requires a more complex logic to execute

its read operations, the capability of being abort-free allows

SSS to outperform 2PC-baseline by as much as 7× with

50% read-only and 20 nodes. 2PC-baseline’s performance

in both the tested contention levels become similar at the

80% read-only case because, although lock-based, read-only

transaction’s validation will likely succeed since few update

transactions execute in the system.

Figure 3 also shows the scalability of all competitors. 2PC-

baseline suffers from higher abort rate than others, which ham-

pers its scalability. This is because its read-only transactions

are not abort-free. The scalability trend of SSS and Walter is

similar, although Walter stops scaling at 15 nodes using 80%

of read-only transactions while SSS proceeds. This is mostly

related with network congestion, which is reached by Walter

earlier than SSS since Walter’s transaction processing time is

lower than SSS, thus messages are sent with a higher rate.

In Figure 4 we compare 2PC-baseline and SSS in terms

of maximum attainable throughput and transaction latency.

Figure 4(a) shows 2PC-baseline and SSS configured in a way

they can reach their maximum throughput with 50% read-only

workload and 5k objects, meaning the number of clients per

nodes differs per reported datapoint. Performance trends are

similar to those in Figure 3(b), but 2PC-baseline here is faster

than before. This is related with the CPU utilization of the

nodes’ test-bed. In fact, 2PC-baseline requires less threads to

execute, meaning it leaves more unused CPU-cores than SSS,

and those CPU-cores can be leveraged to host more clients.
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(a) Max attainable throughput. (b) External Commit latency.

Fig. 4. Performance of SSS against 2PC-baseline using 5k objects and 50%
read-only transactions.

The second plot (Figure 4(b)) shows transaction latency

from its begin to its external commit when 20 nodes, 50%

read-only transactions, and 5k objects are deployed. In the

experiments we varied the number of clients per node from

1 to 10. When the system is far from reaching saturation

(i.e., from 1 to 5 clients), SSS’s latency does not vary, and

it is on average 2× lower than 2PC-baseline’s latency. At

10 clients, SSS’s latency is still lower than 2PC-baseline but

by a lesser percentage. This confirms one of our claim about

SSS capability of retaining high-throughput even when update

transactions are held in snapshot-queues. In fact, Figure 3(b)

shows the throughput measurement in the same configuration:

SSS is almost 7× faster than 2PC-baseline.

Fig. 5. Breakdown of SSS transaction latency.

Figure 5 shows the relation between the internal commit

latency and the external commit latency of SSS update trans-

actions. The configuration is the one in Figure 4(b). Each

bar represents the latency between a transaction begin and its

external commit. The internal gray bar shows the time interval

between the transaction’s insertion in a snapshot-queue and

its removal (i.e., from internal to external commit). This latter

time is on average 30% of the total transaction latency.

In Figure 6 we compare SSS against ROCOCO and 2PC-

baseline. To be compliant with ROCOCO, we disable repli-

cation for all competitors and we select 5k as total number

of shared keys because ROCOCO finds its sweet spot in the

presence of contention. Accesses are not local.

Figures 6(a) and 6(b) show the results with 20% and

80% read-only transactions respectively. In write intensive

workload, ROCOCO slightly outperforms SSS due to its lock-

free executions and its capability of re-ordering deferrable

transaction pieces. However, even in this configuration, which

matches a favorable scenario for ROCOCO, SSS is only 13%

(a) 20%. (b) 80%.

Fig. 6. SSS, 2PC-baseline, ROCOCO varying % of read-only transactions.
Legend in (a) applies to (b).

slower than ROCOCO and 70% faster than 2PC-baseline. In

read-intensive workload, SSS outperforms ROCOCO by 40%

and by almost 3× 2PC-baseline at 20 nodes. This gain is

because ROCOCO is not optimized for read-only transactions;

in fact, its read-only are not abort-free and they need to wait

for all conflicting update transactions in order to execute.

Also, since in YCBS transaction size is small, the overhead

of ROCOCO’s two-round commitment protocol is dominant.

We also configured the benchmark to produce 50% of keys

access locality, meaning the probability that a key is stored

by the node where the transaction is executing (local node),

and 50% of uniform access. Increasing local accesses has a

direct impact on the application contention level. In fact, since

each key is replicated on two nodes, remote communication

is still needed by update transactions, while the number of

objects accessible by a client reduces when the number of

nodes increases (e.g., with 20 nodes and 5k keys, a client on

a node can select its accessed keys among 250 keys rather

than 5k). Read-only transactions are the ones that benefit the

most from local accesses because they can leverage the local

copy of each accessed key.

Fig. 7. Throughput of all competitors with 80% read-only transactions and
50% locality.

We report the results (in Figure 7) using the same configu-

ration in Figure 3(c) because that is the most relevant to SSS

and Walter. Results confirm similar trend. SSS is more than

3.5× faster than 2PC-baseline but, as opposed to the non-local

case, here it cannot close the gap with Walter due to the high

contention around snapshot-queues.

In Figure 8 we show the impact of increasing the number

of read operations inside read-only transactions from 2 to 16.

For this experiment we used 15 nodes and 80% of read-only
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Fig. 8. Speedup of SSS over ROCOCO and 2PC-baseline increasing the size
of read-only transactions.

workload. Results report the ratio between the throughput of

SSS and both ROCOCO and 2PC-baseline. When compared

to ROCOCO, SSS shows a growing speedup, moving from

1.2× with 2 read operations to 2.2× with 16 read operations.

This is because, as stated previously, ROCOCO encounters

a growing number of aborts for read-only transactions while

increasing accessed objects. 2PC-baseline degrades less than

ROCOCO when operations increases because it needs less

network communications for read-only transactions.

VI. RELATED WORK

Many distributed transactional repositories have been pro-

posed in literature, examples include [3], [5], [10], [11], [13]–

[15], [18], [22]. Among them, Spanner [13], Scatter [20], and

ROCOCO [26] guarantee the same level of consistency as SSS.

Google Spanner [13] is a high performance solution that

leverages a global source of synchronization to timestamp

transactions so that a total order among them can always be

determined, including when nodes are in different geographic

locations. This form of synchronization is materialized by

the TrueTime API. This API uses a combination of a very

fast dedicated network, GPS, and atomic clocks to provide

accuracy of the assigned timestamps. Although outstanding,

Spanner’s architecture needs special-purpose hardware and

therefore it cannot be easily adopted and extended.

Scatter provides external consistency on top of a Paxos-

replicated log. The major difference with SSS is that Scatter

only supports single key transactions while SSS provides a

more general semantics. ROCOCO uses a two-round protocol

to establish an external schedule in the system, but it does not

support abort-free read-only transactions.

Replicated Commit [25] provides serializability by repli-

cating the commit operation using 2PC in every data center

and Paxos to establish consensus among data centers. As

opposed to SSS, in Replicated Commit read operations require

contacting all data centers and collect replies from a majority

of them in order to proceed. SSS’s read operations are handled

by the fastest replying server.

Granola [14] ensures serializability using a timestamp-based

approach with a loosely synchronized clock per node. Granola

provides its best performance when transactions can be defined

as independent, meaning they can entirely execute on a single

server. SSS has no restriction on transaction accesses.

CockroachDB [10] uses a serializable optimistic concur-

rency control, which processes transactions by relying on

multi-versioning and timestamp-ordering. The main difference

with SSS is the way consistent reads are implemented. Cock-

roachDB relies on consensus while SSS needs only to contact

the fastest replica of an object.

Calvin [33] uses a deterministic locking protocol supported

by a sequencer layer that orders transactions. In order to do

that, Calvin requires a priori knowledge on accessed read and

written objects. Although the sequencer can potentially be able

to assign transaction timestamp to meet external consistency

requirements, SSS does that without assuming knowledge of

read-set and write-set prior transaction execution and without

the need of such a global source of synchronization.

SCORe [28], guarantees similar properties as SSS, but

it fails to ensure external consistency since it relies on a

single non-synchronized scalar timestamp per node to order

transactions, and therefore its abort-free read-only transactions

might be forced to read old version of shared objects.

Other protocols, such as GMU [29], Walter [32], Clock-

SI [17] and Dynamo [15], provide scalability by supporting

weaker levels of consistency. GMU [29] provides transactions

with the possibility to read the latest version of an object by

using vector clocks; however it cannot guarantee serializable

transactions. Walter use a non-monotonic version of Snapshot

Isolation (SI) that allows long state fork. Clock-SI provides SI

using a loosely synchronized clock scheme.
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VII. CONCLUSIONS

In this paper we presented SSS, a transactional repository

that implements a novel distributed concurrency control pro-

viding external consistency without a global synchronization

service and abort-free read-only transactions. The combination

of snapshot-queuing and vector clock is the key technique that

makes SSS possible. Results confirmed significant speedup

over state-of-the-art competitors in read-dominated workloads.

Since the definition of external consistency does not enforce

an order among concurrent transactions, it is enough for SSS’s

read operations to return the value written by the latest write

operation. Snapshot-queuing has the potential to trace depen-

dency between read-only and externally committed concurrent

update transactions. With that, the external serialization order

will leave the data store in the same state as the transactions

were executed in a sequential order (one after the other),

and that order does not contradict the order in which these

transactions return to their clients. We leave such an extension

as future work.
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