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Quasi-elastic scattering measurements have been performed using 16O and 24Mg projectiles off 90Zr at 
energies around the Coulomb barrier. Experimental data have been analyzed in the framework of coupled 
channels (CC) calculations using the code CCFULL. The quasi-elastic scattering excitation function and 
derived barrier distribution for 16O + 90Zr reaction are well reproduced by the CC calculations using 
the vibrational coupling strengths for 90Zr reported in the literature. Using these vibrational coupling 
strengths, a Bayesian analysis is carried out for 24Mg + 90Zr reaction. The β2 and β4 values for 24Mg 
are determined to be +0.43 ± 0.02 and −0.11 ± 0.02, respectively. The β2 parameter determined in 
the present work is in good agreement with results obtained using inelastic scattering probes. The 
hexadecapole deformation of 24Mg has been measured very precisely for the first time. Present results 
establish that quasi-elastic scattering could provide a useful probe to determine the ground state 
deformation of atomic nuclei.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Determining the ground state properties of atomic nuclei away 
from the β-stability line, such as the mass, spin, shape, half-life, 
electromagnetic moments, and many others, is among the pri-
mary foci of current nuclear physics research. Obtaining experi-
mental values for these nuclear properties is very crucial for the 
benchmarking of macroscopic-microscopic and microscopic theo-
ries which guide the exploration of the nuclear chart. In this con-
text, state-of-the-art Radioactive Ion Beam (RIB) facilities are being 
developed at premier labs across the globe. The primary bottle-
neck while studying the properties of the exotic nuclei is the low 
intensity of the RIBs in contrast to the stable beams.

Among many other properties, knowing precise information 
about the ground state deformation of the atomic nuclei is of 
fundamental importance [1]. It is not only for their roles in 
heavy-ion reaction dynamics, but also to understand the micro-
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scopic interaction responsible for nuclear structure. In this con-
text, static ground state deformations of atomic nuclei such as 
quadrupole (β2), octopole (β3), and hexadecapole (β4), are of 
vital significance. Previously, electron-scattering [2–4], Coulomb 
excitation [5,6], proton-scattering [7–10], neutron-scattering [11], 
deuteron-scattering [12,13], 3He-scattering [14,15], α-scattering 
[16,17], heavy-ions [18,19], and muonic X rays [20] have been used 
to determine the deformation of atomic nuclei experimentally. In 
comparison to lower order multipoles - quadrupole and octopole 
- the hexadecapole deformation is difficult to determine exper-
imentally with a good precision, primarily because of its small 
magnitude.

Systematic studies of heavy-ion reaction dynamics have re-
vealed that there is a strong interplay between nuclear structure 
effects and the relative motion of the two colliding nuclei [21,22]. 
In particular, during heavy-ion fusion, the coupling of internal de-
grees of freedom of the fusing nuclei, such as vibrational (spher-
ical), rotational (deformed), and particle transfer, gives rise to a 
distribution of fusion barriers instead of a single barrier [21,22]. 

These barrier distributions provide a fingerprint of nuclear struc-
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Fig. 1. Rutherford scattering events at monitor angle of 20◦ in 24Mg + 90Zr reaction 
at a beam energy of 61 MeV. The scattering events from 12C, 16O, and 90Zr, are 
marked.

ture effects of the colliding nuclei. For instance, a comparison of 
the fusion barrier distributions between the 16O + 154Sm and the 
16O + 186W systems has shown that a barrier distribution is sensi-
tive to the sign of hexadecapole deformation parameter [23].

It has also been established that a representation of fusion-
barrier distribution can be extracted from quasi-elastic (QEL) scat-
tering, measured at backward angles [24,25]. If colliding partners 
are chosen appropriately such that the transfer channel coupling 
strength is weak, QEL scattering can be used as a probe to deter-
mine quantitatively the strengths of collective degrees of freedom. 
However, its applicability to determine the ground state deforma-
tion has been demonstrated only in a few cases so far; only in the 
heavy-mass region of rare earths [26].

In the light mass region of the 2s-1d shell, the quadrupole de-
formation (β2) has been determined to a good precision using the 
aforementioned inelastic-scattering probes. In particular, β2 values 
for 24Mg determined using various probes are consistent with each 
other within the experimental uncertainties. On the other hand, 
the hexadecapole deformation value of 24Mg determined using 
the above probes differs significantly and shows large uncertain-
ties. In the present Letter, results obtained on the ground state 
β2 and β4 values of 24Mg from QEL scattering at backward an-
gles, are presented. The β2 value for 24Mg obtained in the present 
work shows good agreement with theory and those obtained using 
inelastic-scattering probes. The ground state hexadecapole defor-
mation value of 24Mg has been determined with a 95% confidence 
limit for the first time. Present results for a light mass nucleus, 
24Mg, along with earlier results in the heavy-mass region of rare 
earths, establish clearly that QEL scattering is a very useful probe 
to determine the ground state deformation of exotic nuclei using 
low intensity radioactive ion beams.

In order to study the deformation effects of 24Mg, any spheri-
cal closed shell target with high charge product of projectile and 
target (ZPZT) is an appropriate choice. In the present experiment, 
considering the available beam energy of 24Mg, we have opted 90Zr 
target with ZPZT = 480 to study the deformation effects in 24Mg 
via quasi-elastic measurements in the 24Mg + 90Zr reaction.

Quasi-elastic scattering measurements were carried out us-
ing 16O and 24Mg beams from the FN accelerator facility at the 
Nuclear Science Laboratory, University of Notre Dame, USA. A 
168 μg/cm2 foil of highly enriched (>95%) 90ZrO2 deposited on 
12C (40 μg/cm2) was used as the target. Beam energies were used 
in the range of 36 to 62 MeV (for 16O) and 61 to 93 MeV (for 
24Mg) in steps of 1 MeV (for 16O) and 2 MeV (for 24Mg). Quasi-
elastic scattering events were detected using three silicon-surface 
barrier (SSB) telescopes (�E − E) placed at 158.0◦ (17 μm, 1 mm), 
147.3◦ (15 μm, 1 mm), and 136.9◦ (23.6 μm, 1 mm) with respect 
to the beam direction. The angular opening of each telescope was 
restricted to close to ±1◦ . Additionally, two SSB detectors each of 
1 mm thickness were placed at 126.2◦ and 115.6◦ for the purpose 

of asserting the quasi-elastic events by kinematic progression. Two 
Fig. 2. Quasi-elastic excitation function (panel (a)) and derived barrier distribution 
(panel (b)) determined at three backward angles for 16O + 90Zr reaction. Dash-
dotted and solid lines in both the panels represent the coupled channels calcula-
tions using the code CCFULL without including any coupling (uncoupled) and with 
vibrational couplings of 90Zr (2+ and 3− states), respectively (see text).

more SSB detectors (1 mm) were mounted at 20.0◦ in the reac-
tion plane on either side of the beam direction for the purpose of 
Rutherford normalization. These two monitor detectors each hav-
ing a collimator of 2 mm, were placed at a distance of 47.5 cm 
from the target. At every beam energy change, the transmission of 
the beam was maximized through a collimator of 5 mm diameter, 
enabling a halo-free beam. The target 90Zr possesses certain frac-
tion of 16O (ZrO2) and 12C (backing). At forward angles (±20◦), the 
Rutherford scattering events were clearly separated for 12C, 16O, 
and 90Zr as shown in Fig. 1 for 24Mg + 90Zr reaction at a beam 
energy of 61 MeV.

Quasi-elastic events consist of elastic, projectile and target ex-
citation, and to some extent particle transfer events. In the case 
of 16O + 90Zr reaction, the quasi-elastic events were quite evi-
dent from the �E versus E plots. However, in the case of 24Mg 
+ 90Zr reaction, most of the quasi-elastic events stopped in the 
�E detectors and only a few events penetrated to the E-detector. 
By putting appropriate two-dimensional gates, it was ensured that 
quasi-elastic events were free from other light charged particle 
events. Among quasi-elastic events, the elastic events were domi-
nant. All the SSB detectors were energy calibrated using a 229Th α-
source. Successive changes in the kinetic energies of elastic events 
with varying beam energy were in agreement with two-body kine-
matics at all angles from 158◦ to 115◦ , which further benchmarked 
the identification of quasi-elastic events. The beam energies were 
corrected for energy loss in the half-thickness of the target.

Differential cross section for quasi-elastic events at each beam 
energy was normalized with Rutherford scattering cross section. 
The center-of-mass energy (Ec.m.) was corrected for centrifugal ef-
fects at each angle as follows [24,25,27,28]:

2Ec.m.

Eeff =

(1 + cosec(θc.m./2))
(1)
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where θc.m. is the center-of-mass angle. The quasi-elastic events in 
the 16O + 90Zr reaction have contributions dominantly from elas-
tic and the target excitations. Owing to large negative Q -values, 
contribution from transfer channels are negligibly small. The quasi-
elastic excitation function for the 16O + 90Zr reaction is shown in 
the Fig. 2(a) at the three backward angles. It is seen that the quasi-
elastic excitation functions at these backward angles are overlap-
ping. The quasi-elastic barrier distribution Dqel (Eeff) from the 
quasi-elastic excitation function was determined using the relation 
[24]:

Dqel(Eeff) = − d

dEeff

[
dσqel(Eeff)

dσR(Eeff)

]
, (2)

where σqel and σR are the differential cross sections for the quasi-
elastic and Rutherford scatterings, respectively. A point difference 
formula is used to evaluate the barrier distribution, with the en-
ergy step of �E=2 MeV in the laboratory frame of reference. Simi-
lar to the excitation function, the barrier distribution determined 
from the excitation functions at three backward angles overlap 
quite well as shown in the Fig. 2(b) for the 16O + 90Zr reaction.

Coupled channels (CC) calculations were carried out for the 16O 
+ 90Zr reaction using a modified version of CCFULL code [29] for 
quasi-elastic scattering. Wood-Saxon type optical model potentials 
were used for both the real as well as imaginary parts. The optical 
model parameters (OMPs) for the real potential were grossly esti-
mated from the Broglia-Winther potentials, and those were further 
refined so that the uncoupled calculation could reproduce the ex-
perimental data as best as possible. The OMPs for the real potential 
used for the 16O + 90Zr reaction were as follows: the depth of the 
potential, Vr = 57.96 MeV, the radius parameter, Rr = 1.2 fm, and 
the diffuseness parameter, ar = 0.585 fm. For the imaginary part 
of the optical potential, a potential was set to be well confined in-
side the Coulomb barrier in order to simulate a compound nucleus 
formation. The imaginary potential parameters used in the CC cal-
culations were as follows: the depth of the potential, V I = 30 MeV, 
the radius parameter, R I = 1.0 fm, and the diffuseness parameter, 
aI = 0.09 fm. It is to be noted here that results are not sensitive to 
the imaginary potential parameters as long as the potential is well 
confined inside the Coulomb barrier. The radius parameters for the 
projectile (R P ) and target (RT ) were used to be 1.2 and 1.06 fm, 
respectively, in the coupled channels Hamiltonian. The Coulomb 
radius was used to be 1.1 fm.

Using the above potential parameters, calculations were car-
ried out first without including any channel coupling for the 16O + 
90Zr reaction. These uncoupled calculations are represented by the 
dash-dotted lines in Figs. 2 (a) and (b). It is clearly seen that un-
coupled calculations cannot reproduce the experimental data. CC 
calculations were further performed for the 16O + 90Zr reaction 
including the vibrational couplings of the target, 90Zr. Excitations 
in 16O are not explicitly taken into account in the calculations, as 
they simply renormalize the potential due to the large excitation 
energies [22]. For the channel couplings to the collective excited 
states in the 90Zr nucleus, we take into account the vibrational 
quadrupole (2+) state at 2.19 MeV and the octupole (3−) state at 
2.75 MeV. The deformation parameters (coupling strengths) asso-
ciated with the transition of multipolarity λ were estimated from 
measured transition probabilities B(Eλ) [30,31]. The β2 and β3 val-
ues used for the 2+ and 3− states of 90Zr were 0.089 and 0.211, re-
spectively [32]. Using these βλ values, CC calculations were carried 
out which reproduce the experimental data very well, as shown in 
Figs. 2 (a) and (b). This agreement between the experimental data 
and the coupled channels calculations established the reasonable-
ness of the coupling strengths of 90Zr, which will be used for the 
24Mg + 90Zr reaction.

The quasi-elastic excitation function and the derived barrier dis-

tribution for the 24Mg + 90Zr reaction are shown in Figs. 3(a) and 
Fig. 3. Quasi-elastic excitation function (panel (a)) and derived barrier distribution 
(panel (b)) determined at three backward angles for 24Mg + 90Zr reaction. The dot-
ted and solid lines represent CCFULL calculations without including any coupling 
(uncoupled) and with including vibrational couplings of 90Zr (2+ , 3−), respectively.

(b), respectively. Due to the large negative Q -values, contribution 
from probable transfer channels is negligibly small in 24Mg + 90Zr 
reaction as revealed in Ref. [33]. The shape of the quasi-elastic 
excitation function for 24Mg + 90Zr reaction does not show any 
discernible difference when compared with that of 16O + 90Zr re-
action as shown in the Fig. 2(a). However, as discussed earlier, the 
derived barrier distribution shows more fingerprints of the cou-
plings of the relative motion with the internal degrees of freedom 
and it is quite evident while comparing the experimental barrier 
distribution for 24Mg + 90Zr reaction (Fig. 3(b)) with that of 16O 
+ 90Zr reaction (Fig. 2(b)). It is noted that the barrier distribution 
for 24Mg + 90Zr reaction does not reveal any sharp structure, but 
is significantly broader than that of the 16O + 90Zr reaction, indi-
cating stronger ground state deformation effects of 24Mg.

The OMPs for the real potential used for the 24Mg + 90Zr reac-
tion were as follows: the depth of the potential, Vr = 160.0 MeV, 
the radius parameter, Rr =1.1 fm, and the diffuseness parameter, 
ar = 0.620 fm. For the imaginary part of the optical potential, the 
same potential parameters were used as those used for the 16O 
+ 90Zr reaction except for the diffuseness parameter, aI = 0.1 fm. 
The radius parameters used for the projectile (R P ) and target (RT ) 
in the coupled channel Hamiltonian were 1.2 and 1.06 fm, respec-
tively. The Coulomb radius used was 1.1 fm.

Using the above potential parameters, at first, CCFULL calcula-
tions for 24Mg + 90Zr reaction were carried out without includ-
ing any channel coupling. These uncoupled calculations are rep-
resented by the dotted lines in Figs. 3 (a) and (b). It is clearly 
seen that uncoupled calculations cannot reproduce the experimen-
tal data. CC calculations were further performed by including the 
vibrational couplings of the target, 90Zr, while the projectile, 24Mg 
was treated as an inert nucleus. For the channel couplings to the 
collective excited states in the 90Zr nucleus, we took into account 
the vibrational quadrupole (2+) state at 2.19 MeV and the octupole 

(3−) state at 2.75 MeV as determined from the 16O + 90Zr reaction. 
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These calculations are shown by solid lines in Figs. 3 (a) and (b). It 
is clearly seen that considering 24Mg as an inert nucleus, CCFULL 
calculations deviate significantly from the experimental data, rais-
ing the urge to include the rotational couplings of 24Mg within the 
CCFULL framework.

Rotational degrees of freedom were included in the CCFULL cal-
culations in order to reproduce the quasi-elastic excitation function 
and the barrier distribution for 24Mg + 90Zr reaction. The rigid 
rotor model was used for this purpose. At first only quadruple de-
formation (β2) was considered and calculations were performed 
with various values of β2 in the range of 0.2 to 0.6, keeping vi-
brational couplings of 90Zr as determined earlier. The first three 
rotational states of 24Mg (0+ , 2+ , and 4+) were included in the 
CCFULL calculations. The coupling to the 6+ state has been con-
firmed to give a negligible contribution. The Coulomb (βC

2 ) and 
nuclear (βN

2 ) parts of the quadrupole deformation were kept at 
the same values. It is observed that ground state quadrupole de-
formation alone cannot reproduce the experimental data in the full 
energy range.

As discussed earlier, 24Mg shows the signature of non-zero 
hexadecapole deformation in its ground state [3,4,9,10,15]. It has 
been revealed through several experimental investigations using 
electron-, proton, 3He, α scattering, and is supported by micro-
scopic theories [34,35]. However, previously determined ground 
state hexadecapole deformation parameter (β4) of 24Mg using var-
ious probes varies quite dramatically and possess large uncertain-
ties. In order to reproduce the present experimental data, hex-
adecapole deformation has also been included along with the 
quadrupole deformation. CCFULL calculations were carried out in 
the two dimensional space of β2 and β4 of 24Mg, considering the 
first three rotational states (0+ , 2+ , and 4+). The Coulomb and 
nuclear parts for both quadrupole and hexadecapole deformations 
were kept at same values. The β2 values were varied in the range 
of 0.2 to 0.6 in a step of 0.01, and for each value of the β2, the 
β4 was varied in the range of -0.20 to +0.20 with a step size of 
0.01. Vibrational coupling strengths of 90Zr were used as deter-
mined earlier from 16O +90Zr scattering.

χ2 was calculated between the experimental data (for the bar-
rier distribution) and CCFULL calculation for each combination of 
β2 and β4 using the following equation;

χ2(β2, β4) =
N∑

i=1

[Yi − f (β2, β4)]2

σ 2
i

(3)

where Yi represents the experimental value of the barrier distri-
bution at the ith energy point, σi is the uncertainty in the data, 
and f (β2, β4) represents the corresponding CCFULL calculation for 
a particular combination of β2 and β4. In Eq. (3), the summation 
runs over all the data points (N) in the effective energy Eeff range 
from 50 to 73 MeV. The χ2-distribution thus obtained in the two-
dimensional space of β4 versus β2 is shown in Fig. 4. It is seen 
that for a very small region in the two-dimensional space of β2
and β4 (see Fig. 4), χ2 is minimized.

In order to get the quantitative values of β2 and β4 and their 
associated uncertainties, a Bayesian analysis with a Markov-Chain 
Monte Carlo (MCMC) framework was carried out. The aforemen-
tioned χ2 distribution simultaneously constrains the likelihood 
function, which is defined as

P (�Y |β2, β4) = exp
(
−χ2/2

)
. (4)

The likelihood function is a conditional probability density of a 
dataset, �Y , given some values for the model parameters β2, β4. In 
turn, the inverse conditional probability, P (β2, β4| �Y ) yields infor-

mation on the distribution of β2 and β4 given a set of data. The 
Fig. 4. χ2 distribution in the two dimensional space of β4 versus β2 of 24Mg, de-
termined by comparing experimental barrier distribution with CCFULL calculations 
(see text).

connection between these two probability distributions is encap-
sulated within Bayes’ Theorem:

P (β2, β4| �Y ) = P (�Y |β2, β4)P (β2, β4)

P (�Y )
. (5)

In Eq. (5), P (�Y ) and P (β2, β4) are, respectively, the so-called prior 
distributions of �Y and (β2, β4) which were merely taken to be uni-
form distributions over the parameter space. However, during the 
MCMC simulation, as the values of β2 and β4 change, the value of 
P (�Y ) is constant. At each step of the simulation, Eq. (5) is evalu-
ated for each value of β2 and β4, and compared with the value of 
Eq. (5) of the previous step.

It is Eq. (5) which allows for one to infer the probability distri-
butions of the parameters β2 and β4 from experimental data. The 
Python implementation of the affine-invariant algorithm of Good-
man and Weare was used [36,37]. In this algorithm, 1000 “walk-
ers” were randomly initialized with values in the two-dimensional 
parameter space of (β2, β4). In parallel, these walkers took Marko-
vian steps which were accepted subject to the value of Eq. (5) and 
the MCMC criteria [36].

These features of the Bayesian analysis yield, after convergence 
is reached, histograms of the walker positions which converge to 
the posterior distribution of the parameter space. These resulting 
probability distributions are shown in Fig. 5. The β2 and β4 are 
moderately anticorrelated with a correlation of ∼ −0.298, which 
is shown graphically within the two-dimensional probability dis-
tribution of Fig. 5. Examination of the projections of the proba-
bility density onto the parameter axes yields extracted values of 
β2 = +0.43 ± 0.02 and β4 = −0.11 ± 0.02, with approximately 
symmetric distributions centered at the medians. The uncertain-
ties constitute a 95% confidence interval in the data.

The experimental data for the barrier distribution were com-
pared with CCFULL calculations as shown in Fig. 6 using the β2
and β4 values of 24Mg as determined from the above Bayesian 
analysis. CCFULL calculations with various β4 values and fixed 
β2 = +0.43 are also shown in the Fig. 6. The barrier distribution 
shows good sensitivity with β4 as depicted in the Fig. 6. The in-
set of Fig. 6 shows barrier distribution data and calculations only 
for β2 = +0.43 and β4 = −0.11. One can see that within the ex-
perimental uncertainties, CCFULL calculations with β2 = +0.43 and 
β4 = −0.11 reproduce the barrier distribution very well.

The β2 and β4 values of 24Mg determined in the present work 
using quasi-elastic scattering have been compared in Table 1 with 

those reported earlier in the literature. It is seen from Table 1 that 
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Fig. 5. Multidimensional probability distributions of β2 and β4 for 24Mg, resulting 
from the MCMC simulation from the experimental data (see text). Plus- and minus-
uncertainties are shown and constitute a 95% confidence interval in the data.

Table 1
Quadrupole and hexadecapole deformation of 24Mg using different experimental 
probes and theoretical calculations.

Probe β2 β4

Present Work +0.43±0.02 −0.11±0.02
(e, e′) [3] +0.45 −0.06
(e, e′) [4] +0.47±0.03 −0.03
(p, p′) [9] +0.47 −0.05±0.08
(p, p′) [10] +0.486±0.008 +0.05±0.04
(n, n′) [11] +0.50±0.02 0.00±0.01
(d, d′) [12] +0.42
(d, d′) [13] +0.40
(3He, 3He′) [15] +0.42±.04 −0.02+.01

−.02
(α, α′) [16] +0.39±.01 −0.015 ± 0.015
(α, α′) [17] +0.355 −0.03

FRDM1 [34] βN
2 = +0.374 −0.053

Skyrme HFB1 [41] βN
2 = +0.40

βC
2 = +0.41

1 Theory.

except neutron-scattering, the β2 value determined in the present 
work shows a good overlap with those determined using different 
inelastic scattering probes. This value also shows a close proximity 
with the theoretical values provided in the Table 1. Using inelas-
tic scattering probes, the hexadecapole deformation parameter β4, 
either had no quoted error or the uncertainties were quite large. 
Moreover, previously determined β4 values of 24Mg vary quite dra-
matically as also shown in the Table 1. It is the first time that β4
of 24Mg has been determined with a 95% confidence limit to be 
-0.11±0.02. The present results along with earlier work [26] in the 
heavy mass region, clearly establish that quasi-elastic scattering is 
a sensitive probe to determine the ground state deformation pa-
rameters.

In summary, quasi-elastic measurements have been performed 
for the 16O + 90Zr and 24Mg + 90Zr reactions at different lab-
oratory angles. Quasi-elastic excitation function and the derived 
barrier distributions therefrom were compared with Coupled Chan-
nels (CC) calculations using the code CCFULL. Vibrational channel 
coupling strengths of 90Zr were obtained from 16O + 90Zr reac-
tions which were found to be consistent with literature data. Ro-
tational channel couplings of 24Mg were required to reproduce the 
experimental data for the 24Mg + 90Zr reaction by the CC cal-
culations. The best choice of ground state quadrupole (β2) and 
hexadecapole (β4) deformation parameters for 24Mg was searched 
for using Bayesian analysis. The β2 value obtained for 24Mg shows 

good consistency with previously reported data and microscopic 
Fig. 6. The quasi-elastic barrier distribution for 24Mg + 90Zr reaction. Different 
lines represent CCFULL calculations with fixed quadrupole (β2 = +0.43) and vary-
ing hexadecapole deformation parameters (β4) of 24Mg. Solid (red), dashed (blue), 
dash-dotted (green), and dash-dot-dotted (orange) lines correspond to β4 = −0.11, 
−0.15, −.05 and 0.00, respectively. The inset shows barrier distribution data and 
calculations only for β2 = +0.43 and β4 = −0.11.

theories. Data for 24Mg + 90Zr reaction shows very good sensitivity 
to hexadecapole deformation of 24Mg, and a precise experimental 
value (with 95% confidence limit) has been obtained for the first 
time.

We point out that a quasi-elastic barrier distribution is espe-
cially useful with radioactive beams, with which high precision 
measurements for fusion cross sections would be difficult in or-
der to extract a fusion barrier distribution. This is also the case 
for fusion reactions relevant to superheavy elements [38–40]. The 
present results shown in this Letter clearly demonstrate that quasi-
elastic scattering could be a potential probe to determine the 
ground state deformation of the exotic nuclei using low intensity 
radioactive ion beams.
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