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Abstract

We present an integral equation approach to solving the Cahn-Hilliard equation
equipped with boundary conditions that model solid surfaces with prescribed
Young’s angles. The discretization of the system in time using convex splitting
leads to a modified biharmonic equation at each time step. To solve it, we
split the solution into a volume potential computed with free space kernels, plus
the solution to a second kind integral equation (SKIE). The volume potential
is evaluated with the help of a box-based volume-FMM method. For non-box
domains, source density is extended by solving a biharmonic Dirichlet prob-
lem. The near-singular boundary integrals are computed using quadrature by
expansion (QBX) with FMM acceleration. Our method has linear complexity
in the number of surface/volume degrees of freedom and can achieve high order
convergence with adaptive refinement to manage error from function extension.
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1. Introduction

The Cahn-Hilliard equation is frequently used in the phase field model in
modeling processes involving the evolution of interfaces ([1, 2, 3]). There has
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been a large body of work on numerical methods for the Cahn-Hilliard equations
(cf. [4, 5, 6, 7] and references therein). Most of the existing methods are finite
element/finite difference methods, or spectral methods for simple geometries.
Being a fourth order partial differential equation, standard finite difference or
finite element methods lead to very ill-conditioned matrices. This in turn causes
low accuracy and may require preconditioning for efficient solution. Spectral
methods are superior in terms of convergence order and number of unknowns in
the discretized system at the cost of only being able to handle simple geometries.

In this paper, we present a high-order accurate numerical method along with
an efficient solution algorithm for solving the two-phase Cahn-Hilliard equation
using integral equation methods in complex geometry. At each time step, our
method requires the evaluation of volume potentials on an adaptive volume grid,
followed by the solution of a well-conditioned system of second kind integral
equations (SKIEs) with unknown boundary densities. The volume potentials
are evaluated in linear complexity with respect to the number of quadrature
nodes using the volume fast multipole method (FMM) based on a “box FMM”
similar to, for example, [8, 9, 10, 11, 12]. The boundary integral equations in-
volve weakly singular integrals, which are discretized using the quadrature-by-
expansion (QBX) method [13]. The idea of QBX is to exploit the smoothness
of the (smooth) layer potential away from the surface by forming locally-valid
expansions which are then evaluated to compute the near or on-surface value of
the potential. Finally, the resulting linear system is solved by iterative solvers
such as GMRES [14] with matrix-vector products accelerated by a version of
the FMM [15, 16, 17, 18], yielding linear complexity with respect to the number
of boundary nodes. When an adaptive volume mesh is used, the adaptive box
structure is adjusted after each step to capture the moving interface by refin-
ing in the neighborhood of the interface and coarsening away from the interface
based on solution gradient; in addition, local refinement near the domain bound-
ary is used to achieve higher order accuracy during volume potential evaluation.
The overall scheme is well conditioned, potentially high-order in space, and has
asymptotically optimal complexity in terms of problem size.

The outline of the remainder of the paper is as follows. In Section 2, we
present the model equations and the temporal discretization scheme. In Sec-
tion 3, we analyze the static problem at each time step, and provide a math-
ematical basis for the SKIE formulation. In Section 4, we present the SKIE
formulation for the static problem. In Section 5, we present the numerical algo-
rithms to accompany the method formulation so that the final solver is robust
and has linear complexity, and in Section 6 we present some numerical results.
In Section 7, we summarize the paper and discuss some future perspectives.
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2. The Cahn-Hilliard Equation: Original Problem Specification

We consider a two-phase Cahn-Hilliard equation derived from a simple phase-
field model given by the following Ginzburg-Landau energy functional [19]:

EGL[ϕ] =

∫︂
Ω

ϵ

2
∥∇ϕ(x)∥2 + [ϕ(x)2 − 1]2

4ϵ
dx, (1)

where ϕ(x) is the composition field and ϵ represents the interface thickness.
When Ω = R2, taking the gradient flow of (1) in H−1(R2) yields the Cahn-
Hilliard equation [20]:

∂ϕ(x, t)

∂t
= ∆µ(x, t) ∀(x, t) ∈ Ω× R+, (2)

µ(x, t) = −ϵ∆ϕ(x, t) + ϕ(x, t)3 − ϕ(x, t)

ϵ
∀(x, t) ∈ Ω× R+, (3)

where µ is the Fréchet derivative of (1), also known as the chemical potential.
In practice, we are interested in solving the initial-boundary value problem

on bounded domains. The initial conditions are

ϕ(x, 0) = ϕ0(x) ∀x ∈ Ω, (4)

µ(x, 0) = −ϵ∆ϕ0(x) +
ϕ30(x)− ϕ0(x)

ϵ
∀x ∈ Ω. (5)

Being a fourth order PDE, the Cahn-Hilliard equation requires two sets
of boundary conditions. In the wetting problem, the boundary models solid
surfaces, and a physically relevant way to impose boundary conditions is by
adding a surface energy term to the free energy to account for the interaction
with the solid wall: [21]

ES =

∫︂
∂Ω

γ(ϕ(x))dsx, (6)

where we choose γ(ϕ) =
√
2
3 cos θY sin

(︁
π
2ϕ

)︁
, which gives the equilibrium contact

angle (Young’s angle) of θY [22]. Re-take the gradient flow but now with the
total free energy F = EGL + ES , and the extra boundary energy term yields the
relaxation boundary condition [23]

∂ϕ(x, t)

∂t
= −ϵ∂nϕ(x, t) +

∂γ(ϕ)

∂ϕ
(x, t) ∀(x, t) ∈ ∂Ω× R+, (7)

as well as the zero-flux boundary condition

∂nµ(x, t) = 0 ∀(x, t) ∈ ∂Ω× R+, (8)

where ∂n = n · ∇ with n being the unit outward normal vector of ∂Ω.
Using Rothe’s method, an energy decaying time stepping scheme for the

system (2 – 5) and (7) – (8) is introduced in [24], which is based on the idea
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of convex splitting [25]: at the n-th time step, given ϕn(x) , find ϕn+1(x) such
that for all x inside the domain,

ϕn+1(x)− ϕn(x)

δt
= ∆µn+1(x), (9)

µn+1(x) = −ϵ∆ϕn+1(x) +
sϕn+1(x)− (1 + s)ϕn(x) + (ϕn)3(x)

ϵ
,

(10)

and that for all x on the boundary,

ϕn+1(x)− ϕn(x)

δt
= −ϵ∂nϕn+1(x) +

∂γ

∂ϕ
(ϕn(x)), (11)

∂nµ
n+1(x) = 0. (12)

The splitting parameter s is chosen to be large enough such that the scheme
is energy-stable (under the assumption that ∥ϕ∥∞ < ∞, see [24] for details).
If a bound to the solution is known ∥ϕ∥∞,Ω ≤ M , ∀t > 0, then letting s ≥
(3M2 − 1)/2 guarantees energy stability of the scheme; however, even though
the numerical solutions mostly stay around the [−1, 1] range, the mathematical
problem of solution boundedness for Cahn-Hilliard equation is still open. In
this paper we choose to fix s = 1.5, which is sufficient to allow for arbitrary δt
in all our tests.

It is worth noting that time discretization of the Cahn-Hilliard equation is
still an active research area. In this paper, we choose to adopt the first order
linearly-implicit convex-splitting method and direct our main efforts to solv-
ing the static forced modified biharmonic subproblems using integral equation
approach. Other time discretization methods include: higher-order convex split-
ting methods ([26, 27]) , stabilization methods ([7, 28]) , the method of invariant
energy quadratization (IEQ) ([29, 30]), and the recent scalar auxiliary variable
(SAV) method [31]. Some of those advanced time integration schemes (like the
SAV method) produce fourth-order static boundary value problems with con-
stant coefficients, similar to the one treated in this paper. The integral equation
formulation and fast algorithms in this paper can thus be straightforwardly gen-
eralized to adopt such time discretization techniques.

For convenience of deriving integral representations of the solution, we rewrite
the problem (9)-(12) by collecting unknowns onto one side of the equation:

(∆2 − b∆+ c)ϕn+1(x) = f1(x) (x ∈ Ω), (13)

(∆− b)ϕn+1(x) +
1

ϵ
µn+1(x) = f2(x) (x ∈ Ω), (14)

(∂n + c)ϕn+1(x) = h(x) (x ∈ ∂Ω), (15)
1

ϵ
∂nµ

n+1(x) = 0 (x ∈ ∂Ω), (16)

where b = s
ϵ2 , c = 1

ϵδt , and the inhomogeneous terms f1, f2 and the boundary
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data h are given by

f1(x) = f1[ϕ
n(x)] = cϕn(x) + ∆f2(x), (17)

f2(x) = f2[ϕ
n(x)] =

(ϕn(x))3 − (1 + s)ϕn(x)

ϵ2
, (18)

h(x) = h[ϕn(x)] = cϕn(x) +
1

ϵ

∂γ

∂ϕ
(ϕn(x)). (19)

3. Fundamental Solutions and Their Properties

Denote the roots of the quadratic equation x2 − bx + c = 0 by λ21 and
λ22. Then the fourth order operator ∆2 − b∆ + c in (13) can be factored as
(∆− λ21)(∆− λ22). To employ an IE method for the solution of (13), we seek a
fundamental solution G0 that should solve, in a weak sense,

(∆− λ21)(∆− λ22)G0(x,y) = δ(x− y). (20)

Motivated by the factorization structure, we recall the Green’s function of the
Yukawa operator that satisfies (weakly)

(∆− λ2i )Gi(x,y) = δ(x− y) (21)

and is given by the expression

Gi(x,y) = − 1

2π
K0(λir), i = 1, 2, (22)

where r = ∥x − y∥2 and K0 is the modified Bessel function of the second kind
of order zero (see, for example, [32]). For (20), we formulate the fundamental
solution as follows:

Definition 1. The fundamental solution G0 is given by the formula

G0(x,y) = − 1

2π

1

λ21 − λ22
[K0(λ1r)−K0(λ2r)]. (23)

In the special case of λ1 = λ2 = λ, the funcdamental solution G0 is defined by
taking the limit λ1 → λ2 of (23), and is given by the formula

G0(x, y) = − 1

4πλ
rK1(λr), (24)

where K1 is the modified Bessel function of the second kind of order one.

For simplicity of discussion, we assume that λ21 ̸= λ22 for the rest for this
paper. In practice, if λ21 = λ22, the equality can always be broken by slightly
changing the values of the time discretization parameters s and δt.

Proposition 2. G0 as defined by (23) satisfies (20).
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Proof. By definition (23),

G0(x,y) = − 1

2π

1

λ21 − λ22
[K0(λ1r)−K0(λ2r)]

=
1

λ21 − λ22
[G1(x,y)−G2(x,y)] ,

therefore,

∆G0(x,y) =
1

λ21 − λ22
[∆G1(x,y)−∆G2(x,y)] .

Using (21), we have

∆G0(x,y) =
1

λ21 − λ22

{︁[︁
δ(x− y) + λ21G1(x,y)

]︁
−

[︁
δ(x− y) + λ22G2(x,y)

]︁}︁
=

λ21
λ21 − λ22

G1(x,y)−
λ22

λ21 − λ22
G2(x,y)

= λ21G0(x,y) +G2(x,y)

= λ22G0(x,y) +G1(x,y),

that is,

(∆− λ21)G0(x,y) = G2(x,y), and (∆− λ22)G0(x,y) = G1(x,y). (25)

Combining (25) and (21), we have

(∆− λ22)(∆− λ21)G0(x,y) = (∆− λ21)(∆− λ22)G0(x,y) = δ(x− y).

Now we are equipped to define layer and volume potential operators.

Definition 3 (Single layer potentials). Given a density function σ(x) ∈ C(∂Ω),
the single layer potential operators are

Si[σ](x) =

∫︂
∂Ω

Gi(x,y)σ(y)dsy (x ∈ R2, i = 0, 1, 2). (26)

Definition 4 (Volume potentials). Given a density function f(x) ∈ C(Ω) , the
volume potential operators are

Vi[f ](x) =

∫︂
Ω

Gi(x,y)f(y)dy (x ∈ R2, i = 0, 1, 2). (27)
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Note that here we only require the density functions to be continuous. In
practice, higher regularity is desired for use of high order discretization, and our
solver in this paper builds on C1 density functions.

Regarding the jump conditions of layer potentials across the domain bound-
ary, we have the following result:

Theorem 5 (Jump relations). The normal derivative of S0[σ] has no jump
across the boundary ∂Ω. However, when x approaches a point p ∈ ∂Ω non-
tangentially, the normal derivative of the single layer potential operators Si[σ]
(i = 1, 2) on ∂Ω satisfies the following jump relation:

lim
x→p±

∂Si[σ](x)

∂np
=

(︃
±1

2
I + ∂nSi

)︃
[σ](p) (i = 1, 2), (28)

where np is the unit outward normal of ∂Ω at p, and

∂nSi[σ](p) = PV

∫︂
∂Ω

∂Gi(p,y)

∂np
σ(y)dsy (i = 1, 2), (29)

and I is the identity operator. Here x → p± means that x approaches p from the
exterior (+) or the interior (−) of the domain, respectively, and PV · denotes
the Cauchy principal value.

Proof. We expand K0 at the origin using asymptotic formulae [32, (9.6.10)–
(9.6.13)]. When z → 0,

K0(z) = − ln
z

2

∞∑︂
k=0

z2k

4k(k!)2
+

∞∑︂
k=0

ψ(k + 1)z2k

4k(k!)2

= −
(︂
ln
z

2
+ γ

)︂(︃
1 +

z2

4
+
z4

64
+O(z6)

)︃
+
z2

4
+

3z4

128
+O(z6),

(30)

where ψ(x) is the psi (digamma) function defined as

ψ(n) = −γ +

n−1∑︂
k=1

1

k
(n = 1, 2, 3, . . . ), (31)

and γ = 0.5772156649 . . . is Euler’s constant [32].
From (30) it is clear that the leading-order non-smooth behavior results

from the logarithmic term. Then (28) follows directly from the well-known jump
condition for the normal derivative of the single layer potential with logarithmic
kernel ([33, Lemma 3.30]).

Using the compactness of integral operators with weakly singular kernels [34,
Theorem 1.11], we also have the following corollary regarding the compactness
of those single layer potential operators and their derivatives

Corollary 6 (Compactness). For a Lipschitz domain Ω, all three single layer
potential operators are compact in C(Ω). Also, the principal value parts of
∂nSi[σ] (i = 0, 1, 2) are all compact.
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4. Integral Equation Formulation

In this section, we present a second-kind integral equation formulation for the
system (13)–(19). First we introduce a construction of the volume potential that
reduces the problem to a pure (volume-homogeneous) boundary value problem
(PBVP). Then we present an integral equation formulation for the PBVP that
only requires solving a Fredholm integral equation of the second kind.

4.1. Reduction to Pure Boundary Value Problem
We choose to represent the solutions ϕn, µn in terms of sums of volume and

layer potentials. We first introduce the volume potential in the terms of ũ and
ṽ:

ϕn+1(x) = ũ(x) + u(x) with ũ(x) = V [ϕn] (x ∈ Ω), (32)
1

ϵ
µn+1(x) = ṽ(x) + v(x) with ṽ(x) = f2(x)− (∆− b)ũ(x) (x ∈ Ω), (33)

where we require that V [ϕn] satisfies

(∆2 − b∆+ c)V [ϕn](x) = f1(x), (x ∈ Ω), (34)

and V [·] is a volume potential operator to be defined.
For the sole purpose of removing inhomogeneities in (13) and (14), one could

simply use the volume potential

V0[f1] :=

∫︂
Ω

G0(x,y)f1(y)dy. (35)

In numerical computation, however, evaluating f1 (cf. (17)) directly is not
desirable since it involves second order differentiation and thus requires ϕn ∈ C2,
which can be overly restrictive. Applying Green’s second identity to (35) yields

V0[f1] = V0[cϕ
n]− V0[∆f2]

= V0[cϕ
n]−

∫︂
Ω

∆yG0(x,y)f2(y)dy

+

∫︂
∂Ω

∂nyG0(x,y)f2(y)dy −
∫︂
∂Ω

G0(x,y)∂nyf2(y)dy

= V0[cϕ
n]−

∫︂
Ω

∆xG0(x,y)f2(y)dy

+

∫︂
∂Ω

∂nyG0(x,y)f2(y)dy −
∫︂
∂Ω

G0(x,y)∂nyf2(y)dy.

Our construction of V [ϕn] from (32) is obtained by dropping the last two bound-
ary integral terms and making use of (25), leading us to define

V [ϕn] = cV0[ϕ
n] + V1[f2[ϕ

n]] + λ22V0[f2[ϕ
n]]. (36)
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Inserting (36) into (34) shows that the volume condition is satisfied despite the
dropping of the boundary terms. By using our construction (36) numerical
differentiation is completely avoided in the volume potential evaluation stage.

Clearly, one does not need to solve for but only evaluate ũ and ṽ. Specifically,
given ϕn, we first evaluate ũ by computing the volume integral V [ϕn] directly
with the help of the box FMM. In the same FMM pass, we also obtain ∆ũ by
taking derivatives of the local expansions. The loss of accuracy incurred due to
numerical differentiation can be recovered by increasing the FMM order. Then
we can compute ṽ directly from its defining formula (33).

Then u and v are the solutions of the following pure boundary value problem

(∆2 − b∆+ c)u(x) = 0 (x ∈ Ω), (37)
v + (∆− b)u(x) = 0 (x ∈ Ω), (38)

(∂n + c)u(x) = g1(x) (x ∈ ∂Ω), (39)
∂nv(x) = g2(x) (x ∈ ∂Ω), (40)

where the boundary data g1 and g2 are given by

g1(x) = h(x)− ũn(x)− cũ(x), (41)
g2(x) = −ṽn(x). (42)

4.2. Second Kind Integral Equation Formulation for the Pure Boundary Value
Problem

We now derive a second kind integral equation (SKIE) formulation for the
boundary value problem (37) to (42). We first represent u by the formula

u(x) = S1[σ1](x) + S0[σ2](x)

=

∫︂
∂Ω

[G1(x,y)σ1(y) +G0(x,y)σ2(y)] dsy,
(43)

where σi (i = 1, 2) are unknown densities on ∂Ω. Obviously, this representation
satisfies (37). Substituting (43) into (38) yields

v(x) = (−∆+ b)u(x)

=

∫︂
∂Ω

[(−∆+ b)G1(x,y)σ1(y) + (−∆+ b)G0(x,y)σ2(y)] dsy,
(44)

Note that since b = λ21 + λ22, the following corollary follows naturally from
the definition of the Yukawa kernels (21):

Corollary 7. When y ̸= x, Gi(x,y) (i = 1, 2) are both locally eigenfunctions
of the Yukawa operator ∆− b. Specifically,

(∆− b)G1(x,y) = −λ22G1(x,y), (∆− b)G2(x,y) = −λ21G2(x,y). (45)
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Proof. We only prove the first identity. The other one follows analogously.
Substituting b = λ21 + λ22 into the left hand side of the identity,

(∆− b)G1(x,y) = [∆− (λ21 + λ22)]G1(x,y) = (∆− λ21)G1(x,y)− λ22G1(x,y).

By definition, (∆− λ21)G1(x,y) = δ(x,y) = 0. Thus

(∆− b)G1(x,y) = −λ22G1(x,y).

On the other hand, (25) yields

(−∆+ b)G0(x,y) = [−∆+ (λ21 + λ22)]G0(x,y)

= −G1(x,y) + λ21G0(x,y)

= −G2(x,y) + λ22G0(x,y).

(46)

Thus

v(x) =

∫︂
∂Ω

{︁
λ22G1(x,y)σ1(y) + [−G1(x,y) + λ21G0(x,y)]σ2(y)

}︁
dsy. (47)

Combining the jump relations (28), the boundary conditions (39) and (40),
and the representations (43) and (47), we obtain the following system of bound-
ary integral equations:

(D +A)[σ](x) = g(x) (x ∈ ∂Ω), (48)

where

D = −1

2

[︃
1 0
λ22 −1

]︃
, A =

[︃
A11 A12

A21 A22

]︃
, σ =

[︃
σ1
σ2

]︃
, g =

[︃
g1
g2

]︃
, (49)

and the entries of the operator matrix A are given by the formulae

A11 = ∂nS1 + cS1, A12 = ∂nS0 + cS0,

A21 = λ22∂nS1, A22 = −∂nS1 + λ21∂nS0.
(50)

Clearly, D has nonzero determinant, and all entries of A are compact operators
(Corollary 6). Therefore, the system (48) is a Fredholm integral equation of the
second kind. When discretizing a second kind integral equation, the condition
number of the resulting linear system remains bounded when the number of
unknowns increases as the discretization gets refined. For an iterative solver
achieving a fixed residual norm, the numerical solution thus remains accurate
as the mesh is refined. Besides, with bounded condition number, the number of
GMRES iterations is less likely to grow when refining the mesh.
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5. Numerical Realization: Discretization and Algorithms

For the implementation of our method, the volume potentials in (36) are
evaluated using a version of the the volume FMM ([8, 9, 10, 11, 12]). We
further discretize the SKIE system (48) using the Nyström method using QBX
quadrature and solve the linear system with the help of GMRES. The required
matrix-vector products are carried out using the GIGAQBX quadrature-enabled
fast algorithm [13, 35, 36]. To handle complex input geometries, we use Gmsh
[37] to generate a triangulation along the domain boundary with each panel
roughly of the size hb. Over each boundary panel, Legendre-Gauss quadrature
nodes of order qb are used to form the discretization.

If Ω = [xl, xr]
2, the volume FMM bridges seamlessly with the boundary

discretization; however, additional treatment is needed when dealing with gen-
eral geometries, as the volume FMM requires box-shaped partitions to operate.
In this section, we present those extra steps necessary to achieve flexibility in
handling complex geometries.

5.1. Regularity and Non-Square Domains
For non-square domains, the volume potentials are evaluated over a box B

that encloses the physical domain such that Ω ⊂ B. Use of the box FMM
requires that volume source densities be extended to B \ Ω. Noting that f1, f2
are all algebraic functions of ϕn, we only need to extend ϕ to B \ Ω. There are
several factors that need to be considered when deciding how to extend ϕ:

• The smoother the extension is, the higher accuracy in the order of approx-
imation for those densities can be achieved using (piecewise) polynomials,
yielding better overall accuracy.

• Higher order extensions are more costly to evaluate. Typically for Ck

extension one needs to solve a PDE where k+ 1 boundary conditions can
be imposed, e.g., ∆k+1u = 0. It is natural to ask that the extension
process does not cost much more than solving the original problem, i.e.,
k ≤ 1.

• Our SKIE formulation poses certain minimum regularity requirements.
Specifically, evaluation of g2 in (40) requires at minimum ṽ ∈ C1(B),
which then requires ũ to be in C3(B).

To satisfy the condition ũ ∈ C3(B), the density ϕ should satisfy certain
regularity requirements. First we note the standard regularity result for the
Poisson equation [38]:

Theorem 8. Let Ω ⊂ Rd be open and bounded,

u(x) :=

∫︂
Ω

Φ(x− y)f(y)dy, (51)

where Φ is the fundamental solution. Then if f ∈ Cα
0 (Ω), 0 < α < 1, then

u ∈ C2,α(Ω), and
∥u(x)∥C2,α(Ω) ≤ c∥f∥Cα(Ω). (52)
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The leading order singular (least regular) term in our V [ϕn] construction is
V1[f2], for which we have the following result:

Proposition 9. If f2 ∈ C1(B), the volume potential V1[f2] ∈ C3(B).

Proof. Since, like the Poisson kernel, the kernel G1 also has a leading-order
logarithmic singularity, Theorem 8 also applies to V1[f2]. Combined with the
assumption that the source density is in C1(B), the proposition follows.

Based on these considerations, we choose to use C1 extensions. To obtain
such an extension, we assume that Ω is simply connected and solve the following
Stokes problem:

−∆u+∇p = 0 in R2 \ Ω, (53)

∇ · u = 0 in R2 \ Ω, (54)

u = ∇⊥ϕ on ∂Ω, (55)

where u is the velocity field of the fluid and p is the pressure field. The Stokes
problem (53, 54, 55) can also be solved via an SKIE formulation [39]. We
evaluate the stream function ω up to a constant by evaluating complex layer
potential representations in [40], such that

u = ∇⊥ω =

[︃ ∂ω
∂x2

− ∂ω
∂x1

]︃
, (56)

then ω is a biharmonic function that solves the boundary value problem

∆2ω = 0, in R2 \ Ω, (57)
∇ω = ∇ϕ, on ∂Ω. (58)

Since ∂Ω is simply connected, we only need to add a constant to ω to obtain a
C1 extension of ϕ:

ϕ(x) = ω(x) +

(︃∫︂
∂Ω

ϕ(y)dsy −
∫︂
∂Ω

ω(y)dsy

)︃
(x ∈ R2 \ Ω). (59)

Remark 10. The assumption of Ω being simply connected is for simplicity of
the formulation and not critical. If Ω is topologically more complicated, methods
in [41, 40] can still be used for performing C1 extension.

5.2. Boundary Layers
From matched asymptotic analysis of the Cahn-Hilliard equation (2)–(8)

[42], it is apparent that for very small ϵ, the solution can develop boundary
layers.

Boundary layers cause stability concerns for our scheme using C1 extension.
Since the exterior biharmonic problem does not admit a Laplace-type maximum
principle, the presence of the boundary layer causes the extended density to be
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very large in magnitude compared to the density inside the domain, resulting
in lost accuracy after each time step. As a result, the numerical solution may
not remain bounded after several time steps and lose energy stability.

Dealing with such boundary layers numerically is the subject of ongoing
research. Using an adaptive volume mesh that refines towards the boundary
can be helpful. Instead of evaluating the volume potentials over one single
bounding box B, we can choose B to be union of a set of boxes that covers Ω.
By reducing the Hausdorff distance between ∂B and ∂Ω, the extended density
is less likely to blow up. However, such refinement is very expensive in practice,
and there is no guarantee that the boundary layer is resolved a-priori since a
reliable refinement criterion is not known.

For long-time simulations, we provide an alternative formulation which is a
less costly approximation based on the total energy of the system. When solving
the SKIE (48), we use a homogeneous right hand side for the second equation
g2 = 0, which effectively makes the layer potential u satisfy the contact angle
dynamics, while ignoring the second boundary condition. After solving for σ1
and evaluating u, we add a constant to u such that the integral of ϕ over the
whole domain is conserved. This approach conserves the total mass and keeps
the numerical solution bounded at all time.

Formally, the approximation replaces the representation (43) with the fol-
lowing stabilized representation:

u(x) = S1[σ1](x) + C (60)

where C is the added constant. The net effect of the approximation spreads the
influence of boundary layers across the whole domain. Long-time simulations
using the stabilized representation are performed and the results are in line with
those obtained from finite element method. Although the modification seems
crude, it maintains the most relevant solution characteristics including:

• H−1 gradient flow structure in the bulk region, since the volume potential
is unchanged.

• Contact angle dynamics from the first boundary condition.

• Integral conservation over the whole domain.

6. Numerical Results

6.1. Spatial Convergence
Based on error analysis of the volume FMM ([9]), QBX ([43]), the GIGAQBX

fast algorithm ([13], [36]) and standard approximation theory ([44]), we expect
the following error estimate for the overall numerical accuracy of our scheme:

Heuristic 1 (Numerical Accuracy). Assuming density extension has regularity
ϕ0 ∈ Ck(B), denote the numerical solution at t = δt by ϕ1h and its relative error
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by E0 := ∥ϕ1h − ϕ(δt)∥∞/∥ϕ(δt)∥∞. Asymptotically, for a single time step, we
have

E0 ≤ C0δt+ (Ev + Eb) ,

where C0 is a constant independent of δt, Ev includes the errors from volume
potential evaluation and Eb includes the errors from the BIE solution.

1. For Ev, we have

Ev ≤ C1h
min(

√
qv,k+1)

v⏞ ⏟⏟ ⏞
discretization error

+ C22
−mv⏞ ⏟⏟ ⏞

volume FMM error

+ξ,

where hv is the volume mesh size, qv is the number of quadrature points
per volume cell, mv is the volume FMM order, ξ is the error of near-field
volume potentials (controlled by the tolerance of adaptive quadrature over
nearfield boxes), and C1, C2 are constants independent of hv and ξ.

2. For Eb, assuming that the solution density σ is smooth and that its Hölder
norms ∥σ∥Cs,β for s ∈ N, β ∈ [0, 1) can be controlled with ∥ϕ(δt)∥∞, we
have

Eb ≤ C3h
qb
b⏞ ⏟⏟ ⏞

discretization error

+ C42
−2qb⏞ ⏟⏟ ⏞

QBX quadrature error

+ C5h
p+1
b 2−p⏞ ⏟⏟ ⏞

QBX truncation error

+ C62
−mb⏞ ⏟⏟ ⏞

QBX FMM error

+C7η,

where hb is the boundary mesh size, qb is the number of quadrature points
per boundary cell, p is the QBX order, mb is the FMM order used in
GIGAQBX, η is the error of the linear solver (controlled by the tolerance
of GMRES), and C3, C4, C5, C6, C7 are constants independent of hb and
η.

Among all the error sources listed in Heuristic 1, we are most interested
in the discretization errors that decay algebraically with mesh refinement. In
this section, we describe experiments to verify this expected error decay, by
choosing other parameters of the scheme so as to minimize the contributions of
their corresponding errors. Specifically, we fix the tolerance for GMRES to be
10−14, and the tolerance for (precomputed) near-field adaptive quadrature in
the volume FMM to be 10−13. Also, we set the FMM orders and the QBX order
to be sufficiently high. Specifically, we let the QBX order match the boundary
quadrature order qb = p+1, and fix the volume FMM order and the GIGAQBX’s
FMM order mv = mb = 8. We use two-dimensional Taylor expansions for the
FMM, thus achieving FMM order 8 in 2D requires 1

2 × 8 × 9 = 36 terms. To
back our choices, neither increasing the QBX order p up to 10 nor the FMM
order mv,mb up to 10 yields obvious effects on the results, indicating that the
error in the computation of the volume potential is dominated by discretization
errors. The same characteristic mesh size hb = hv = δx is used for volume
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and boundary meshes. For simplicity, we also keep the orders of volume and
boundary discretizations the same.

To gauge convergence, we fix δt = 10−2 and perform self-convergence tests
by refining both spatial grids successively and calculating the relative error from
the result of one time step e0 := ∥ϕ1h − ϕ10∥∞/∥ϕ1h∥∞, where ϕ10 is the reference
solution. The tests are performed on a circular domain with radius 0.247 cen-
tered at the origin. The bounding box is chosen to be B = [−0.25, 0.25]2. The
initial condition is

ϕ0(x) = tanh

[︃
10√
2ϵ

(|x · e1| − 0.1)

]︃
, (61)

where ϵ = 10−2, and e1 = (1, 0).
In this work, since we are using C1 extension of ϕ, based on the estimates

above, when the discretization error dominates, the total error of the scheme
should scale as O(hqbb ) + O(h

min(
√
qv,2)

v ) when hb, hv → 0. In particular, when
hb = hv = δx, and qb =

√
qv = r, the total discretization error is expected to

be O(δxr) as δx→ 0.
When using piecewise constant approximations for both boundary and vol-

ume discretizations, the results are shown in Table 1, where qb, qv stand for the
number of quadrature points per cell on the boundary mesh and the volume
mesh, respectively. The convergence order is calculated using values of the er-
ror measure e0 from the current row and the row above. The same statistics
for the second order discretizations (i.e. piecewise linear approximations on the
boundary mesh and piecewise bi-linear approximations on the volume mesh) are
shown in Table 2.

In both cases, the numerical results align well with expectations. When
r = 1, qb = qv = 1, discretizations for both boundary and volume densities are
piecewise constant (first order), and Table 1 demonstrates empirical convergence
order close to 1. When r = 2, qb = 2, qv = 4, boundary densities are discretized
with piecewise linear functions, and volume densities are discretized with piece-
wise bilinear functions, in which case Table 2 shows empirical convergence order
close to 2.

When higher-order volume approximations are used with a uniform volume
mesh, the convergence order will be limited to 2 due to the volume densities
being limited to only C1 at the boundary. For example, as shown in Table 3.

However, higher order approximations can still be used by adding extra levels
of refinement to volume cells that intersect ∂Ω. To guide the mesh refinement
process, we form a two-dimensional tensor-product Legendre series of degree
qv (using the discrete tensor-product Legendre transform) over each cell, and
compute the sum of the absolute values of the qv + 1 coefficients of the leading
terms (terms of total degree qv) as the error indicator for that cell. To make the
adaptive mesh for the box FMM, we start from a uniform mesh with prescribed
δx, and iteratively perform refinement cycles as follows:

1. Compute the average values of the error indicators for the interior cells as
Mi, and that for the boundary-intersecting cells as Mb.
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qb qv δx e0 EOC
1 1 1.56× 10−2 9.91× 10−1 –
1 1 7.81× 10−3 6.72× 10−1 0.56
1 1 3.91× 10−3 2.91× 10−1 1.21
1 1 1.95× 10−3 1.34× 10−1 1.19
1 1 9.77× 10−4 9.02× 10−2 0.57
1 1 4.88× 10−4 5.24× 10−2 0.78

Table 1: Results Using First-Order Approximation (qb: number of quadrature points per
boundary cell, qv : number of quadrature points per volume cell, e0: relative error at t = δt).

qb qv δx e0 EOC
2 4 1.56× 10−2 4.01× 10−1 –
2 4 7.81× 10−3 2.41× 10−1 0.73
2 4 3.91× 10−3 6.99× 10−2 1.79
2 4 1.95× 10−3 1.76× 10−2 1.99
2 4 9.77× 10−4 4.84× 10−3 1.86

Table 2: Results Using Second-Order Approximation (qb: number of quadrature points per
boundary cell, qv : number of quadrature points per volume cell, e0: relative error at t = δt).

2. Refine each boundary-intersecting cell by one level (into four cells).
3. Refine some additional cells as necessary to keep the tree balanced.

We repeat the refinement cycles until Mb ≤ Mi. As shown by the results
in Table 4, since the source density is smooth away from the boundary, by
performing such refinements, the solver is able to take advantage of higher order
of convergence in the bulk region where the source density is smooth.

qb qv δx e0 EOC
3 9 1.56× 10−2 2.11× 10−1 –
3 9 7.81× 10−3 3.73× 10−2 2.50
3 9 3.91× 10−3 1.04× 10−2 1.84
3 9 1.95× 10−3 2.36× 10−3 2.13
3 9 9.77× 10−4 5.58× 10−4 2.08

Table 3: Results Using Third-Order Approximation, without Extra Boundary Refinement
(qb: number of quadrature points per boundary cell, qv : number of quadrature points per
volume cell, e0: relative error at t = δt).

6.2. Temporal Convergence
In terms of temporal convergence, we expect to have first order in time due

to use of the convex splitting scheme of [24]. We still use the initial condition
(61) over a disk domain to do perform this test. To verify the expectation, we
fix ϵ = 0.5 and the final time tf = 0.1, and perform self-convergence tests by
taking different δt. The numerical error is measured at t = tf using the formula
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qb qv δx e0 EOC
3 9 1.56× 10−2 2.11× 10−1 –
3 9 7.81× 10−3 3.45× 10−2 2.61
3 9 3.91× 10−3 4.42× 10−3 2.96
3 9 1.95× 10−3 6.99× 10−4 2.66
3 9 9.77× 10−4 1.04× 10−4 2.75

Table 4: Results Using Third-Order Approximation, with Extra Boundary Refinement (qb:
number of quadrature points per boundary cell, qv : number of quadrature points per volume
cell, e0: relative error at t = δt).

ef := ∥ϕfh − ϕf0∥∞/∥ϕ
f
h∥∞, against the reference solution obtained by taking

δt = 0.0125. The results are presented in Table 5, confirming that the scheme
is of first order in time.

δt ef EOC
0.1 2.92× 10−1 –
0.05 1.42× 10−1 1.04
0.025 7.53× 10−2 0.92

Table 5: Temporal Convergence Tests (δt: time step size, ef : relative error at final time).

6.3. Short-time Dynamics
In this example, we test for the ability of our scheme to resolve small struc-

tures using high order approximation in combination with adaptive mesh refine-
ment. We mimic, using the initial condition, a near-uniform state with small
random perturbations. Those perturbations will lead to a phase separation pro-
cess. We expect that our scheme is able to resolve the dynamics of structures
at all scales during the phase separation.

The setup tries to capture short-time dynamics of the Cahn-Hilliard equa-
tion. We choose ϵ = 10−2, δt = 10−4, and use fourth-order quadrature rules for
volume and boundary discretizations. For volume densities,

ϕ(x, y) ≈
∑︂

0≤k,l≤3

ak,lPk(x)Pl(y), (62)

(where Pk stands for Legendre polynomial of degree k defined on the concerning
cell) we use

E := |a3,3|+
∑︂

0≤k<3

(|ak,3|+ |a3,k|) (63)

as the error indicator for the cell.
The simulation starts with an initial profile generated using the following

procedure:
1. A uniform 200 × 200 Cartesian grid is generated on B. Then for each

grid point a real number is drawn from a uniform random distribution on
[−10−3, 10−3].
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(a) t = 0. (b) t = δt. (c) t = 5δt.

(d) t = 10δt. (e) t = 20δt. (f) t = 30δt.

Figure 1: Short-time Dynamics of the Cahn-Hilliard Equation (δt = 10−4).

2. A cubic B-spline representation of the initial ϕ is formed using the Carte-
sian grid points as knots and the random numbers as interpolating values.

3. The values and derivatives of the intial ϕ are then evaluated using the
cubic B-spline representation on the quadrature points of the box mesh as
well as the boundary mesh.

Numerical solutions are shown in Figure 1. The first 3 time steps are per-
formed solving the full SKIE for the boundary integral equation to capture
the fast dynamics near the boundary, while the later steps are performed us-
ing the approximation (60). In our experience, the numerical solution tends
to form boundary layers in regions away from contact lines (where its tangen-
tial derivative is close to 0). The color maps are shown for each sub-figure
individually, while the contours are all showing the zero level set of ϕ over the
whole bounding box. The short-time dynamics can be understood as interplay
of three mechanisms: surface-energy driven phase transition, bulk-energy driven
spinodal decomposition, and solid boundary induced nucleation. In later time
steps, the smoothing term in the free energy starts to play a more important
role and leads to coarsening of the patterns. As a benefit of the high-order
accuracy of our scheme, our method is able to resolve the interfaces as well as
the small patterns formed on the boundary very well.

6.4. Long-time Dynamics
Since our solver is only first-order in time, choosing larger time step sizes re-

duces solution accuracy significantly; however, through this example we demon-
strate that even with large time steps, higher spatial order is still useful for
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(a) t = 0. (b) t = δt. (c) t = 11δt.

(d) t = 51δt. (e) t = 101δt. (f) t = 1451δt (Equilibrium).

Figure 2: Long-time Dynamics of the Cahn-Hilliard Equation (δt = 0.5).

preserving certain qualitative properties of the solution. In this example, we
verify that the solver can preserve solution symmetry across long time scales.

We still use ϵ = 10−2, but take larger time step size δt = 0.5. The initial
condition is

ϕ0(x, y) = sin

(︃
40π

L
x

)︃
cos

(︃
32π

L
y

)︃
, (64)

where L = 0.5 is the size of the bounding box. Note that ϕ0(x,−y) = ϕ0(x, y).
For this example we use (60) from the start. Since δt is rather large compared
to δx, the temporal truncation error of convex splitting scheme dominates; how-
ever, we expect that the scheme is still stable and reaches an equilibrium state
when t→ ∞, and that the solution ϕ at any time stays symmetric with respect
to the x axis.

Numerical results are shown in Figure 2. The simulation stops at t = 780
when ∥ϕn+1−ϕn∥∞ < 10−14, which confirms that the numerical solution reaches
an equilibrium state. Besides being able to resolve the interface and the contact
lines, our method is also shown to be able to properly resolve the interactions
between the contact lines and the geometry with no alignment requirements
between the two sets of meshes: in the case circular domain, as long as both the
boundary mesh and the box mesh are symmetric, the solution symmetry will
be well-preserved from the beginning to the equilibrium state.

Then, we demonstrate the ability of our scheme to handle moderately com-
plex smooth geometries. We report the numerical solution at t = 1 for the same
problem setup, but with different physical domains. The results are shown in
Figure 3.

The total energy of the numerical solution for different geometries is shown in
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(a) Elliptical Disk (t = 0.1). (b) Rounded Square (t =
0.1).

(c) Rounded L (t = 0.1).

(d) Elliptical Disk (t = 0.5). (e) Rounded Square (t =
0.5).

(f) Rounded L (t = 0.5).

(g) Elliptical Disk (t = 1). (h) Rounded Square (t = 1). (i) Rounded L (t = 1).

Figure 3: Numerical Solutions for Complex Geometries.
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Figure 4: Total Energy of the Numerical Solutions.

Figure 4. According to the theory, the energy decaying property is preserved as
long as the numerical solution remains bounded. With the stabilization applied,
we observe that the numerical solution remains bounded for various geometries.

6.5. Comparisons with FEM
It is a natural question to ask how the integral equation approach that we

take in this article compares to more popular finite element methods. In this
example we aim to provide some perspective on this by presenting a comparison
between our solver and a simple finite element solver.

The finite element solver we consider is based on a mixed formulation for the
time-discretized system (9)–(12), using Q1 elements for both ϕ and µ. We report
the condition number and number of degrees of freedom with their dependence
on δx for FEM in Table 6, where δx is calculated as the square root of average
cell measure, and the same statistics for IEM in Table 7. The tests are performed
over a circular domain with radius 0.247. In all tests with both the FEM and
the IEM, we fix ϵ = 0.5, θY = π/3 and δt = 1. The rest of the parameters
for the IEM are the same as in 6.1. The data confirms that, being a second-
kind integral equation, the linear system has bounded condition number that
does not scale with mesh size, unlike the FEM whose linear system’s condition
number grows in an unbounded manner when refining the mesh. In addition,
when δx→ 0, the number of unknowns in the linear solve scales as O(1/δx) for
our method, while it scales as O(1/δx2) for the FEM.
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δx NDOFs(FEM) κ(FEM)
1.11× 10-1 16 9.79× 103

6.26× 10-2 50 1.24× 104

3.32× 10-2 178 2.15× 104

1.71× 10-2 674 6.82× 104

8.64× 10-3 2626 1.12× 105

Table 6: Condition Numbers of FEM Matrices (2nd Order).

δx NDOFs(IEM) κ(IEM)
1.11× 10-1 56 9.86× 102

6.26× 10-2 100 9.87× 102

3.32× 10-2 200 9.88× 102

1.71× 10-2 364 9.88× 102

8.64× 10-3 720 9.89× 102

Table 7: Condition Numbers of IEM Matrices (4th Order).

7. Conclusions

We have introduced an integral equation method for the Cahn-Hilliard equa-
tion in bounded 2D domains with solid boundary conditions. For each time step,
the method consists of two stages: (1) evaluate volume potentials and (2) solve
remaining SKIE. Fast multipole based fast algorithms are used to attain linear
complexity for both stages. To handle complex geometry, a C1 extension of
ϕ onto a larger domain is performed by solving an additional SKIE. Through
numerical experiments, the method is shown to require fewer degrees of freedom
and maintain bounded condition number compared to finite element method.
To remedy some of the numerical stability concerns for long-time simulations
caused by boundary layers, we have proposed a stabilized representation ap-
proximating the original problem, and we have validated the approximation
with numerical results.

The present work opens some exciting future perspectives. We will seek
to apply the same techniques in this paper to second-order time discretization
schemes, for example the SAV method [31] offering higher accuracy order in
time as well as superior energy stability. In addition, the challenges posed by
boundary layers are by no means unique to Cahn-Hilliard equations, and it is of
great interest to develop fast volume potential evaluators that remain stable and
accurate when the source density develops boundary layers. Once the boundary
layer issue can be handled, our SKIE formulation will be immediately applicable
to the full long-time simulation.
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