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Abstract: Satellites provide a temporally discontinuous record of hydrological conditions along 
Earth’s rivers (e.g., river width, height, water quality). The degree to which archived satellite data 
effectively capture the overall population of river flow frequency is unknown. Here, we use the 
entire archives of Landsat 5, 7, and 8 to determine when a cloud-free image is available over the 
United States Geological Survey (USGS) river gauges located on Landsat-observable rivers. We 
compare the flow frequency distribution derived from the daily gauge record to the flow frequency 
distribution derived from ideally sampling gauged discharge based on the timing of cloud-free 
Landsat overpasses. Examining the patterns of flow frequency across multiple gauges, we find that 
there is not a statistically significant difference between the flow frequency distribution associated 
with observations contained within the Landsat archive and the flow frequency distribution derived 
from the daily gauge data (𝛼 = 0.05), except for hydrological extremes like maximum and minimum 
flow. At individual gauges, we find that Landsat observations span a wide range of hydrological 
conditions (97% of total flow variability observed in 90% of the study gauges) but the degree to 
which the Landsat sample can represent flow frequency distribution varies from location to location 
and depends on sample size. The results of this study indicate that the Landsat archive is, on 
average, representative of the temporal frequencies of hydrological conditions present along Earth’s 
large rivers with broad utility for hydrological, ecologic and biogeochemical evaluations of river 
systems.  
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1. Introduction 

Rivers serve as the chief source of renewable water to humans and to freshwater habitats [1] and 
thus they represent an important nexus between the water cycle, civilization, and aquatic ecology. 
Effective water resource management depends on the ability to monitor river systems and 
understand how they are responding to changes in climate and land use. While hydrological 
simulations can provide useful data for evaluating river system dynamics, they are often unable to 
resolve unpredictable processes and events, leading to high uncertainty, particularly when operating 
over large areas [2]. Observational monitoring of rivers is therefore essential for a complete 
understanding of the real-world complexities of river systems. 
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The stream gauge is the traditional instrument used for monitoring river hydrology. Gauges 
provide temporally continuous data that can be highly accurate given proper gauge maintenance. 
From gauge records, flow frequency distributions, or the frequency distribution of river flow through 
time, can be used to calculate return period and estimate future flood hazard under the assumption 
of stationarity [3]. However, gauges only monitor fixed points along river reaches and thus are unable 
to provide a comprehensive view of surface water hydrology across river networks [4]. Additionally, 
gauges tend to be biased in their geographic location, most often being installed along narrow, stable 
reaches, near populated regions, in developed countries, and on perennial river types [5]. Further, 
the availability of gauge data has been declining since the 1970s [6], limiting the ability to understand 
how changes in land use and the water cycle are impacting global rivers. 

Satellite remote sensing of Earth’s rivers offers an alternative, complementary approach to in 
situ gauging [7]. Remote sensing data are often spatially continuous and thus can be used to observe 
an entire river network within the constraints of a given satellite’s payload and orbit. Remote sensing 
also enables non-intrusive measurement of rivers that avoids the inconsistencies associated with 
individually-maintained gauge stations. While optical remote sensing is the most popular method 
for studying rivers from space, it is susceptible to cloud cover, low sun angle, seasonal darkness, and 
nighttime conditions [8]. Other approaches like microwave remote sensing can be used to observe 
rivers during the day and night, and during almost all weather conditions [9–11], and high-resolution 
commercial imagery is emerging as a useful tool for unprecedented fine-scale monitoring of river 
and stream processes [12,13]. 

Satellite instruments cannot directly detect river discharge itself, but they can measure other 
properties of rivers that vary with discharge including river width [14], river height [15], and river 
velocity [16], as well as water quality [17]. Earth observation satellites have been operational since 
the early 1970s and have yielded long-term remote sensing data archives that serve as a valuable 
resource for monitoring rivers [18–20]. For example, remote sensing observations can be related to 
gauged discharge and can be used to build percentile-based rating curves [21,22]. However, the vast 
majority of Earth’s river reaches are ungauged [23] and for these ungauged reaches, the range of 
hydrological conditions that satellite data cover is uncertain. A satellite’s record is a discontinuous 
temporal sample of the overall population of hydrological conditions along rivers. However, the 
ability of satellite remote sensing data archives to represent flow frequency is unquantified. Does the 
satellite sample effectively represent flow frequency distribution in rivers? 

Recent technological innovations have made this question more germane. Cloud computing 
image processing platforms like Google Earth Engine have substantially lowered the barriers to entry 
of planetary-scale analysis of entire satellite image archives [24]. These platforms have led to the 
development of freely-available global-scale maps of surface water occurrence and change from long-
term aggregations of optical imagery [25,26] as well as open-source image processing algorithms that 
can be used to track changes in river morphology over decades [27]. Additionally, new global 
datasets of rivers including the Global River Widths from Landsat (GRWL) database [28], which 
contains the location and width of rivers observable by Landsat, allows for improved classification 
and analysis of rivers from satellites. 

We are nearing the half-century anniversary of the first civilian satellite focused on Earth’s land 
surface (ERTS-1 launched in 1972 and later renamed Landsat 1). Indeed, Landsat is the longest 
running Earth observation satellite program and it is a standard source of remote sensing data for 
land cover characterization used in hydrological applications [29]. In particular the archives of 
Landsat 5, 7 and 8 (hereinafter simply referred to as Landsat), which all share the same Worldwide 
Reference System (WRS-2), contain freely-available, cross-calibrated sensor data with compatible 
spatial and temporal resolutions. Landsat provides ~30 m optical and infrared observations across a 
185 km swath along a sun-synchronous near-polar 16 day repeat orbit. Thus, Landsat produces 
consistent multispectral imagery at a high spatial resolution but at a temporally sparse interval, 
particularly when cloud cover prevents land surface retrieval. We focus on Landsat here because it 
is the most commonly used remote sensing platform for studying surface water from space [8] and it 
has been the basis for several popular geospatial products for studying rivers [25,28,30–32]. 
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However, an important unknown is whether the accumulated observations of rivers from 
Landsat, or the Landsat sample, correspond to the true population of hydrological conditions in 
rivers. If the available Landsat sample adequately captures the on-the-ground frequency distribution 
of river flow, then Landsat-based surveys of river characteristics can be interpreted to be 
representative of the hydrological conditions present along Earth’s rivers. Quantifying the ability of 
the Landsat archive to represent hydrological conditions, represented here by flow frequency, is 
motivated by several unexplored applications in the field of remote sensing of rivers. These include 
1) using water occurrence information from the Landsat archive to estimate discharge by constructing 
river width-based rating curves; 2) using water occurrence information to quantify the seasonality of 
river and stream inundation extent, an important metric for estimating biogeochemical exchange 
between rivers and the atmosphere [33]; 3) using water color information to understand the 
variability and dynamics of river water quality [19]. 

If the Landsat archive is of adequate length or, in other words, if the Landsat sample size is large 
enough, then fundamental assumptions can be made regarding the representativeness of the Landsat 
record of hydrological conditions along Earth’s large rivers. Thus, given the long Landsat archive 
(Landsat 5 launched on March 1st, 1984), we hypothesize that long-term aggregations of Landsat 
imagery capture the flow frequency of Earth’s large rivers. Here, we test this hypothesis by 
conducting a simple temporal sampling analysis of the United States Geological Survey (USGS) 
gauge records based on cloud-free overpass timing of Landsat 5, 7 and 8 (Figure 1). While a similar 
approach has been taken to predict the observational potential of the future Surface Water and Ocean 
Topography (SWOT) satellite mission [34], there has been no evaluation conducted for the widely 
used Landsat archive. 

 
Figure 1. Map showing the United States Geological Survey (USGS) gauges used in this study and 
Landsat 5, 7, and 8 data availability based on the number of images with less than 30% cloud cover. 
Regions affected by cloud cover and low sun angle tend to have lower data availability. Rivers equal 
to or wider than Landsat’s 30 m resolution at mean discharge shown as blue lines [28]. 

2. Materials and Methods 

2.1. Gauge Data 

We represent the true flow frequency of rivers using daily streamflow records from gauge 
stations in the United States (US) and operated by the USGS (Figure 1). To exclude gauges that are 
located on rivers too narrow to be observable by Landsat, we only consider the 1134 USGS gauges 
that were used to validate the Global River Widths from Landsat (GRWL) database [28]. These gauges 
1) have upstream drainage areas larger than 1000 km2; 2) have records that span at least 10 years; 3) 
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are located within 1 km Euclidean distance of a GRWL centerline; 4) are not immediately adjacent to 
lakes, reservoirs or river confluences (determined using the GRWL flag field and by visually 
examining each gauge location [28]); 5) have in situ river width data available [35]. We only analyze 
discharge records occurring between March 1st, 1984 and August 14, 2019, because this time period 
spans the range of available data from the Landsat 5, 7 and 8 missions at the time of this study’s 
analysis. To help ensure a representative distribution of discharge at each gauge, we omit from our 
analysis 102 gauges that contain less than 5 years of discharge records within the 35 year study period. 
Additionally, because discharge conditions can be obscured by the presence of river ice [36], we 
exclude all gauge measurements that were taken when river ice was recorded at the gauge (USGS 
Quality Code set to “ice”). Similarly, we exclude discharge records that the USGS reported as 
provisional, estimated, underestimated, or overestimated (USGS Quality Code set to “p”, “E”, “<”, 
or “>”). Combined, these exclusions remove 5.2% of the daily discharge measurements but they 
produce a more accurate and representative discharge record for this study. The gauges used here 
are located on rivers, with a median width at mean annual discharge of 76 m and a first and third 
quartile of 50 to 117 m, respectively, as measured by the USGS [28]. 

2.2. Landsat Data 

To assess the ability of Landsat to capture the true flow frequency distribution, we match 
coincident Landsat 5, 7, and 8 overpasses with daily discharge measurements at each USGS gauge 
over the 35-year study period (Figure 2a,c). Note that this matching process is idealized in that the 
discharge value at the gauge is exactly assigned to the corresponding Landsat image. This approach 
effectively assumes that river discharge can be accurately estimated from Landsat width 
measurements, an active field of research [7,22,27,37–39]. This simplifying assumption is a necessary 
first step that neglects potential errors in remote sensing and discharge algorithms, but allows for our 
stated focus on analyzing Landsat sampling capabilities. We conduct this Landsat availability 
analysis using the Google Earth Engine platform [24], which hosts the entire digitized Landsat 
archive. Each Landsat satellite observes the same location at least once every 16 days, although in 
areas with frequent cloud cover, the actual interval of cloud-free observations can be much longer 
(Figure 1). To account for the impact of cloud cover, we also determine when an available Landsat 
scene is cloud-free within a 500-m radius around the gauge. We use a 500-m radius around each 
gauge because this distance is longer than the corresponding in situ river width at mean discharge of 
all but 14 gauges considered in this study [28]. We identify clouds based on the USGS Landsat Bitwise 
Quality Assessment (BQA) product [40]. To account for the impact of the ETM+ Scan Line Corrector 
failure on data quality [41], we conservatively omit all Landsat 7 observation dates after May 31, 2003, 
when the failure occurred. In total, the number of observations considered in this analysis after 
excluding clouds and problematic gauge measurements is 327,177. 

2.3. Statistical Comparison at Individual Gauges 

At each individual USGS gauge, we compare the flow frequency distribution of the idealized 
Landsat sample to the flow frequency distribution of the daily gauge record (Figure 2). The upper 
panel in Figure 2 shows an example of where the Landsat sample and the gauge record have flow 
distributions that are relatively similar, whereas the lower panel shows an example where the 
Landsat sample does not represent the gauged flow distribution with high fidelity. We use the non-
parametric Kolmogorov–Smirnov (K-S) test [42] to characterize the statistical difference between the 
Landsat sample and the daily record of flow at each gauge. We use a significance level of 𝛼 = 0.05 for 
all statistical tests in this study. 
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Figure 2. Hydrographs, cumulative density functions (CDFs), and a percentile plot from two example 
gauge stations. For visual clarity, hydrographs show a 5 year subset of the full record (1984–2019), 
while CDFs correspond to the full record length. Gaps in the hydrographs correspond to United States 
Geological Survey (USGS) flow observations that are estimated, provisional, and/or frozen. (a) 
Hydrograph of USGS Gauge 06225500 at Wind River near Crowheart, Wyoming, and (b) the 
corresponding flow frequency CDF (KSD statistic = 0.09, p-value < 0.001). (c) USGS Gauge 15129000 
at Alsek River near Yakutat, Alaska, and (d) the corresponding flow frequency CDF (KSD statistic = 
0.17, p-value = 0.055). (e) Fiftieth percentile (median) flow calculated from the full gauge record (x-
axis) vs. from the Landsat sample (y-axis), with the two example gauge stations represented as colored 
circles. Gray circles represent median flows from other gauge stations. 

Note that the K-S p-value is highly sensitive to sample size, causing it to be an impractical 
statistic for comparing across individual gauges. For example, a gauge with more Landsat 
observations (a larger sample size) is more likely to be considered significantly different than the 
same gauge with fewer observations (a smaller sample size), according to the K-S p-value [43,44]. 
Thus, the K-S p-value often yields contrary results, in which a large sample with a distribution that 
appears similar to that of its population will be considered to be significantly different (e.g., Figure 
2a, b), while a small sample that appears to highly deviate from the gauge record will not be 
considered to be significantly different (e.g., Figure 2c, d). Due to this contradictory behavior, we do 
not place emphasis on the K-S p-value in this analysis but rather focus on the descriptive K-S D-
statistic (KSD statistic), which provides a clear summary of the difference in flow frequency 
distributions between the Landsat sample and gauge record. 

Additionally, we analyze the ability of Landsat to capture hydrological extremes at each 
individual gauge by determining the maximum and minimum percentile of gauged flows sampled 
by Landsat. We then explore potential factors affecting the ability of the Landsat sample to represent 
true flow frequency distributions across gauges including climate (cloudiness), watershed area and 
flow regime (flashiness). Flashiness is quantified according to the Richards–Baker Flashiness Index 
that sums the differences in daily flow divided by the total flow over a given time period [45]. This 
non-dimensional index is commonly used and has been observed to vary from 0 to ~1.5, although 
large rivers are generally less flashy and tend to exhibit index values of less than ~0.5 [34]. We 
correlate these factors with the KSD statistic using the Spearman rank correlation test [46] across all 
gauges and we examine the spatial patterns in the KSD statistic. 

2.4. Statistical Comparison Across Multiple Gauges 

To determine the ability of Landsat to represent river flow frequency across space, we compare 
the Landsat sample to the daily gauge record at different flow frequencies (Figure 2e). This approach 
tests whether different locations can be combined to represent flow frequency and is analogous to 



Remote Sens. 2020, 12, 1510 6 of 16 

Remote Sens. 2020, 12, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing 

the classic hydrological concept of downstream hydraulic geometry [47]. In such a conceptual 
framework, the approach taken in Section 2.3 is equivalent to at-a-station hydraulic geometry. At 
each gauge, we calculate (1) discharge from the full gauge record and (2) discharge from the Landsat 
sample at multiple flow percentiles. Figure 2b, d shows two examples of calculating these two metrics 
at the 50th flow percentile (median flow). In addition to median flow, we calculate the two metrics at 
the following flow percentiles: 0% (minimum flow), 5%, 10%, 90%, 95%, and 100% (maximum flow). 

For each of these percentiles, we compare the Landsat sample discharge to the gauge record 
discharge at every gauge using the non-parametric Mann–Whitney–Wilcoxon test (MWW) [48]. To 
avoid bias from outliers, we use the Theil–Sen median estimator [49] to derive a robust linear 
regression between the Landsat-sampled discharge and the gauge record discharge at each 
percentile. Additionally, we also calculate relative root mean square error, 

𝑟𝑅𝑀𝑆𝐸 = ∑ , ,, , (1) 

and the relative bias, 

𝑟𝐵𝐼𝐴𝑆 = ∑ , ,, , (2) 

where N is the total number of gauges used in this study, Qi,j is the flow (m3s−1) from the Landsat 
sample distribution at a given percentile, j, at gauge i and 𝑄 , is the flow from the gauge distribution 
at the same percentile and same gauge. By comparing the Landsat sample to the gauge record across 
all the gauges at each selected percentile, we evaluate the ability of Landsat to represent a given flow 
frequency through spatial averaging. 

2.5. Minimum Length of Landsat Observations 

We expect that the ability of satellites to effectively represent river flow frequency is related to 
the length of the observational archive and hence the sample size. Theoretically, longer sampling 
periods enable better capture of the flow frequency distribution during the sample period. To 
examine the effect of observation length on Landsat’s capacity to represent flow frequency, we 
simulated different observation period lengths over which Landsat-sampled discharge from the 
gauge record. For each gauge in our analysis, we created 50 random permutations of a continuous 
temporal range with an n year duration (n = 1, 2, 3 …, 10). To allow for random permutations of a 10 
year period, we only included gauges that contained more than 15 years of continuous data (N = 927). 
Within each temporal range, we compared the Landsat-sampled flows and those from daily gauge 
records from the same period. Specifically, we calculated flow values at 0%, 1%, 5%, 50%, 95%, 99%, 
and 100% percentiles. From these data, we calculated the coefficient of determination (R2), relative 
error metrics (rBias, rMAE, and rRMSE), and absolute error metrics (Bias, MAE, and RMSE). 
Together, these statistics help characterize the ability of Landsat to represent flow conditions with 
increasing observation duration. 

3. Results 

3.1. How Well Can the Landsat Archive Capture Flow Conditions at Individual Gauges? 

We find that the Landsat archive contains observations corresponding to the near full range of 
discharge conditions for the vast majority of gauges (Figure 3a). For example, at 90% of the study 
gauges, the idealized Landsat sample captures at least 97% of the full range of discharge percentiles 
recorded by the gauge. The majority of gauges (55%) show no significant difference between the 
Landsat sample and the gauge record of flow according to the K-S p-value at the 95% confidence 
interval. However, as previously noted, the K-S p-value is exceedingly sensitive to sample size and 
often produces contradictory results when comparing samples of different sizes, as we do here. On 
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the other hand, the descriptive KSD statistic, which does not exhibit this contradictory behavior, 
ranges from 0.016 to 0.36, with a median value of 0.083. Among the sites with no significant difference 
between the Landsat-sampled and gauged flow frequency, the KSD statistic ranged from 0.016 to 
0.27, with a median value of 0.06. Thus, while there is considerable variation in the potential ability 
of Landsat to reconstruct flow frequency from gauge to gauge, the average difference between the 
idealized Landsat sample and the gauge flow frequency distribution is small. 

To determine potential drivers of Landsat’s ability to capture river flow frequency, we examine 
correlations between the KSD statistic and the environmental variables of cloudiness, watershed area, 
and flow flashiness. We find a negative correlation (p < 0.001) between the proportion of cloud-free 
observations at a gauge and the KSD statistic (Figure 3b). This pattern is evident for locations where 
there is a statistically significant difference between the Landsat sample and the gauge record (gray 
points in Figure 3b) as well as locations that exhibit no significant difference (black points in Figure 
3b; Spearman rank correlation coefficients of r = −0.40 and r = −0.47, respectively). We also find a weak 
negative correlation between the KSD statistic and watershed area (r = −0.09 and −0.16; p = 0.02 and 
p < 0.001; Figure 3c) for locations with significant difference and locations with a significant 
difference, respectively. Conversely, we find no significant correlations between flow flashiness and 
the KSD statistic at sites with statistically significant differences (r = 0.012, p = 0.78) nor at sites with 
statistically insignificant differences (r = 0.018, p = 0.66; Figure 3d). Landsat-observable rivers are large 
and span a relatively narrow range of the Richards–Baker Flashiness Index, from 0.016 to 0.84, 
compared to small streams that can vary up to 1.5 [34]. The lack of correlation between flashiness and 
the KSD statistic implies that flow regimes on large Landsat-observable rivers do not affect Landsat’s 
ability to capture flow frequency distribution. We find no readily apparent spatial patterns in the D-
statistic (see Figure S1 for an interactive map showing flow frequency distributions of the Landsat 
sample and the gauge record for each stream gauge). While more sophisticated statistical approaches 
could be employed to predict locations where Landsat best captures river flow frequency, this task is 
beyond the scope of this study. 

 

Figure 3. Individual gauge analysis, whereby each point represents metrics at a single gauge station. 
(a) Empirical CDF of the proportion of flow percentiles of the gauge record that the Landsat sample 
represents at each gauge. (b) Cloud occurrence correlates negatively with the ability of Landsat to 
capture flow frequency as represented by the KSD statistic. (c) Watershed area weakly correlates with 
the KSD statistic. (d) The Richards–Baker Flashiness Index does not correlate with the KSD statistic. 
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3.2. How Well Can the Landsat Archive Capture Flow Conditions Across Multiple Gauges? 

Comparing the Landsat sample to the gauge record across all gauge stations reveals consistent 
patterns between a given flow percentile and the ability of Landsat to potentially represent flow at 
that percentile (Figure 4). For a wide range of flows (i.e., the 1% through the 95% percentiles in Figure 
4), we find no statistically significant difference between the Landsat sample and the full gauge record 
according to the MWW test. Thus, except for extreme hydrological conditions like maximum and 
minimum flow, the idealized Landsat sample is not statistically different from the daily flow 
measured by multiple gauges (𝛼 = 0.05). Error metrics tend to be highest at extreme flow conditions 
and lowest at median flow. For intermediate percentiles that show no statistically significant 
difference, rRMSE values range from 12% to 78% and rBIAS values range from −6.4% to 8%. 

Examining the error statistics of the extreme flow percentiles yields additional insights. At 
minimum flow, the Landsat sample always either matches or overestimates minimum flow, as seen 
by the points always being above the 1:1 line in the 0% percentile panel of Figure 4, resulting in a 
high positive relative bias of 200%. Conversely, at maximum flow, the Landsat sample either equals 
or underestimates maximum flow, producing a negative relative bias of −31%. These underestimates 
tend to increase in magnitude with increasing discharge (errors exhibit heteroscedasticity), resulting 
in a Theil–Sen median estimator that significantly deviates from unity at the 100% percentile (red 
line). These patterns also persist at the 99% percentile, in which the Landsat sample tends to 
underestimate discharge, albeit to a lesser degree than at maximum flow. 

 
Figure 4. Full gauge record flow percentiles vs. Landsat-sampled flow percentiles for each USGS 
gauge studied (N=1134). The black line represents the 1:1 line and the red line represents the Theil–
Sen median estimator best fit (equation shown in red). R2: coefficient of determination; rBias: relative 
bias; rRMSE: relative root mean square error; KSD: Kolmogorov–Smirnov D-statistic; MWW p: 
Mann–Whitney–Wilcoxon p-value. 
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3.3. What is the Minimum Length of Landsat Observations Needed to Represent Flow Frequency? 

Our findings confirm that long periods of Landsat observation correspond with an improved 
ability of the Landsat archive to contain observations that can effectively represent river flow 
frequency. Generally, after 3 years of Landsat observation, all percentiles except for minimum and 
maximum flow are in close agreement with the reference values derived from the gauge record, with 
R2 values above 0.9 (Figure 5a). Moreover, with the exception of minimum and maximum flow, we 
find a general trend of decreasing relative error statistics (rBias, rMAE, and rRMSE; Figure 5b) and 
absolute error statistics (Bias, MAE, RMSE; Figure 5c) with increasing duration of observation. Thus, 
as satellite observation duration increases, the distribution of flow frequency observed by Landsat 
expectedly converges with the flow frequency of the daily gauge record, except for extreme flows 
like minimum and maximum discharge. 

Additionally, our results reveal that the degree of increasing similarity between the Landsat 
sample and the gauge record flow frequency distributions strongly depends on the flow percentile 
being studied. With increasing observation duration, smaller percentile flows generally show a more 
dramatic improvement in performance relative to larger flows. For example, Figure 5a shows a more 
substantial increase in R2 for low flow percentiles (0%, 1%, and 5% flow) at a 3 year duration relative 
to the larger flow percentiles. This pattern also persists for the relative error metrics whereby the 
decreasing trend is greatest in smaller percentiles, with the exception of minimum and maximum 
flow. We note that low flow frequencies correspond to higher relative errors compared to higher flow 
frequencies, likely because of their smaller denominators in Equations (1) and (2). Conversely, high 
flow frequencies correspond to higher absolute error metrics relative to lower flow frequencies and 
the non-linear gap between the percentile curves may result from the positive skewness of flow 
frequency distributions in most rivers. 

 

Figure 5. Landsat’s representation of flow conditions with increasing observation duration. (a) 
Variations in R2 value with increasing observation duration. (b) Relative metrics (rBias, rMAE, 
rRMSE) comparing gauge daily records and Landsat-sampled gauge records. (c) Absolute error 
metrics (Bias, MAE, RMSE, unit: cms) comparing gauge daily records and Landsat-sampled gauge 
records. Median statistical values plotted for each percentile. 

4. Discussion 

4.1. Interpretations of Primary Findings 

Our results indicate that Landsat can effectively capture river flow frequency over large spatial 
areas given an adequate duration of observation and accurate remote sensing and discharge 
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algorithms. Although Landsat’s sampling capability varies at individual gauge sites, we find that 
spatially averaging over multiple gauges enables effective representation of flow frequency, with the 
exception of extremely high and low flows (Figure 4). Landsat more aptly captures flow frequency at 
the lowest flows rather than at the highest flows, likely because of the positive skew characteristic of 
flow frequency distributions (e.g., Figure 2b). Small changes in flow frequency at the highest flows 
represent large variations in discharge that are difficult to capture due to the 16 day repeat orbit of 
Landsat. Cloudy conditions often accompany high flows, which further inhibits Landsat’s ability to 
characterize the frequency of high flow events. The duration of observation also plays an important 
role in the ability of Landsat to capture river flow frequency. As expected, a longer observation 
duration will produce a better representation of river flow frequency, albeit with diminishing returns 
(Figure 5). Several error metrics initially improve rapidly with time until approximately a 3 year 
duration, after which they improve more gradually. Thus, we suggest that at least 3 years of Landsat 
observations should be aggregated before they adequately contain observations representative of 
river flow frequency. 

4.2. Implications for River Remote Sensing Applications 

River flow frequency analysis is a key tool for a variety of hydrological applications including 
flood hazard and risk evaluations, hydraulic engineering, and water resources management [50,51]. 
Flow frequency is also related to a river’s water quality and distribution of freshwater habitats [52–
54]. While satellite remote sensing cannot measure discharge directly, it can measure other attributes 
of rivers that scale with discharge including river morphology and water quality [47,55]. For example, 
Landsat can observe surface water inundation extent from which river surface area and width can be 
extracted, which both scale with discharge [27,56–58]. 

This study’s findings indicate river water occurrence data derived from long-term aggregations 
of Landsat observations correspond to the flow frequency of Earth’s large rivers. For example, on 
average, median river width derived from long-term temporal composites of classified Landsat data 
[25,26] corresponds to median river flow. Our results also indicate that these same relationships can 
be extended to a wide range of flow frequencies, except for extremely high and low flows. This result 
has key utility for developing percentile-based width rating curves for estimating discharge [14,22] 
or for estimating variability in river surface area [59]. We emphasize that at any single given location, 
these relationships do not necessarily apply but rather that these relationships are valid when 
averaging over space. Thus, applying at-a-station hydraulic geometry [47] at individual single cross-
sections solely from Landsat water occurrence data may often be invalid. However, our results 
suggest that developing at-a-station hydraulic geometry relationships across multiple cross-sections 
over a large area is valid for non-extreme flow frequencies and given an adequate Landsat sample 
size with potential implications for remote sensing of discharge approaches [15,37–39]. 

Our results also have implications for riparian ecology and river water quality applications. 
Flow is a “master” variable in river ecology and water quality [54] and, like river width and surface 
area, Landsat can also measure water quality parameters [31,60]. Specifically, Landsat imagery is 
commonly paired with in situ water samples to derive empirical relationships with optically-active 
constituents such as suspended sediment concentrations [61,62], chlorophyll-a [60,63], and colored 
dissolved organic matter (CDOM) [64,65]. While these water quality parameters generally vary with 
discharge, the relationship between river flow and water quality varies. Suspended sediment 
generally increases non-linearly with flow [66] but chlorophyll-a and CDOM can increase, decrease, 
or vary independently of flow depending on river size, season, and watershed properties [67–70]. 
Understanding flow conditions captured by satellite observations is therefore important for deriving 
representative surveys of river water quality measurements. The most extreme flow events are rarely 
observed by Landsat, but Landsat observes a wider range of flows (97% of flow percentiles at 90% of 
gauges) than well-designed water quality field sampling programs which sample 80% of flow 
percentiles at best [71]. Thus, as remote sensing of water quality methods typically relies on in situ 
field measurements, it is critical that field sampling programs collect measurements at high and low 
flows to match the wide range of hydrological conditions captured by Landsat observations. 
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4.3. Limitations and Future Directions 

While the results of this study are encouraging for river remote sensing applications, our study 
does have limitations. First, we assume that daily discharge measured from the USGS study gauges 
represents the true flow frequency of rivers, but river gauges are biased in their placement and 
fluctuations in river discharge often can occur over subdaily timescale [5,72]. Related to this point, 
our results may differ in regions outside the US, which have dissimilar conditions. The gauge stations 
used in this study measure the majority (52%) of US Landsat-observable river reaches but only 6.6% 
of Earth’s observable rivers are located within the US, according to the GRWL database [28]. Future 
work could explore this uncertainty by using an international gauge database [73] or a global 
hydrological simulation [74] to sample streamflow worldwide. Second, we emphasize that Landsat 
will not necessarily produce a representative sample of flow at any given single location along a river 
network. However, our results indicate that, given an adequate period of observation, spatially-
averaged Landsat observations can capture flow frequency distribution over large spatial areas. 
Further, Landsat does not adequately capture minimum and maximum flow conditions in most 
locations. Third, while this study does not assume stationarity, we emphasize that river flow 
frequency is non-stationary such that flow frequencies derived over one time period cannot 
necessarily be used to infer flow frequencies over another period [3]. Finally, this study does not 
consider the uncertainty associated with the Landsat remote sensing measurements themselves. So, 
while we find that the timing of Landsat observations is adequate to capture river flow frequency, 
the ability of Landsat to accurately measure the parameter of interest (e.g., river width, suspended 
sediment concentration, discharge) itself remains unconstrained here. Constraining this uncertainty 
is application and algorithm specific [7,20] and beyond the scope of this analysis. Additionally, 
determining the drivers of the heterogeneity in Landsat’s ability to represent flow frequency from 
location to location (Figure S1) is a recommended topic for further research. 

Similar approaches to this study may be used to understand river sampling capabilities of 
satellite missions other than Landsat. Satellite programs with optical sensors and shorter revisit times, 
such as Sentinel 2 (2–5 days) and Planet (~1 day), likely capture river flow frequency over a shorter 
study duration, although this advantage of more frequent retrieval will be bottlenecked by persistent 
cloud cover in some regions. Other sensor technologies enable remote sensing of rivers over a broader 
array of atmospheric and solar illumination conditions. Indeed, thermal, passive microwave, radar 
and lidar remote sensing have distinct advantages over optical remote sensing and can provide 
alternative observations of river systems. Similar to this study, a recent analysis found that 3 years of 
SWOT data were sufficient to represent the flow frequency distribution over the Mississippi River 
basin [34]. SWOT will have a longer repeat orbit (21 days) and narrower swath width (100 km) than 
Landsat but these attributes are counterbalanced by the ability of its Ka-band radar instrument to 
collect surface returns during cloudy and nighttime conditions [11]. 

5. Conclusions 

This study’s findings show that the Landsat archive can effectively represent river flow 
frequency over large areas given an adequate period of observation and accurate remote sensing and 
discharge algorithms. At individual locations, the ability of Landsat to capture flow frequency in 
large rivers is positively correlated with the cloud occurrence, weakly correlated with watershed area, 
and does not correlate with flow flashiness (Figure 3; S1). While the Landsat record captures a wide 
range of flow conditions (97% of the flow percentiles at 90% of sites), its ability to capture the flow 
frequency distribution varies widely from location to location (KSD statistic ranges from 0.016–0.36). 
This implies that, at any single site along a river, the Landsat archive cannot be assumed to adequately 
capture flow frequency. Nevertheless, we find that spatially averaging over multiple locations 
effectively enables representation of hydrological conditions at a given flow frequency, with the 
exception of hydrological extremes like maximum and minimum flow (α = 0.5; Figure 4). Such an 
averaging process could hence be used to improve existing Landsat-based discharge algorithms. 
Landsat can better capture flow frequency at the lowest flows than at the highest flows likely because 
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of the positive skew characteristic of river flow frequency distributions. We also find that a longer 
Landsat observation time period positively impacts the representation of river flow frequency, albeit 
with diminishing returns with increasing observation time (Figure 5). We suggest that, on average, a 
minimum of 3 years of aggregated observations is necessary if Landsat is used to reconstruct flow 
frequency distribution. We emphasize that this analysis only considers the timing of Landsat 
observations in relation to river flow frequency and does not consider the ability of Landsat to 
accurately measure the parameter of interest (e.g., river width, suspended sediment, discharge). We 
also note that the gauges used in this analysis only measure a relatively small portion of the global 
observable river network, solely located within the United States. Regardless, the results of this study 
support the hypothesis that long-term aggregations of Landsat data can be used to capture the flow 
frequency of Earth's large rivers. Thus, Landsat-based surveys of river characteristics can be 
interpreted to be representative of the hydrological conditions present along Earth’s large rivers, with 
wide-ranging utility for river hydrology, water quality, and ecology. 
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S1: Interactive map showing values of the KSD statistic over each gauge and the flow frequency distribution of 
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Commons Attribution License at https://doi.org/10.5281/zenodo.3817346. The software used to analyze the data 
and produce the figures is available at https://github.com/geoallen/ROTFL/ under a Berkeley Software 
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