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Abstract. In this paper a mathematical model for long-range, hydrophobic attraction between5
amphiphilic particles is developed to quantify the macroscopic assembly and mechanics of a lipid6
bilayer membrane in solvents. The non-local interactions between amphiphilic particles are obtained7
from the first domain variation of a hydrophobicity functional, giving rise to forces and torques8
(between particles) that dictate the motion of both particles and the surrounding solvent. The func-9
tional minimizer (that accounts for hydrophobicity at molecular-aqueous interfaces) is a solution to10
a boundary value problem of the screened Laplace equation. We reformulate the boundary value11
problem as a second-kind integral equation (SKIE), discretize the SKIE using a Nyström discretiza-12
tion and ‘Quadrature by Expansion’ (QBX) and solve the resulting linear system iteratively using13
GMRES. We evaluate the required layer potentials using the ‘GIGAQBX’ fast algorithm, a variant14
of the Fast Multipole Method (FMM), yielding the required particle interactions with asymptotically15
optimal cost. Solving a mobility problem in Stokes flow is incorporated to obtain corresponding rigid16
body motion. The simulated fluid-particle systems exhibit a variety of multiscale behaviors over both17
time and length: Over short time scales, the numerical results show self-assembly for model lipid18
particles. For large system simulations, the particles form realistic configurations like micelles and19
bilayers. Over long time scales, the bilayer shapes emerging from the simulation appear to minimize20
a form of bending energy.21
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1. Introduction. In recent years, researchers have developed various macro-24

scopic continuum formulations and a number of numerical methods for calculating25

energy minimizing and time-dependent shapes of lipid bilayer membranes, vesicles26

and red blood cells. While the Helfrich free energy of a lipid bilayer membrane as-27

sumes an infinitely thin membrane thickness [74, 33], many other continuum models28

incorporate more lipid physics [2, 6, 61] and membrane structures [12, 13, 21, 28, 43].29

These refined continuum formulations are in principle capable of capturing topological30

changes of a lipid bilayer membrane, such as membrane fusion and fission. However,31

no simulations of membrane fusion or fission based on these refined formulations are32

available in the literature (to our knowledge), possibly due to the numerical challenges33

to efficiently and accurately resolve structures on the scale of membrane thickness.34

Changes in topology of bilayer membranes, as occur in bilayer membrane fusion,35

pore formation and protein insertion, for example, involve the introduction of a hy-36

drophobic fissure in the normally intact monolayer surface. Due to the relatively37

large tension of a hydrocarbon-water interface, the energy of a hydrophobic fissure38

can dominate the membrane’s elastic energy, making it necessary to also take into39

account local interactions at the molecular level [22, 14]. Moreover, in many subcellu-40

lar structures, membrane energies are dominant in high curvature regions only a few41

lipids wide [34, 82].42
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Based on these observations, we focus on topological changes with mesoscopic43

interactions in a semi-continuum framework where the lipids are coarse-grained into44

amphiphilic Janus-type particles while their interactions with each other and the45

solvents are described at a continuum level. This hybrid approach provides a bridge46

from microscopic molecular formulation to macroscopic continuum description of a47

lipid bilayer membrane. Furthermore, the continuum limit of our hybrid mesoscopic48

model may facilitate efficient numerical algorithms for simulating fusion/fission of49

lipid bilayer membranes of physically relevant membrane size and dynamic duration.50

Modern molecular dynamics (MD) simulators (such as MARTINI [52] and51

LAMMPS [66]) have the advantage in that they resolve all relevant molecular de-52

tails, and have been widely employed to simulate fully atomistic or coarse-grained53

lipid bilayer membrane based on pairwise interactions [11, 23, 37, 38, 52, 81]. Tra-54

ditionally, MD numerical methods use explicit fluid particles such as coarse-grained55

water molecules and pairwise Lennard-Jones interactions. There is the disadvantage,56

though, that an enormous number of water molecules and long computation time are57

needed in MD simulations, and it remains a great challenge to compute the hydrody-58

namic interactions of the lipid membrane at micron size for durations long enough to59

make physical predictions. One way to mitigate long computation time is to compute60

hydrodynamic interactions using an implicit solvent and Stokesian dynamics [4].61

In the present work, we propose a novel approach to lipid-lipid interactions called62

the hydrophobic attraction domain functional (HADF). Let Ω be an open, exterior63

domain in Rn representing water surrounding a collection of amphiphilic particles,64

e.g. lipids. For dispersed particles, the energy associated with hydrophobic interfaces65

behaves as a surface energy. When nearby, particles decrease their energy by aggre-66

gating and sequestering their hydrophobic interfaces from water. These interactions67

are well-described by the Ginzburg-Landau-type domain functional68

(1.1) Φ(Ω, f) = γmin
u∈A

I[u],69

where70

(1.2) I[u] =

∫︂
Ω

ρ|∇u|2 + ρ−1u2 dx.71

Here A = {u ∈ W 1,2(Ω) : u = f on Σ} is the admissible class and f with range [0, 1]72

is the hydrophobicity label for the water-particle interface Σ = ∂Ω. The parameter73

γ > 0 is interfacial tension. Its value in bilayers has been widely investigated in both74

numerical and theoretical studies [18, 24, 56, 65]. For a Lipschitz domain Ω and for75

f the trace of a function in W 1,2(Ω) [19], the existence of a unique minimizer to (1.1)76

is a straightforward consequence of the closest point theorem [46].77

The scalar function u of (1.1) models disruption in the hydrogen bonding network78

[17, 53]. For a point x ∈ Σ representing a hydrophobic interface, water mobility is79

restricted and there u(x) = f(x) = 1. Conversely, u(x) = f(x) = 0 at a point x ∈ Σ80

representing a hydrophilic interface where water mobility is unrestricted. In the water81

region, u in (1.1) is a solution to the boundary value problem (BVP) of the screened82

Laplace equation:83

(1.3)

⎧⎪⎨⎪⎩
−ρ2∆u+ u = 0 in Ω,

u(x) = f(x) on Σ,

u(x) → 0, as x → ∞.

84
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Solutions u of (1.3) have a boundary layer of thickness ρ > 0. Thus disruption in85

hydrogen bonding modeled by (1.3) extends into the bulk with characteristic distance86

ρ [15, 54].87

The hydrophobic force is the first variation of the functional Φ with respect to88

the shape of the domain Ω. The challenge in the present work is to compute the89

hydrophobic force between several bodies of arbitrary shape and configuration. Sec-90

tion 2 carries out the variation for rigid body motions, and this reduces to a set of91

boundary integrals for the hydrophobic forces and torques. For simulations, we utilize92

a boundary condition f representing surface portions of lipid tail and lipid head, and93

we adopt an excluded volume repulsion to avoid particle collisions in the many-body94

simulations. As an illustration, Figure 1 shows the self-assembly process for three95

Janus-type particles in a viscous fluid.96

An important feature of the model is that the potential Φ and its intermolecular97

forces and torques, in contrast to that of coarse-grained theories, do not arise from98

any pairwise potentials (see Appendix A). To leading order, the attraction between99

particle pairs predicted by (1.1) is in accord with experimental force-distance curves100

[17, 48, 54]. The functional (1.1), however, requires modification for account for101

sub-nanometer force oscillations observed in experiment, e.g. through the inclusion102

of higher order terms. Nevertheless, the HADF captures the essential features of103

amphiphile self-assembly, and the variational calculations and numerical methods104

generalize to more complicated domain functionals.105

An essential principle for molecular or particle based approaches is to ensure that106

the total free energy accounting for lipid-lipid and lipid-water interactions gives rise107

to an equivalent elastic characterization of membranes as determined by experimental108

measurements [77, 78]. Section 3 examines the elasticity of bilayer particle configu-109

rations. We obtain physical quantities such as bending modulus, tilt modulus and110

stretching modulus by setting up corresponding equilibrium simulations from contin-111

uum theory [41, 58, 76].112

Section 4 formulates the mobility problem to calculate hydrodynamics from the113

hydrophobic stress. The dynamics for many-particle simulations yield physically rea-114

sonable time scales and configurations. For example, we can track the particle dy-115

namics over the nanosecond range needed for rapid particle self assembly, up to the116

microseconds range where bilayer and micelle shapes evolve over a slower time scale117

[69, 70].118

Calculating the particle dynamics requires rapid, on-the-fly solution of (1.3). In119

section 5, we present a new SKIE formulation for the boundary value problem (1.3),120

derived from a representation of the solution in which the unknowns are only on the121

boundary Σ. In section 6, we describe an approach to applying a recently developed122

QBX-FMM scheme for discretizing the SKIE accurately and adaptively, solving the123

resulting linear system and evaluating the desired physical quantities afterwards ac-124

curately and rapidly. The resulting scheme has linear complexity with an optimal125

number of unknowns for the simulation of particle dynamics at each time step. To126

compare the computational cost against MD simulations, even solvent free coarse-127

grained models have at least O(N2) complexity in the number of particle N [11, 60].128

2. Intermolecular Forces and Torques. We calculate the first variation of129

Φ with respect to rigid body deformations [1, 73]. Consider N -many, rigid particles130

represented by disjoint, bounded, closed regions P1, P2, . . . , PN in Rn, n = 2, 3. The131
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Fig. 1. The figure illustrates hydrophobic attraction of amphiphiles in a zero-Reynolds number
fluid. The black arrows are the directors di of the particles centered at ai, i = 1, 2, 3. The white
arrows are the fluid velocity. The color map has dark blue is for u = 0 (lipid heads) and dark red
is for the hydrophobic interface u = 1 (lipid tails). Activity, shown as pseudo-color shading in the
figure, extends from the hydrophobic interface into the bulk. Going from panels A to B, particles a1

and a2 come together and a3 rotates counterclockwise. In panel C, the particles sequester activity
to a single hydrophobic core.

water region (the exterior domain) and particle-water interface are132

(2.1) Ω = Rn \
N⋃︂
i=1

Pi, Σ =

N⋃︂
i=1

∂Pi,133

respectively. Throughout, ν denotes the unit outward normal to Ω, and νi denotes134

the unit outward normal to Pi. Note that ν and νi have opposite orientation, as135

illustrated in Figure 2. Suppose that u is the solution to the screened Laplace BVP136

(1.3) with the material label f . Then the force Fi and torque τ0i acting on particle137

Pi are138

(2.2) Fi =

∫︂
∂Pi

T · νi dS, τ0i =

∫︂
∂Pi

r0 × (T · νi) dS,139

where140

(2.3) T = γρ−1u2I+ 2ργ( 12 |∇u|2I−∇u⊗∇u),141

is the hydrophobic stress and r0 is the position vector relative to the origin 0. To142

ensure that (2.2) is well-defined and to guarantee differentiability of the domain func-143

tional, we that Ω is a C2,α domain and that f = f̃ on Σ for some f̃ ∈ C2,α(Ω).144

To compare Φ(Ω, f) against that of competing domains, consider a one-parameter145

family of rigid transformations146

(2.4) xi(X, ϵ) = ci(ϵ) +Qi(ϵ)X,147

parametrized by ϵ ∈ R. The vector ci(ϵ) and tensor Qi(ϵ) give the displacement and148

rotation of the particle Pi, i = 1, . . . , N , relative to the origin. They satisfy ci(0) = 0149

and Qi(0) = I so that xi(X, 0) is the identity transformation; Qi(ϵ)Q
T
i (ϵ) = I for all150

ϵ. The distance between Pi and Pj is positive whenever i ̸= j. Therefore, for ϵ in an151

open interval about 0, let152

(2.5) Ωϵ = Rn \
N⋃︂
i=1

xi(Pi, ϵ), Σϵ = ∂Ωϵ, fϵ(xi(X, ϵ)) = f(X), X ∈ ∂Pi.153

This manuscript is for review purposes only.



INTEGRAL EQUATION METHODS FOR AMPHIPHILIC INTERACTION 5

Ω Ω!P1

P3

ν
ν3

●●

P2

X∈∂P2

x2(X,!)

Fig. 2. On the left are three particles P1, P2 and P3 forming the exterior domain Ω. Rigid
transformation of each particle (right panel) leads to the perturbed exterior domain Ωϵ and changes
in the relative positions of the material label fϵ, resulting in variations in the hydrophobic potential
Φ.

Finally, let uϵ(x) be the one-parameter family of solutions to the perturbed boundary154

value problem of screened Laplace equation155

(2.6) − ρ2∆uϵ + uϵ = 0 in Ωϵ, uϵ = fϵ in Σϵ, uϵ → 0 as x → ∞.156

The domain Ωϵ and boundary Σϵ are the water region and water-molecule interface157

after transforming each particle according to its rigid motion (2.4) (see Figure 2). For158

x ∈ Ω, let159

u̇(x) =
d

dϵ
uϵ(x)

⃓⃓⃓
ϵ=0

,160

and extend u̇ continuously to Ω. Due to (2.5), we have the transport identity161

(2.7) u̇+∇u · ẋ = 0 on Σ,162

where ẋ(X) =
dxi

dϵ
(X, 0) whenever X ∈ Pi. (Note, however, that the values of u̇ in Ω163

are determined by the BVP (2.6), and therefore do not generally satisfy this transport164

relation.)165

Applying the Reynolds transport theorem [47], we obtain166

(2.8)

d

dϵ
Φ(Ωϵ, fϵ)

⃓⃓⃓
ϵ=0

= γ
d

dϵ

(︃∫︂
Ωϵ

ρ|∇uϵ|2 + ρ−1u2
ϵ dx

)︃ ⃓⃓⃓
ϵ=0

= γ

∫︂
Ω

2ρ∇u · ∇u̇+ 2ρ−1uu̇ dx+ γ

∫︂
Σ

(︁
ρ|∇u|2 + ρ−1u2

)︁
ẋ · ν dS.

167

Integration by parts then gives168

d

dϵ
Φ(Ωϵ, fϵ)

⃓⃓⃓
ϵ=0

= γ

∫︂
Σ

(︁
ρ|∇u|2 + ρ−1u2

)︁
ẋ · ν − 2ρ∇u · νu̇ dS.(2.9)169

170

Due to the minimality condition −ρ2∆u+u = 0, the interior values of u̇ do not enter171

(2.9). Based on (2.7) and the fact that ν and νi have opposite orientation,172

d

dϵ
Φ(Ωϵ, fϵ)

⃓⃓⃓
ϵ=0

= γ

N∑︂
i=1

∫︂
∂Pi

−
(︁
ρ|∇u|2 + ρ−1u2

)︁
νi · ẋi(0) + 2ρ∇u · νi∇u · ẋi(0) dS173
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= γ

N∑︂
i=1

∫︂
∂Pi

ẋi(0) ·
[︁
−ρ−1u2I+ 2ρ(∇u⊗∇u− 1

2 |∇u|2I)
]︁
· νi dS174

= −
N∑︂
i=1

∫︂
∂Pi

(ċi(0) + Q̇i(0)r0) ·T · νi dS175

= −
N∑︂
i=1

(︁
ċi(0) · Fi +wi · τ0i

)︁
,(2.10)176

177

where wi = ⟨wi
1, w

i
2, w

i
3⟩ is the axial vector for the skew symmetric tensor Q̇i(0).178

In the second to last equation, the minus sign makes the force act in the negative179

direction of the potential gradient. This establishes (2.2) and (2.3).180

In the formulation (2.4), the rigid motions are independent. Consider the case181

when the rigid motions are uniform, that is, ci(ϵ) = c(ϵ)and Qi(ϵ) = Q(ϵ) for all182

i = 1, . . . , N . Then the solution to the perturbed BVP (2.5, 2.6) satisfies183

(2.11) uϵ(c(ϵ) +Q(ϵ)X) = u(X).184

It follows that Φ(Ωϵ, fϵ) = Φ(Ω, f) for all ϵ and, by (2.10), that185

(2.12)

N∑︂
i=1

ċ(0) · Fi +w · τ0i = − d

dϵ
Φ(Ωϵ, fϵ)

⃓⃓⃓
ϵ=0

= − d

dϵ
Φ(Ω, f)

⃓⃓⃓
ϵ=0

= 0.186

Here, w = ⟨w1, w2, w3⟩ is the axial vector for Q̇(0). Since ċ(0) and w are arbitrary,187

we have188

(2.13)

N∑︂
i=1

Fi = 0,

N∑︂
i=1

τ0i = 0.189

In other words, the net hydrophobic interaction is force and torque free.190

2.1. Simulations. For the simulations in this paper, the P1, . . . , PN are two-191

dimensional Janus-type particles. The direction vector di = ⟨cos θi, sin θi⟩ specifies192

orientation and ai is the particle position (e.g. the center of mass, Figure 1). The193

particle shapes are ellipses with semi-major and semi-minor axes ai and bi, respec-194

tively. In the case of lipids, 2ai represent lipid length and major axis is parallel to the195

director and hydrocarbon tail.196

The material label for the Janus-type particle takes the form197

(2.14) f(x) = 1− sinp(θ), x ∈ ∂Pi,198

where θ is the angle formed by x − ai and di. Accordingly, there is a smooth tran-199

sition in hydrophobicity across the particle [51], with the boundary portion in the200

direction di modeling a hydrophobic tail and the opposite boundary portion mod-201

eling a hydrophilic head. The size of the hydrophobic region grows with the even202

integer parameter p. Finally,203

(2.15) τi = τ0i − ai × Fi204

is the two-dimensional (scalar) torque about the position ai.205

For small but fixed separations between particles, our numerical scheme accurately206

resolve the field u without an undue cost increase due to refinement; we postpone a207
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detailed discussion of the method and involved cost to Section 6. Dynamically, the208

forces (2.2) bring the coarse-grained lipid particles into contact. An excluded volume209

repulsion prevents near-contact between particles [64]. For two circular particles, the210

interaction is211

(2.16) Frep
ij = c0

q

(|ai − aj | − (bi + bj))q+1

ai − aj
|ai − aj |

, i ̸= j.212

We fix the order q = 3 (q = 4 in three-dimensions) and use the parameter c0 to control213

the strength of repulsion. For ellipses of eccentricity close to zero, we approximate214

the excluded volume repulsion using three circular particles placed along the major215

axes, as described in Supplementary Material, Section S1. In the sequel,216

(2.17) Frep
i , τ repi , Φrep,217

denote the excluded volume force, torque and repulsion potential, respectively. The218

total potential that includes hydrophobic attraction and steric repulsion is219

(2.18) ΦTotal = Φ+Φrep.220

For the simulations, we assume translation invariance in the z-direction. Figures221

5 and 8 give values in kBT per length since the two-dimensional simulations are for the222

cross-section of a three-dimensional bilayer. All other physical parameters correspond223

to their usual three-dimensional value.224

We use 2ai = 2.5 nm as a representative phospholipid length [3], the screening225

length ρ = 2.5 nm [17, 48, 63, 35, 76], and c0 = 0.5 pN nm4 for the inter-particle226

repulsion. Bilayers containing different single pure components give various interfacial227

tension γ values which are within the range of 0.7 – 5.3 pN nm−1 [45, 65]. We find that228

the mechanical moduli calculated from our simulation data are in good agreement with229

results in the experimental literature when the interfacial tension γ = 4.1 pN nm−1.230

Coincidentally, this value corresponds to a specific lipid composition DPoPC:SM:Chol231

in bilayer membrane [24, Table 1].232

Our experiences show that the computational cost to maintain the same numeri-233

cal accuracy in solving the boundary value problem (1.3) grows only moderately when234

going from circular to elliptical model particles. For instance, ellipses with ai/bi = 3235

require 60 % more grid points than for ai/bi = 1. At the same time, ellipses afford236

flexibility in terms of dimensions that determine physical properties of bilayer. How-237

ever, we remark that rather than representing a physical lipid or collection of lipids,238

the model particle discretizes the mean lipid position and orientation but without239

the mesh associated with finite element methods, for example [2, 72]. Similarly, the240

gap region between neighboring particles indicates a hydrophobic zone and not an241

intervening water.242

3. Bilayer Elasticity. We compare our two-dimensional equilibrium configura-243

tions to those found in membrane continuum mechanics. In large particle number244

HADF simulations, particles bring opposing hydrophobic regions into contact, form-245

ing two abutting monolayers of a bilayer. Continuum theory describes monolayers246

using a director field d to track lipid orientations, along with a field n given by247

the monolayer surface normal (Figure 3A), and quantifies monolayer energy using a248

Helfrich Hamiltonian249

(3.1)

∫︂
C

1
2kB

[︂
(Divd+ k0)

2 − k20

]︂
+ 1

2kθ|d× n|2 ds.250
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0 L/4 L/2 3L/4 L = 29.5 (nm)
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m
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midplane y(x)

0 L

 d

 n

midplane

lower ML

upper ML

x
y(x)

A

Fig. 3. Panel A depicts a bilayer, with its upper and lower monolayers (solid curves) and
midplane (dashed curve). The director field d points in the direction of the lipid tails and the
normal n points outward from bilayer core. When deformations and tilt are small (|y′| ≪ 1, |d ×
n| ≪ 1) energy is quantified in terms of the midplane has the height function y(x). Panel B has
the equilibrium configuration Janus-type amphiphilic particles with uniform loading and a clamped
boundary condition. Fitting (3.4) to the midplane (dashed curve) yields the bending modulus kB =
8.51 kBT. In Panel B (inset), enumerating counterclockwise from the bottom left, particles satisfy
x1 = 0, x16 = 1.5, θ1 = π/2, θ16 = −π/2 and y1 = 0. The parameters are γ = 4.1 pN nm−1, ρ = 2.5
nm, c0 = 0.5 pN nm−4 and k = 0.0116 pN nm−2. The ellipses have ai = 1.25 nm and bi = 0.8 nm.

The curve C tracks the cross-section of the monolayer neutral surface. The integrand251

in (3.1) contains the splay distortion Divd with bending modulus kB, and the tilt252

deformation d × n with tilt modulus kθ [57]. The parameter k0 is spontaneous cur-253

vature [71, 42, 75]. Since we are assuming translational invariance in the z-direction,254

the twist Curld and saddle-splay detD distortions are absent from [33, 76], and (3.1)255

behaves as an energy density per length.256

Consider a planar bilayer subject to a uniform vertical load. The bilayer is257

clamped and horizontal at one end and the restoring force of bending in the free258

part of the bilayer opposes the load. Taking d parallel to n and assuming a small259

deformation gives the appropriate functional260

(3.2)

∫︂ L

0

kB(y
′′)2 − ky dx, y(0) = y′(0),261

where y(x) is the height function for the bilayer midplane (Figure 3A, dashed curve),262

Divd = ±y′′ and k is the load strength. The summation of the monolayer energies263

(3.1) with opposite normals leads to the cancelation of the spontaneous curvature264

terms in (3.2).265

Minimizers of (3.2) satisfy the boundary value problem266

(3.3) 2kBy
(4) = k, y(0) = y′(0) = y′′(L) = y(3)(L) = 0.267

We find the solution268

(3.4) y(x) =
kL4

2kB

[︃
1

24

(︂ x

L

)︂4

− 1

12

(︂ x

L

)︂3

+
1

4

(︂ x

L

)︂2
]︃
.269

Thus, we can determine kB from curves of the form (3.4) whenever L and k are given.270

The inset in Figure 3B shows a HADF equilibrium configuration used to determine271

kB. The N = 30 particles minimize the modified functional272

(3.5) ΦTotal −
N∑︂
i=1

k̃yi,273
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Fig. 4. The monolayers in panel A are flat and tilt is nonzero. The horizontal coordinate x
runs between 0 and the length of bilayer, L, and the function α(x) measure the angle between −d
and the unit normal. The boundary conditions for (3.6) are α0 = 0◦ and α1 = 30◦. In panel B,
the + and □ symbols are the angles at the particle centers. The parameters are γ = 4.1 pN nm−1,
ρ = 2.5 nm, c0 = 0.5 pN nm−4, and k = 0.0116 pN nm−2. The ellipses have ai = 1.25 nm and
bi = 0.3125 nm.

where the k̃ = Lk/N is the discrete load strength coming from quadrature of the274

integral (3.2) with N many particles. To achieve minimality, the particles start in the275

shape of a flat bilayer, and then migrate upward following steepest gradient for (3.5).276

The main figure in Figure 3B depicts the monolayer neutral surface (solid curve),277

midplane (dashed curve) and the lipid directors interpolated from the discrete particle278

positions and orientations (of the inset). The directors are everywhere normal to the279

neutral surface and the deformations are small. This justifies applying the zero-tilt,280

small-deformation solution (3.4). Fitting a 4th degree polynomial to the midplane281

curve (Figure 3B, red curve) supplies the coefficient (kL4/2kB) of (3.4). Combining282

the coefficient with simulation values for L and k (Figure 3B, caption) yields kB =283

8.51 kBT. This value for the bending modulus is for ellipses using p = 6 in the284

hydrophobicity boundary condition (2.14). To assess how bilayer rigidity depends on285

the material label, we considered the energy minimization with p = 2, which gave286

kB = 13.54 kBT. We conclude that under HADF, particle configurations behave like287

an elastic material. The associated bending modulus grows with symmetry in the288

hydrophobic surface label, e.g. kB was largest for p = 2 where the label is symmetric289

across θ = π/2.290

Now we consider a flat monolayer with nonzero tilt (Figure 4A). The splay dis-291

tortion comes from changes in the angle α(x) between the director d and the vertical.292

For small angles, the monolayer energy (3.1) becomes293

(3.6)

∫︂ L

0

1
2kB(α

′)2 + 1
2kθα

2 dx, α(0) = α0, α(L) = α1.294

Note that we have left off the null-Lagrangian term kBk0α
′ from this expression since295

kB, k0 and the boundary data α0 and α1 are constants. Assuming α(0) = 0, mini-296

mizers of (3.6) take the form297

(3.7) α(x) = α1
sinh(x/κ)

sinh(L/κ)
,298

where λ =
√︁
kB/kθ is the tilt decay length [45]. Figure 4B shows the data (plusses299

and squares) for the HADF equilibrium configuration with fixed endpoint angles.300
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10 S.-P. P. FU, R. J. RYHAM, A. KLÖCKNER, M. WALA, S. JIANG, AND Y.-N. YOUNG

 0

 1

 2

 3

 4

 5

 6

 7

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

Δ
Φ

To
ta

l/L
 (k

B
T/

nm
)

Δr (nm)

r0=  7.0 nm
r0=16.1 nm
r0=24.8 nm

CA

r

 0

 1

 2

 3

 4

 5

 6

 7

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

Δ
Φ

To
ta

l/L
 (k

B
T/

nm
)

Δr (nm)

r0=  7.4 nm
r0=16.9 nm
r0=25.8 nm

B

Fig. 5. Panel A shows the activity field for the cross-section of a cylindrical bilayer. The radius
measures from the center to the midplane. Panels B and C plot the change in energy ∆ΦTotal =
ΦTotal(r) − ΦTotal(r0) per length of the cylinder under stretching and compression: ∆r = r − r0.
Equilibrium radius r0 decreases with c0; the curves are for c0 = 0.5 pN nm4 in panel B, and c0 = 0.25
pN nm4 in panel C (γ = 4.1 pN nm−1, in both panels). The solid, dashed and dotted curves use
N = 26, N = 60 and N = 92 particles, and collapse onto a single curve when multiplied by r0.

The solid curve fits (3.7) to the angle data for the value λ = 1.2 nm. This value is301

consistent with experimental and theoretical measurements of the bending and tilt302

moduli [57, 41].303

In HADF, tilt dissipation is a consequence of repulsion between rod-like particles.304

The ellipses in Figure 4 are elongated and have ai/bi = 4. When the particles are305

more circular (ai/bi ∼ 1), the bulk particles ignore endpoint orientations and the306

angle function α(x) is non-monotonic in x.307

Finally, we discuss simulation data for stretching. Consider the stretching energy308

of a cylindrical bilayer:309

(3.8) kA
(A−A0)

2

A0
,310

where A = 2πrL, r is the midplane radius, L is the cylinder length (in the z-direction)311

and A0 is the area at rest. The stretching modulus kA is for a single monolayer and312

(3.8) accounts for the energy of the inner and outer monolayer leaflets of the cylinder.313

Manipulation experiments give kA in the range 30 – 40 kBT nm−2 [56, 57].314

To measure a stretching modulus, we form the circular cross section of cylinder315

of radius r (Figure 5A). The equilibrium shape is nearly circular (so long as there is316

a consistent number of particles in each leaflet) and the shape obtains an equilibrium317

radius r0 once compression and attraction are in balance. We use a harmonic bond318

to move r away from equilibrium and record the change in energy (Figure 5BC).319

The three curves in Figure 5B collapse onto a single curve when multplied by320

r0. Fitting to cr0(r − r0)
2 and comparing with (3.8) yields kA = 33.4 kBT nm−2,321

35.3 kBT nm−2 and 35.9 kBT nm−2 for the three radii respectively. The proximity of322

these three values suggests that HADF possesses a stretching modulus independent of323

particle number. Moreover, the attraction γ = 4.1 pN nm−1 and repulsion parameters324

c0 = 0.5 pN nm4 yield a consistent and physically realistic stretching modulus, around325

kA = 35 kBT nm−2. As an illustration, the curves in Figure 5C are for the same326

tension parameter and half the repulsion strength. There is an overall reduction in327

the equilibrium radii with the decreased repulsion, and an increase in the stretching328

moduli kA to 40.310 kBT nm−2, 40.083 kBT nm−2 and 39.393 kBT nm−2 for the three329

curves respectively.330
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Fig. 6. Panels A–D show the spontaneous sorting and eventual fission of a planar bilayer mix-
ture of small circular particles (magenta) and elliptical particles (white). The monolayer consisting
of smaller, circular particles spontaneously migrates from the bilayer edge, and eventually breaks off
forming forming its own bilayer. The bending in panels B and C suggests that the smaller, circular
particles have a spontaneous curvature more negative than for the larger, elliptical particles. The
parameters are γ = 4.1 pN nm−1, ρ = 2.5 nm and c0 = 0.5 pN nm−4 The ellipses have p = 6,
ai = 1.25 nm and bi = 0.6225 nm while the circles have p = 2, ai = bi = 0.6225 nm.

HADF yields physically realistic continuum-like bilayer morphologies and these331

particle configurations possess elastic properties of lipid bilayer. The HADF can also332

handle topological changes and mixtures in a straightforward manner. Figure 6 illus-333

trates the gradient descent dynamics of a lipid mixture between small, circular and334

large, elliptical particles. Under hydrophobic attraction and excluded volume repul-335

sion, the particle mixture segregates into two bilayers of more uniform composition.336

Diffusive interface and level-set approaches have dealt with the problem of mixtures337

by defining transport equations for each lipid species density [49, 55, 25].338

Hemifusion is one of the key intermediates of membrane fusion involving a Y-339

shaped junction between three bilayers [9](see Figure 8, Panel C). Pioneering work340

by Promilsow, K. and coworkers [12, 13] has lead to functionalized Cahn-Hilliard,341

diffusive interface energies that exhibit freestanding elastic phases, including the Y-342

shaped junction [43, 21]. It is still unclear whether the HADF formulation of the343

present work is more or less efficient than a functionalized Cahn-Hilliard approach for344

capturing the granular energetic details of fusion [72].345

4. Hydrodynamics of amphiphilic particles in a viscous solvent. To de-346

fine particle velocities, we assume that the amphiphilic particles are immersed in an347

incompressible viscous fluid in the Stokes flow regime. Then all the particles inter-348

act with each other through both hydrophobic forces and Stokesian hydrodynamic349

interactions. The two-dimensional particles Pi have the translational and angular350

velocities351

(4.1)
dai
dt

= vi,
dθi
dt

= ωi,352

i = 1, . . . , N. For the amphiphilic particles in a solvent, the forces Fi, F
rep
i and torques353

τi, τ
rep
i are calculated from (2.2) and (2.15), respectively, The velocities vi and ωi are354

coupled together through the fluid velocity u and pressure p satisfying355

(4.2)

−µ∆u+∇p = 0,

∇ · u = 0, in Ω,

u → 0 as |x| → ∞,

u(x) = vi + ωi(x− ai)
⊥, x ∈ ∂Pi,

356
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(a) (b) (c)

(d) (e) (f)E

A

D

B C

F

Fig. 7. For large system simulations, particles self assemble into bilayer-like shapes and then
eventually a cylindrical bilayer. Panels A–F are for 0, 3.8, 19, 76, 114 and 228 ns, respectively; step
size ∆T = 1.0[T ] ≈ 0.38 ns. The configuration in panel F evolves very slowly to one that is slightly
more circular.

with fluid viscosity µ and subject to the stress balance conditions357

(4.3)

∫︂
∂Pi

S · n dS = Fi + Frep
i ,

∫︂
∂Pi

(x− ai)× S · n dS = τi + τ repi .358

From (2.13) these particle forces and torques also satisfy the force-free and torque-359

free conditions, guaranteeing the existence of an integral solution for the many-body360

mobility problem. The evolution equations (4.1–4.3) satisfy the dissipation relation361

[47]362

(4.4)
d

dt
ΦTotal +

∫︂
Rn

1
2µ|∇u+∇uT |2 dx = 0.363

In two dimensions, the kernels of single and double layer potentials for solving364

the Stokes equation are the stokeslet and stresslet365

(4.5)

GStokeslet
i,j (x,y) =

1

4πµ

[︃
log |x− y|δij +

(xi − yi)(xj − yj)

|x− y|2
]︃
,

TStresslet
i,j,k (x,y) = − 1

πµ

(xi − yi)(xj − yj)(xk − yk)

|x− y|4 ,

366

respectively, with i, j, k = 1, 2. For a velocity surface density µ, the stresslet satisfies367

the jump across the boundary368

(4.6) lim
z→x±

fi,±(z) = ∓1

2
µi(x) + p.v.

∫︂
∂Pi

TStresslet
i,j,k (x,y)µj(y)dsy,369
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where fi denotes the surface traction of on particle Pi. Following [67], one views370

the external force and torque due to hydrophobic attraction as an incident field with371

stress (2.3). The scattered field is then the net force and torque due to fluid mobility.372

If we split densities into σinc(x) = {σinc
1 , . . . ,σinc

N } and µ(x) = {µ1, . . . ,µN}, then373

the particle dynamics (4.7) can be obtained by evaluating a single layer potential for374

corresponding densities σ and µ.375

(4.7)
u(x) =

N∑︂
j=1

∫︂
∂Pj

GStokeslet
i,j (x,y)[σinc

j + µj ](y)dsy

= vi + ωi(x− ai)
⊥ ∀x ∈ ∂Pi,

376

where377

vi =
dai
dt

=
1

|∂Pi|

∫︂
∂Pi

u(y)dsy, |∂Pi| =
∫︂
∂Pi

dsy,

ωi =τ−1

∫︂
∂Pi

(y − ai)× u(y)dsy, τ =

∫︂
∂Pi

|y − ai|2dsy.
(4.8)378

For the time-marching scheme, we solve the mobility problem for the particle379

translation and rotation velocities. We then update the particle centers and orien-380

tations using a forward Euler scheme. Algorithm 5.1 provides the time-marching381

details.382

Non-dimensionalizing (1.1) with characteristic length 1.25 nm, fluid viscosity µ =383

1 cP and interfacial tension γ = 4.1 pN nm−1 gives the characteristic time [T ] =384

µa/γ ≈ 3.82×10−10s. As an illustration, the evolution in Figure 1 is for 100 time steps385

with time step size ∆T = 1.0[T ]. The time for self assembly of a few particles from an386

initially random configuration is thus on the order of a nanosecond. This is consistent387

with times scales for lipid rearrangements in MD simulation [10]. Supplementary388

Materials Movie 1 shows the self-assembly process for three particles.389

Bilayer configurations form when we increase the number particles in the simu-390

lation. Figure 7A has 25 Janus-type particles placed on a square grid. The initial391

orientations θi are normally distributed about θ = 0. Within ten time steps (Fig-392

ure 7B), the particles rapidly rotate to pair their hydrophobic interfaces with that393

of neighboring particles. Pairings continue to merge forming groups of eight or nine394

particles (Figure 7C). These groups stack together to form an arched bilayer shape395

resembling the cross-section of a stomatocyte (Figure 7E). Figure 7F clearly shows396

an inner and outer monolayer configuration a cylindrical bilayer.397

Supplementary Materials Movie 2 illustrates the self-assembly process for Fig-398

ure 7A–F. As part of computational complexity test, we have calculated particle399

dynamics for larger systems and Supplementary Materials Movie 3 shows the results400

for 100 particles.401

Is it possible to replace the detailed hydrodynamic interaction with one that uses a402

constant coefficient drag coefficient law? The latter also exhibits particle self-assembly403

and avoids the computational cost of solving an additional mobility problem. More-404

over, the constant coefficient case drag laws can closely replicate the hydrodynamic405

interaction case when particles are dispersed (see Supplementary Material, Section406

S2.3). Nevertheless, numerical experiments show that the choice of dissipative mech-407

anism is consequential to the time course. For example, Figure 7F and Figure 8B408

compare the two different end-states resulting from a identical initial configurations409
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Fig. 8. Panel A plots the change in energy Φ per length (solid curve) for the evolution
Figure 7A–F. The initial rapid decrease over 0 ns < t < 10 ns corresponds to Figure 7A–B. The
moderate decrease over 10 ns < t < 150 ns is for Figure 7C–E. Energy decreases very slowly over
150 ns < t < 600 ns, where the bilayer evolves from a somewhat elliptical cross-section (Figure 7F)
to one that is almost perfectly circular. The dashed curve gives corresponding values for a constant
drag coefficient evolution: its end-state is in panel B. In panel C, the free ends of three bilayers have
merged into an equilibrium, Y-shaped junction.

for a viscous fluid and for a constant drag law, respectively. The difference lies in the410

number of particles contained in the inner leaflet and this has determined whether or411

not the bilayer closes.412

5. Boundary Integral Equation Formulation. In this section, we present413

a second kind integral equation formulation for the exterior Dirichlet problem (1.3).414

The domain Ω is the exterior domain, meaning that its complement Ωc (the collection415

of particles) is compact.416

There are a number of numerical methods for solving the exterior problem (1.3).417

These include finite difference methods, finite element methods, and boundary integral418

equation (BIE) methods. The BIE methods are perhaps the most suitable since419

they represent the solution via layer potentials with an unknown density only on420

the boundary. This reduces the dimension of the problem by one and leads to a421

much smaller linear system. Another advantage is that the integral representation422

automatically satisfies the governing partial differential equation and the boundary423

condition at infinity. Thus, there is no need to truncate the computational domain424

and impose artificial boundary conditions, as would be the needed with the finite425

element and finite difference approaches. Finally, when combined with high-order426

quadratures and fast algorithms such as the fast multipole methods [31, 32], the BIE427

formulation leads to a high-order numerical algorithm with optimal computational428

complexity.429

Before describing the method, we first consider whether the far-field condition430

in (1.3) is sufficient to determine a unique solution. As mentioned in Section 1, the431

functional I[·] has a unique minimizer in A. The minimizer u satisfies 0 ≤ u(x) ≤ 1432

for all x ∈ Ω. To see why these bounds holds, consider a truncated version ũ =433

max{0,min{1, u}} of u. Because 0 ≤ f ≤ 1 on Σ, ũ ∈ A. Lastly, I[ũ] ≤ I[u] by434

inspection, and I[u] ≤ I[ũ] by minimality of u. This implies that I[ũ] = I[u], and435

since u is the unique minimizer, we have u = ũ.436

To obtain a far-field decay condition, select a sufficiently large distance D > 0437

from Ωc. Let x be such that d(x,Ωc) > D. By a change of coordinates, we may assume438

that x is the origin (0, . . . , 0) and that Ωc lies in the set {(x1, . . . , xn) : xn ≤ −D}. In439
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this coordinate system, consider the function440

vϵ(x1, . . . , xn) =
cosh(xn/ρ)

cosh(D/ρ)
+ ϵ

n−1∑︂
i=1

cosh(xi/ρ), ϵ > 0.441

Then −ρ2∆vϵ+vϵ = 0 and vϵ ≥ 1 on Σ (since xn is less than −D there), and vϵ → ∞442

as |(x1, . . . , xn)| → ∞. Next, consider the function g = vϵ − u. We have g ≥ 0 on443

Σ and g ≥ 0 for all sufficiently large (x1, . . . , xn) (since vϵ → ∞ and u is bounded444

everywhere between 0 and 1).445

From the weak maximum principle [26, Cor. 3.2, assuming f ∈ C(Σ)], we have446

g ≥ 0 in Ω. It follows that vϵ ≥ u in Ω. Finally, letting ϵ → 0, we conclude that447

(5.1) 0 ≤ u(x) ≤ vϵ(x) < 2 exp(−D/ρ)448

as soon as ϵ > 0 is sufficiently small.449

The problem (1.3) thus has at least one solution (vanishing at infinity), namely the450

variational one. But since the domain Ω is non-compact, it is in principle possible that451

(1.3) has multiple solutions vanishing at infinity with different rates. The following452

Liouville-type result shows that this is not the case. In fact, we get uniqueness even453

if we replace the zero far-field condition with the power growth condition u = O(|x|p)454

as x → ∞.455

Lemma 5.1. The exterior problem (1.3) has at most one solution.456

Proof. Suppose that (1.3) has two solutions u1 and u2. Let w = u1 − u2 and457

define458

E(r) =

∫︂
Ω∩Br

1
2w

2 dx, E : [0,∞) → [0,∞),459

where Br is the ball of radius r centered at the origin. Select r0 positive and sufficiently460

large so that Ωc ⊂ Br0 .461

The function E(r) is infinitely differentiable on (r0,∞) since any solution of (1.3)462

is smooth in Ω. Using w = 0 on Σ and (1.3), it follows that463

(5.2) E′′(r) =
n− 1

r
E′(r) +

1

ρ2
E(r) +

∫︂
Ω∩Br

|∇w|2 dx, r0 < r < ∞.464

Since E is nondecreasing, by definition, we get465

E′′(r) ≥ ρ−2E(r), r0 < r < ∞.466

Let F (r) = 1
2E(r0) exp((r − r0)/ρ). We claim that467

(5.3) F (r) ≤ E(r), r0 ≤ r < ∞.468

To form the comparison argument, suppose to the contrary that E(r) is not every-469

where greater than or equal to F (r). Then E(r0) > 0 and there is r∗ > r0 with470

E′(r∗) ≤ F ′(r∗) and F (r) < E(r) for r0 ≤ r < r∗. But then,471

E′(r∗) ≤ F ′(r∗) =
∫︂ r∗

r0

ρ−2F (r) dr <

∫︂ r∗

r0

ρ−2E(r) dr ≤ E′(r∗)− E′(r0).472

These inequalities are in contradiction since E′(r0) is nonnegative.473
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Thus, if u1 and u2 are two solutions of (1.3), then according to (5.3) there are one474

of two possibilities: either E(r0) = 0 or one of the solutions has exponential growth.475

The vanishing condition u → 0 as x → ∞ rules out the latter case and so E(r0) must476

be zero. Since r0 was arbitrary, u1 and u2 are identical.477

In two dimensions, the equation−ρ2∆u+u = 0 has the free-space Green’s function478

(also called fundamental solution)479

(5.4) G(x, y) =
1

2π
K0(|x− y|/ρ), x, y ∈ R2,480

where K0 is the zeroth order modified Bessel function of the first kind [62]. For481

a Lipschitz domain Ω in R2 with boundary Σ, the space L2(Σ) denotes all square482

integrable functions on Σ. Given a function σ ∈ L2(Σ), we define the single layer483

potential by the formula484

(5.5) S[σ](x) =
∫︂
Σ

G(x, y)σ(y)dsy,485

and the double layer potential by the formula486

(5.6) D[σ](x) =

∫︂
Σ

∂G(x, y)

∂ν(y)
σ(y)dsy,487

where ν(y) is the unit outward normal vector with respect to Ωc. It is well-known488

from classical potential theory [44] that the single layer potential is continuous and489

the double layer potential exhibits a jump across the boundary. To be more precise,490

when z approaches a point x ∈ Σ nontangentially, the limits of S[σ] and D[σ] exist491

and are given by the following formulas:492

(5.7) lim
z→x±

S[σ](z) = S[σ](x) =

∫︂
Σ

G(x, y)σ(y)dsy,493

and494

(5.8) lim
z→x±

D[σ](z) = (±1

2
I +D)[σ](x) = ±1

2
σ(x) + p.v.

∫︂
Σ

∂G(x, y)

∂ν(y)
σ(y)dsy,495

for almost every point x ∈ Σ. Here z → x± implies that z approaches x from496

the exterior(+) or the interior(−) of Ωc, respectively. It is also well-known that497

both the single layer operator S : L2(Σ) → L2(Σ) and the double layer operator498

D : L2(Σ) → L2(Σ) are compact when the boundary Σ is C1.499

We will represent the solution to (1.3) with the double layer potential represen-500

tation:501

(5.9) u(x) = D[σ](x).502

The jump relation of the double layer potential (5.8) leads to the following boundary503

integral equation on the unknown density σ:504

(5.10)
1

2
σ(x) +D[σ](x) = f(x), x ∈ Σ.505

506
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Algorithm 5.1 Particle Updates by Exterior Screened Laplace BVP

1: Set the particle centers ai ∈ R2 and orientations θi ∈ R, boundary condition f(x)
and time step size ∆t

2: Determine the discretization on the boundary Σ and construct the double layer
potential D[σ](x).

3: for t = t0 : tend do
4: Use GMRES iterative method to solve the unknown density σ in (5.10).
5: Use the solved σ to obtain the screend Laplace equation solution u and calculate

∇u.
6: Calculate inter-molecular forcesr (2.2) and (2.16).
7: Use GMRES iterative method to solve the unknown density µ in (4.6).
8: Solve mobility problemand update particle velocities vi and ωi in (4.7).
9: Update particle center positions ai and orientations θi.

10: Update the marching time t = t0 +∆t.
11: end for
12: return T

Theorem 5.2. Suppose that ρ is any positive real number. Then for any f ∈507

L2(Σ), the second kind integral equation (5.10) is uniquely solvable.508

Proof. By the Fredholm alternative [44], we only need to show that the only509

solution to the homogeneous equation510

(5.11)
1

2
σ(x) +D[σ](x) = 0.511

is σ ≡ 0.512

Consider the function u(x) defined by the formula (5.9). It is clear that u satisfies513

the equation −ρ2∆u+ u = 0 in both the exterior domain Ω and the interior domain514

Ωc, and vanishes at infinity. By the uniqueness of the exterior Dirichlet problem515

(Lemma 5.1), we have u ≡ 0 in Ω. Hence,516

(5.12) lim
z→x+

∂u(z)

∂ν
= 0, x ∈ Σ.517

Since the normal derivative of the double layer potential is continuous across the518

boundary [44, gen. of Thm. 6.18], we have519

(5.13) lim
z→x−

∂u(z)

∂ν
= 0, x ∈ Σ.520

Hence, u in the interior domain Ωc is the solution to the interior Neumann problem521

(5.14) − ρ2∆u+ u = 0, u ∈ Ωc,
∂u

∂ν
= 0, x ∈ Σ.522

Applying Green’s first identity, we obtain523

(5.15)

∫︂
Ωc

ρ2|∇u|2 + u2dx = 0.524

Thus we have u ≡ 0 in Ωc as well. The jump relation of the double layer potential525

(5.8) leads to526

(5.16) σ(x) = lim
z→x+

u(z)− lim
z→x−

u(z) = 0, x ∈ Σ,527

which completes the proof.528
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Fig. 9. Geometric situation of a single QBX expansion with sources along the collection of
curves Σ, as used in (6.1) and (6.2). Note that the target point x will reside on Σ for the computation
of the on-surface value of the layer potential.

Remark 5.3. As pointed out earlier, the screened Laplace equation can be viewed529

as the Helmholtz equation ∆u + k2u = 0 with pure imaginary k. When k is an530

arbitrary complex number, the so-called Brakhage-Werner representation [5] (also531

called the Burton-Miller representation [7] in acoustics) represents the solution to the532

Helmholtz equation via a linear combination of single and double layer potentials533

(5.17) u(x) = iS[σ](x) +D[σ](x).534

It has been shown that the representation (5.17) leads to a uniquely solvable second535

kind integral equation for any value of k ∈ C [59]. Due to the exponential decay536

of the solution to our exterior problem (1.3), we are able to use the double layer537

potential alone to represent its solution and still achieve existence and uniqueness of538

the associated boundary integral equation (5.10).539

We would like to point out that when ρ is very large, the formulation (5.17) may540

lead to a better conditioned linear system than (5.9). There are other second kind541

integral equation formulations for this problem. For example, one may replace the542

single layer potential by a collection of point sources inside each particle, where the543

strength of the point source may be unknown or equal to the average value of the544

unknown density function on the boundary of each particle. We refer the readers545

to [29, 30, 36] for details.546

6. High-order quadrature and fast algorithms. For the accurate and rapid547

evaluation of the layer potentials occurring in the previous section, we make use of548

‘Quadrature by Expansion’, or QBX for short [39]. Here we briefly review the QBX549

scheme for the general Helmholtz kernel and note that the Yukawa kernel (5.4) is550

simply a special case of the Helmholtz kernel with pure imaginary wave number k.551

To do so, we cover a neighborhood of the source curve Σ with locally valid (‘local’)552

expansions of the potential emanating from the entire source curve Σ. For a collection553

of on-surface target points (xi), expansion centers are chosen as ci = xi+ νηxi
, where554

ηx is a scaling factor connected to the local quadrature resolution. See [79] for details555

of the determination of ηx. Then, for target points x ∈ B(ci, ηxi), the layer potential556

may be evaluated as557

(6.1) ϕ(x) =

∞∑︂
l=−∞

αlJl(kρ)e
−ilθ

558

where (ρ, θ) denote the polar coordinates of the target point x with respect to the559

expansion center c, and Jl is the Bessel function of order l (see Fig. 9). For the560
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single layer potential Sσ, the coefficients αl in the expansion (6.1) can be computed561

analytically:562

(6.2) αl =
i

4

∫︂
Σ

H
(1)
l (k|x∗ − c|)eilθ∗

σ(x∗)dx∗, (l = −p,−p+ 1, . . . , p)563

where (|x∗ − c|, θ∗) denote the polar coordinates of the point x∗ with respect to564

c. These (now non-singular) integrals for the coefficients αl are then computed by565

conventional high-order numerical quadrature. These formulas follow immediately566

from Graf’s addition theorem [62, (10.23.7)],567

(6.3) H
(1)
0 (k|x− x∗|) =

∞∑︂
l=−∞

H
(1)
l (k|x∗ − c|)eilθ∗

Jl(k|x− c|)e−ilθ,568

This identity applies directly to the Yukawa potentials under consideration here, based569

on the fact that K0(z) = (iπ/2)H
(1)
0 (iz), cf. [62, (10.27.8)]. Separation-of-variables570

results similar to Graf’s addition theorem hold for Laplace potentials, allowing us to571

proceed analogously in that case [31]. The QBX procedure described above employs572

two means of approximation: the truncation of the series expansion, and the compu-573

tation of the coefficients by numerical quadrature. We give an error result for QBX574

that accounts for both aspects. For the following result, we consider the case of the575

double layer and assume c = 0 without loss of generality.576

Theorem 6.1 (QBX truncation and quadrature errors, [16, Thm. 2.5 and (4.6)]).577

Suppose that Γ is a smooth, bounded curve embedded in R2, such that Bηx
(0)∩Γ = ∅,578

but ρeiθ ∈ Bηx(0) ∩ Γ. Assume the geometry Γ is discretized using q point composite579

Gauss-Legendre panels of uniform length h, with a total of n points.580

For k ∈ [0,∞), N a positive integer, and β > 0, there are constants C ′
N,β,Γ(k)581

and C ′′
q,Γ(k), so that if σ ∈ CN,β(Γ), then582

583

(6.4)

⃓⃓⃓⃓
⃓ limr→ρ−

∫︂
Γ

∂G(reiθ, y)

∂ν(y)
σ(y)ds(y)−

N−1∑︂
l=1−N

Qq(αl)Jl(kρ)e
−ilθ

⃓⃓⃓⃓
⃓584

≤ C ′
N,β,Γ(k)ρ

N∥σ∥CN,β(Γ) + C ′′
q,Γ(k)

h2q

(4r)
2q+1 ∥σ∥C2q .585

586

Here the coefficients {αl} are given by (6.2), and Qq(αl) denotes the approximation587

of the coefficient integral of (6.2) by Gaussian quadrature with q points.588

The theorem makes several assumptions that may not be true of the geometry589

discretization in its original form, notably the assumption that the placed disks do not590

intersect with other geometry, or the requirement that source panels supply sufficient591

quadrature resolution not just for themselves, but also for adjacent panels (which592

masquerades in Theorem 6.1 as the assumption of equal panel sizes). All these issues593

can be remedied by adequate refinement of the source geometry. An efficient, tree-594

based algorithm is available [79] to accomplish this.595

To avoid quadratic scaling of the computational cost with the number of degrees596

of freedom, boundary integral equation methods require some form of acceleration,597

often through a variant of the Fast Multipole method (FMM [8]). In the context of598

QBX, it is convenient to exploit that the expansions produced as the output of the599

far-field stage of the FMM are the same ones employed by the quadrature method.600
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However, without some care, loss of accuracy may occur [68]. We make use of the601

‘GIGAQBX’ fast algorithm of [80] to obtain guaranteed accuracy at linearly scaling602

cost. This algorithm modifies the conventional FMM by forcing direct computation603

of interactions that may endanger the accuracy of the computed QBX expansion, in604

addition to a number of modifications to retain efficiency and linear scaling in that605

setting.606

Another feature in GIGAQBX is the adaptive refinement activated when two or607

more source geometries get close to each other, causing near-singular evaluations of608

the boundary integral. The adaptive refinement is designed to continue until the609

expansion disks get out of the region of the source geometry [80]. Under the HADF,610

one might expect that many levels of refinement are needed when two particles are611

brought to near contact. However, the steric potential (2.16) also acts to prevent612

particles from getting too close to each other.613

With the use of the short range repulsive potential, we found that the count of614

continuous refinements to be at most 3 to 5 levels at each time step for simulations615

presented in this work. Moreover, if the target point is geometrically on the wrong side616

(e.g. the interior region for the exterior problem), the GIGAQBX approximates ana-617

lytic continuation of the potential across the boundary Γ, leading to benign behavior618

even in degenerate cases.619

Our simulation codes make use of the software package ‘Pytential’ [40], which620

is in turn built upon FMMlib [27] for some of its expansion and translation operator621

infrastructure.622

7. Conclusions. Topological transitions of a lipid bilayer membrane, such as623

membrane fusion and fission, involve rearrangement of lipid molecules in the bilayer.624

Consequently the well-known Helfrich free energy requires modification to account for625

lipid granularity to resolve the detailed lipid re-modeling during membrane fusion or626

fission [61, 13, 72]. By using a modified Helfrich free energy with van der Waals repul-627

sion and a hydrophobic potential for lipid tail-solvent interaction, Ryham et al. [72]628

calculated a least energy pathway of membrane fusion. Building on these results,629

the main motivation for the work presented here is to construct a hybrid continuum630

lipid model at the mesoscopic scales to capture both the lipid granularity and the631

long-range interaction during the self-assembly of lipid molecules and fusion/fission632

dynamics of a lipid bilayer membrane.633

Our continuum coarse-grained model for lipids focuses on the hydrophobic in-634

teractions between lipid tails, and an SKIE formulation of the hydrophobic stress is635

derived and used for obtaining particle dynamics. We also show that the long-range636

hydrophobic attraction potential is non-pairwise, and thus requires special treatment637

within the coarse-grained model framework. The GIGAQBX scheme—an improved638

version of the QBX-FMM scheme with guaranteed accuracy—is used in the discretiza-639

tion, solver, and evaluation phases of the SKIE to achieve high accuracy and asymp-640

totically optimal complexity. Simulation results of our model show that during the641

self-assembly process, coarse-grained lipid particles form structures (such as micelles642

and bilayers) that may further fuse together to form a single bilayer membrane. These643

results show that our approach can naturally capture the mesoscopic dynamics of644

membrane fusion/fission. Furthermore, we show that the hydrophobic interactions645

give rise to membrane curvature minimization, which is an indication of the origin of646

bending rigidity in a bilayer membrane.647

It is straightforward to apply the numerical scheme developed in this paper to648

study particles of arbitrary shape. With slight algorithmic modification, the scheme649
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can also accurately capture the collision dynamics that many researchers may regard650

as rather difficult to deal with.651

We also illustrate that the lipid hydrodynamics under HADF gives rise to macro-652

scopic mechanical properties of a lipid bilayer membrane that are consistent with653

other results in the literature. The flexibility of our hybrid approach allows us to654

consider a mixture of two lipid species and how spontaneous sorting (phase sepa-655

ration) of two lipid species leads to membrane fission, consistent with results from656

phase-field simulations [49]. Our future goal is to extend the current framework to657

three-dimensional lipid system. We will incorporate fluctuating hydrodynamics into658

the boundary integral formulation to extract physical properties of the lipid bilayer659

membrane such as membrane diffusivity, bending rigidity and the surface tension.660

By modification of the interfacial labels, HADF can account for charged lipids and661

study their impact on elastic properties of bilayer [20]. Since we have immersed the662

particles in a zero-Reynolds flow, it is possible to study the rheological properties of663

micelle networks in large particle simulations [50]. Finally, we also aim to investigate664

the continuum limit of our hybrid model and make comparison with functionalized665

Canham-Helfrich models.666
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a1

a2

a3

a4

a5

a6

i Fx
i Fy

i fxi fyi rel. diff. (%)

1 0.017 0.124 0.022 0.177 42.6%

2 0.095 −0.167 0.122 −0.262 51.5%

3 −0.474 −0.019 −0.555 −0.075 20.9%

4 0.173 0.255 0.231 0.291 22.0%

5 0.154 −0.298 0.208 −0.338 20.1%

6 0.035 0.104 −0.027 0.207 109.5%

Fig. 10. The pseudo-color map shows a configuration of six, randomly placed particles with

random orientations. The table (in pN) provides values for the x and y components of force F
{x,y}
i

calculated from the HADF and the force f
{x,y}
i calculated assume a pairwise potential (A.1). The

rightmost column shows the relative difference ∥Fi − fi∥/∥Fi∥.

Appendix A. Pairwise potentials. We show that pairwise potentials do676

not closely approximate the HADF. Consider the case of N many particles in general677

position and orientation. Their associated pairwise potential is678

(A.1)

N∑︂
i=1

∑︂
j>i

ϕij ,679
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where ϕij is the functional (1.1) evaluated on Ω = R2 \ (Pi∪Pj). Differentiating (A.1)680

with respect to position ai yields the force681

(A.2) fi =
∑︂
j ̸=i

fij , fij = −∇ai
ϕij .682

That is, we calculate fij using (2.2) for a fluid domain containing only two particles,683

Pi and Pj , and then sum the results for j = 1, . . . , N, j ̸= i. Finally, let Φ be the684

HADF for all N particles, and calculate the hydrophobic force Fi = −∇ai
Φ using685

(2.2) over the fluid domain that contains all particles.686

The table in Figure 10 compares the non-pairwise Fi and pairwise fi forces for a687

sample particle configuration (Figure 10, pseudo-color map). The forces show signif-688

icant differences for all six particles (Figure 10, rightmost column), suggesting that689

it is insufficient to use a pairwise potential to calculate HADF as formulated in the690

present work. We note, however, that owing to the form of the free-space Green’s691

function (5.4), the correlations between particles decays like exp(−D/ρ) in their dis-692

tance D. This makes it possible localize interaction to tens of particles by setting a693

cut-off radius in the layer potential evaluations.694
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Fig. S1. Schematic of elliptical repulsion.

S1. Elliptical Excluded Volume Repulsion. For any elliptical particle with17

semi-major axis ai and semi-minor axis bi, the rigid body repulsion is designed as18

follows. Consider three circle centers aki = ai + khdi, h = (ai − bi), k ∈ {−1, 0,+1}19

with radii bi (Figure S1) and use (2.16) with c0 divided by 3 to calculate the forces20

fki , k ∈ {−1, 0,+1} and torque τ−1
i and τ+1

i . For two elliptical particles, the total21

interactions are given by22

(S1)

fklij =
c0
3

q

(|aki − alj | − (bi + bj))q+1

aki − alj
|aki − alj |

, i ̸= j, k, l ∈ {−1, 0,+1},

Frep
i =

N∑︂
j=1
j ̸=i

∑︂
k,l

fklij , k, l ∈ {−1, 0,+1},

τ repi =

N∑︂
j=1
j ̸=i

∑︂
k

h(f−1k
ij − f+1k

ij )× di, k ∈ {−1, 0,+1}.

23

The total repulsive potential is24

(S2) Φrep
i =

1

2

N∑︂
j=1
j ̸=i

∑︂
k

c0
3

1

(|aki − alj | − (bi + bj))q
, k ∈ {−1, 0,+1}.25

The total repulsive force is identical to (2.16) whenever particles are circular.26

S2. Numerical Validations.27

S2.1. Force and Torque Relations. We validate formulas (2.2, 2.3) by cen-28

tered difference approximation. Following (2.10),29

(S1)
v · Fi = − d

dϵ
Φ(ai + ϵv, θi)|ϵ=0 ≈ −Φ(ai + ϵv, θi)− Φ(ai − ϵv, θi)

2ϵ
,

ωτi = − d

dϵ
Φ(ai, θi + ωϵ)|ϵ=0 ≈ −Φ(ai, θi + ωϵ)− Φ(ai, θi − ωϵ)

2ϵ
,

30

where i = 1, . . . , N . We write Φ(ai, θi) in place of Φ(Ω, f) to emphasize that for the31

moment variations are taken with respect to the ith particle, while keeping the others32

particles fixed. For the three-particle setup from Figure 1A and step size ϵ = 0.05, we33

get the following values:34

Centered Difference Variations (2.2-2.3)
Fi τi

⟨−0.94496,+1.37954⟩ +0.90685
⟨−0.28603,−0.46196⟩ +0.02815
⟨+1.17189,−0.90103⟩ −0.23972

Fi τi
⟨−0.83884,+1.35038⟩ +0.92534
⟨−0.26879,−0.43257⟩ +0.02923
⟨+1.20538,−0.91928⟩ −0.23962

35
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Fig. S2. Single Janus particle simulation (ρ = 4a): (a) Surface-contour plot of the action
field solution u. The points along the boundary (circle) show the distribution of panels and Gauss-
Legendre points. (b) Error plot (in logarithmic scale) for the BIE-QBX-FMM solution and analytical
solution S2. (c) From top to bottom: normal and tangential stresses calculated by BIE-QBX-FMM
(+ symbols) and their corresponding analytical values (solid curves).

The agreement between the centered difference approximation and the variational36

derivatives supports (2.2-2.3).37

S2.2. Single Particle Validation. One can analytically solve the exterior38

problem (1.3) for a single two-dimensional disk with boundary condition (2.14) using39

the free-space Green’s function (5.4);40

(S2) u(r, θ) =
1

2

⎛⎝K0

(︂
r
ρ

)︂
K0

(︂
a
ρ

)︂ +
K1

(︂
r
ρ

)︂
K1

(︂
a
ρ

)︂ cos (θ)

⎞⎠ .41

Here (r, θ) are polar coordinates relative to the particle center (the origin), d1 = ⟨1, 0⟩42

is the particle orientation, and a and ρ = 4a are the disk radius and decay length,43

respectively.44

Figure S2(a) shows of the action field contours for (S2). Consistent with the45

boundary condition (2.14), the hydrophobic attraction is strongest in the neighbor-46

hood of the right semicircle. The smooth boundary data results in the hydrophobic47

attraction extending weakly to the left of the particle. The size of the contours are pro-48

portional to the decay length ρ, e.g. the farthest contour u(r, θ) = 0.1 in Figure S2(a)49

would grow for larger ρ.50

Figure S2(b) shows the corresponding relative errors of the BIE-QBX-FMM with51

Nbdy = 70 boundary points and QBX order p = 6. The reflectional symmetry of the52

error distribution is due to the symmetric particle shape and boundary condition. The53

numerically computed interfacial stresses (e.g. gradients in the action field) are also54

in excellent agreement with their analytical values. In Figure S2(c), the + markers55

are for the numerically calculated pointwise normal and tangential stress densities,56

(S3) ⟨sx(θ), sy(θ)⟩ = T(a, θ) · ir, sθ(θ) = ir × (T(a, θ) · ir),57

respectively, along the particle boundary. The smooth curves Figure S2(c) are the58

analytical values, obtained by plugging (S2) into the integrands of the equations (2.9).59

Thus the BIE-QBX-FMM yields a numerical solution that is highly accurate both in60

terms of the action field and its gradients along the domain boundary. From a physical61

perspective, an isolated particle has zero net force and torque (see (2.13)). Indeed,62

the integrals of force and torque curves in Figure S2(c) are all zero to about eight63

digit accuracy.64
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Table 1
Convergence tests as the QBX order p and number panels per particle Npan vary. The number

of Gauss-Legendre points NGL = 6 per panel (yielding Nbdy = NGLNpan points per particle), FMM

order pFMM = 10, GMRES tolerance tolGMRES = 10−13 and 5×5 computational domain are fixed.
Niter is the number of iterations in GMRES.

Npan

10

20

40

80

Nbdy

70

140

280

560

QBX order p = 4

Niter l∞ error

8 3.20× 10−4

8 2.00× 10−5

7 9.12× 10−7

8 5.96× 10−8

QBX order p = 6

Niter l∞ error

8 2.01× 10−5

7 3.93× 10−7

8 2.21× 10−7

9 4.77× 10−8

QBX order p = 8

Niter l∞ error

8 1.23× 10−6

7 1.23× 10−8

8 2.84× 10−7

8 5.01× 10−8

Continuing with the single particle test, Table 1 provides three sets of convergence65

tests where we tune the QBX parameters. The purpose of these tests is to acquire a66

suitable parameter set for efficient simulations. We fix the GMRES iterative scheme67

tolerance tolGMRES = 10−13 and use the FMM to expedite the matrix-vector multi-68

plications in GMRES iterations. We divide each particle boundary into Npan panels69

and fill in NGL Gauss-Legendre points in each panel. This yields a total number of70

boundary points Nbdy = NGLNpan. In the l∞ error columns, we compute the er-71

rors with respect to the analytical solution (S2) over a 5 × 5 computational domain72

sampling at 200 × 200 cartesian grid points (the error excludes the values inside the73

particle). Through our setting of the underlying fast multipole order pFMM = 10,74

the approximation of the layer potential has about eight digit accuracy, leading to75

the observed errors ‘bottoming out’ around that accuracy. As a result, the results76

for order p = 10 are only marginally better than for the p = 8 column, but require77

significantly more computational time.78
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Fig. S3. Panels (a) and (b) show the normal stresses sx and sy , and panel (c) is for the
tangential stress sθ S3. The symbols are: ⋄-diamond for particle 1, □-square for particle 2 and
△-triangle for particle 3. Net force and torque is zero 2.13 and so the integrals of the curves in
panel (a) sum to zero. The same holds for panel (b) and for panel (c).

S2.3. Dissipative System with Constant Drag Coefficients. As an alter-79

native numerical scheme, the metastable final states of self-assembly particles are80

achievable by using constant drag coefficients to update particle dynamics. The up-81

dated particle dynamics of centers ai ∈ R2 and orientations θi ∈ R at t = n∆t are82

given by83

(S4) an+1
i = ani +

1

ξx

(︃
Fi +

∑︂
j ̸=i

Frep
ij

)︃
∆t, θn+1

i = θni +
1

ξθ
τi∆t.84
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To discretize (S4), we adopt the forward Euler scheme for configuration updates. We85

observe numerically, and use the values ξx = 4πµa and ξθ = 4πµa3 for an isolated86

circular particle of radius a and µ = 1 cP for water viscosity. The numerical scheme87

for simulating dissipative system using proposed constant drag law is included in Al-88

gorithm 5.1.89

This numerical test is to investigate a rough approximation of constant drag90

coefficients ξx and ξθ. We first place two circular particles on the same horizontal axis,91

with centers a1 = ⟨−2.5, 0⟩ and a2 = ⟨2.5, 0⟩, and orientations θ1 = 45◦ and θ2 = 135◦92

(The schematic is in Figure S4A). From the theory of HADF, the particle pair will93

move toward each other and rotate until the system energy reaches a minimum. Due94

to the effect of excluded volume repulsion, with the choice of c0 = 0.0166 pN nm4,95

an equilibrium distance r12 between two particles can be measured. Three sets of96

simulations are performed: (1) Obtaining particle dynamics by solving a mobility97

problem; (2) Calculating dissipative dynamics using three dimensional translational98

and rotational drag coefficients ξx = 6πηa and ξx = 8πηa3 and (3) Calculating99

dissipative dynamics using translational and rotational drag coefficients ξx = 4πηa100

and ξx = 4πηa3. Both Figure S4B and Figure S4C show that the dynamics obtained101

from case (2) have much lower initiative translational and rotational velocity. Case102

(3) gives a very good agreement in dynamics for the first few nanoseconds. To explain103

this finding, from Stokesian dynamics, the resistance tensor is a function of particle104

pair-distances and the particle resistance will be a factor of log(rij) in two dimensions.105

This observation shows that with a specific choice of constant drag coefficients the106

dynamics of many-body system may have very similar starting transition in self-107

assembly.108
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Fig. S4. Panel A: Schematic of two-particle simulations; Panel B: Plot of particle 2 orienta-
tions over time in three cases; Panel C: Plot of distance r12 over time in three cases.

S2.4. Multiple Particle Cases. For three-particle dynamics, there is no109

closed-form solution to compare with, and so we use a piecewise linear FEM to per-110

form the numerical validations. The three particle configuration is the same as in111

1(a), with centers a1 = ⟨−1, 0⟩, a2 = ⟨1.5, 3.3⟩ and a3 = ⟨1.5,−1.5⟩, and orienta-112

tions θ1 = 18◦, θ2 = 240◦ and θ3 = −60◦. In the FEM solution of (2.14, 1.3), we113

truncate the unbounded exterior domain Ω to the box (−20, 20) × (−20, 20) ⊂ R2
114

and apply a homogeneous Dirichlet condition on the box boundary (5.1). To achieve115

an accuracy comparable to that of the BIE-QBX-FMM (Table 1), the FEM uses116

Nbdy = 250 equally spaced points per particle boundary and a triangular mesh with117

roughly 15, 000 points to discretize a truncated domain in Ω.118

Figure S3(a)–(c) compares interfacial stresses (S3) derived by BIE-QBX-FMM119

(empty symbols) and the FEM (solid curves). The excellent agreement between the120
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results suggests that the integral equation method and the finite element method with121

appropriate truncation do an equally good job of calculating the interfacial stresses,122

and in practice would yield indistinguishable dynamics. The BIE-QBX-FMM, how-123

ever, has the advantages that it uses far fewer mesh points than the FEM to achieve124

the same accuracy, and that it is straightforward to discretize boundaries of mov-125

ing particles using high-order quadratures. In contrast, in the FEM each change in126

particle configuration involves the generation of a new triangular mesh as well as127

the artificial truncation of the domain, leading to much higher computational cost to128

achieve the same accuracy.129

Table 2
Timing results for N = {250, 500, 1000, 2000} particles with Nbdy = 70 boundary points per

particle and tolGMRES = 10−5.

Nparticle Nbdy Lx Ly Iter. TGMRES/Ttotal Ttotal/Tref

250 17500 100 100 32 0.67938 9.7

500 35000 200 200 28 0.66299 14.4

1000 70000 200 200 32 0.70062 32.4

2000 140000 400 400 31 0.64738 55.3

S2.5. Large Collection Simulations. The simulation in Figure 7 used N = 25130

particles and this number was sufficient for particles to self-assemble into a vesicle131

shape. In realistic applications though, such as membrane fusion or vesicle defor-132

mations, the problem is three-dimensional and the number of Janus-type particles133

involved would be much larger, on the order of thousands to tens of thousands. Thus134

we present timing results illustrating how the the evaluation of one time iteration135

Algorithm 5.1 scales with the particle number N .136

Table 2 shows the timing results for N = {250, 500, 1000, 2000} particles. The137

particles lie in a Lx×Ly computational domain and we useNbdy = 70 boundary points138

per particle. Their shape, disks with radius a = 1 and decay length ρ = 4a, remains139

the same as previously and their centers and orientations are randomly generated in140

a way that avoids overlapping boundaries.141

The columns include the percentage running time of GMRES (the computation-142

ally most intensive step) and total running time that includes the QBX initialization143

steps. In the tests of Table 2, which starts from random initial data, about two thirds144

of the simulation time goes into solving for the surface potential σ. (We found that a145

tolerance tolGMRES = 10−5 gave sufficiently good numerical accuracy for the purposes146

of examining the particle dynamics.) In Algorithm 5.1, however, we can use the sur-147

face potential σ calculated in the previous time-step as an initial guess for GMRES148

iterations. This typically reduces the GMRES iterations by a factor of four.149

The rightmost column shows the total running time relative to the reference time150

Tref = 10 sec. for the 25 particle simulation. The results, which use an 8 core Intel(R)151

Xeon(R) CPU E5-2650 v4 @ 2.20GHz for hardware, scale linearly with N. On a152

modern computing cluster, most of the calculations, such as GMRES iterations, source153

evaluations, symbolic representations, FMM evaluations and numerical integrations,154

can run in parallel. We therefore expect to have optimal computational cost when155

running large scale simulations in future studies.156

S3. Movie Captions.157

158
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Movie S1. Three Particles There are three circular particles with radius 1159

centered at a1 = ⟨0, 0⟩, a2 = ⟨2.5, 3.3⟩ and a3 = ⟨2.5,−1.5⟩ and the corresponding160

orientations θ1, θ2 and θ3 are 0.1π,
4

3
π and −1

3
π. In this movie, each arrow represents161

the director of coarse-grained lipid particles where it points from lipid head toward162

lipid tail. All white dots in the domain represent the tracers in fluid that move with163

respect to calculated fluid motion. The colored field from dark blue to dark red164

shows the magnitude of hydrophobic attraction activity and the range is from 0 to165

1. Particle 1 and 2 pair quickly aggregate and squeeze the fluid out resulted that166

the generated fluid flow pushes particle 3 further away from the particle pair. After167

few frames, due to a non-zero hydrophobic attraction activity between particles,168

particle 3 rotates and move toward the particle pair to reach the energy mini-169

mum. It is clear to see that the fluid is been excluded completely at the last state of170

the movie. This movies includes a total 100 time steps where the time step is ∆ = 1.0.171

172

Movie S2. Twenty-Five Particles There are 25 circular particles with radius 1173

initially located on a 5-by-5 matrix grid and the initial orientations θi are normally174

distributed about θ = 0. In this movie, each arrow represents the director of175

coarse-grained lipid particles where it points from lipid head toward lipid tail. All176

white dots in the domain represent the tracers in fluid that move with respect to177

calculated fluid motion. The colored field from dark blue to dark red shows the178

magnitude of hydrophobic attraction activity and the range is from 0 to 1. All 25179

particles begin from forming a number of micelle like groups and then assemble to180

three short bilayers. Here the minimal energy is not completely reached and all181

endpoints of 3 bilayers move toward non-zero activity field. At final equilibrium182

state, a vesicle is formed and a energy minimum is achieved. As suggested by HADF,183

the fluid is separated into two parts, outside and inside of the vesicle. This movies184

includes a total 800 time steps where the time step is ∆t = 1.0.185

186

Movie S3. One Hundred Particles This movie adopts the constant drag law to187

perform dissipative dynamics. We show the simulation results for 100 particle placed188

on a 10-by-10 grid with random orientations. In this movie, each arrow represents189

the director of coarse-grained lipid particles where it points from lipid head toward190

lipid tail. The colored field from dark blue to dark red shows the magnitude of191

hydrophobic attraction activity and its range is from 0 to 1. The parameter set is192

as follows, ξx = 1.5, ξθ = 2.0 and ∆t = 0.5. All particles start from forming particle193

pairs or small groups then these components form micelles and bilayers. In order194

to reach energy minimum, some groups form long bilayers. Notice that the bilayer195

on the top-right corner, the transition from an arc to straight shape gives a perfect196

example for the process of energy minimization. Also, all micelles in the last frame197

have symmetric shapes. This movies includes a total 1200 time steps.198
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