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SUMMARY
Episodic memory requires linking events in time, a function dependent on the hippocampus. In ‘‘trace’’ fear
conditioning, animals learn to associate a neutral cue with an aversive stimulus despite their separation in
time by a delay period on the order of tens of seconds. But how this temporal association forms remains un-
clear. Here we use two-photon calcium imaging of neural population dynamics throughout the course of
learning and show that, in contrast to previous theories, hippocampal CA1 does not generate persistent ac-
tivity to bridge the delay. Instead, learning is concomitant with broad changes in the active neural population.
Although neural responses were stochastic in time, cue identity could be read out from population activity
over longer timescales after learning. These results question the ubiquity of seconds-long neural sequences
during temporal association learning and suggest that trace fear conditioning relies on mechanisms that
differ from persistent activity accounts of working memory.
INTRODUCTION

Episodic memory recapitulates the sequential structure of

events that unfold in space and time (Eichenbaum, 2017). In

the brain, the hippocampus is critical for binding the representa-

tions of discontiguous events (Kitamura et al., 2015; Eichen-

baum, 2017), corroborated by recent observations of sequential

neural activity in CA1 that bridges the gap between sensory ex-

periences (Pastalkova et al., 2008; MacDonald et al., 2011) to

support memory (Wang et al., 2015; Robinson et al., 2017). How-

ever, it remains a long-standing challenge to track how hippo-

campal coding is modified as animals learn to associate events

separated in time.

Pavlovian fear conditioning provides a framework to study the

neuronal correlates and mechanisms of associative learning in

the brain (Letzkus et al., 2015; Gr€undemann and L€uthi, 2015;

Maddox et al., 2019; Grewe et al., 2017). Classical ‘‘trace’’ fear

conditioning (tFC) has long been used as a model behavior for

studying temporal association learning (Raybuck and Lattal,

2014; Kitamura et al., 2015). Subjects learn that a neutral condi-

tioned stimulus (CS) predicts an aversive, unconditioned stim-

ulus (US), which follows the CS by a considerable time delay
Neuron
(‘‘trace’’ period). Circuitry within the dorsal hippocampus is

required for forming these memories at trace intervals on the

scale of tens of seconds (Raybuck and Lattal, 2014; Huerta

et al., 2000; Quinn et al., 2005; Fendt et al., 2005; Chowdhury

et al., 2005; Sellami et al., 2017). Furthermore, silencing activity

in CA1 during the trace period itself is sufficient to disrupt tempo-

ral binding of the CS and US in memory (Sellami et al., 2017).

Although these experiments pinpoint a role for hippocampal ac-

tivity in forming trace fear memories, the underlying neural dy-

namics remain unresolved. Importantly, tFC precludes a simple

Hebbian association of CS and US selective neural assemblies,

because of the non-overlapping presentation of the stimuli.

Previous work has proposed that persistent activity enables

the hippocampus to connect representations of events in time,

bridging time gaps on the order of tens of seconds. Theories

suggest that representation of the neutral CS and aversive US

are linked through the generation of stereotyped, sequential ac-

tivity in CA1 (Kitamura et al., 2015; Sellami et al., 2017). Alterna-

tively, hippocampal activity could generate a sustained response

to the CS that maintains a static coding of the sensory cue in

working memory over the trace interval, as in attractor models

of neocortical activity (Amit and Brunel, 1997; Barak and
107, 283–291, July 22, 2020 ª 2020 Published by Elsevier Inc. 283
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Figure 1. Two-Photon Functional Imaging

of CA1 Pyramidal Neurons during Differen-

tial tFC

(A) Schematic of experimental paradigm. A head-

fixed mouse is immobilized and on each trial

exposed to an auditory cue (CS+ or CS�) for 20 s,

followed by a 15 s stimulus-free ‘‘trace’’ period,

after which the US is triggered (CS+ trials). Air puffs

are used as the US and lick suppression as a

measure of learned fear. Operant water rewards

are available throughout all trials.

(B) Top, schematic of in vivo imaging with two-

photon field of view in dorsal CA1. Bottom: calcium

traces (gray) and inferred event times (black) from

an example neuron.

(C) Behavioral data for an example mouse over the

complete paradigm. Each row is a trial, where dots

indicate licks.

(D) Summary of behavioral dataset. We compute a

normalized lick rate for each trial by dividing the

lick rate during the tone (0–20 s) by the rate in the

pre-CS (�10 to 0 s) period (mean ± SEM; n = 6

mice; linear mixed-effects model with fixed effects

of CS and learning epoch, with mouse as random

effect; main effect significance shown in inset; post

hoc models fit to each epoch separately with fixed

effects of CS and trial number; Pre-Learning: no significant effects; Learning: effect of trial number [***] and CS3 trial number [**]; Post-Learning: effect of CS [***];

Wald c2 test). Scatter shows data from individual mice.

(E) Mean 24 h recall licking responses to first CS cue presentations of each day in the Post-Learning period for each mouse (n = 6 mice; Wilcoxon signed-

rank test).

*p < 0.05, **p < 0.01, and ***p < 0.001.
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Tsodyks, 2014; Takehara-Nishiuchi andMcNaughton, 2008) and

as recently observed in the human hippocampus (Kami�nski

et al., 2017). However, these hypotheses of persistent activity

remain to be tested during trace fear learning.

Herewe leveraged two-photonmicroscopy and functional cal-

cium imaging to record the dynamics of CA1 neural populations

longitudinally as animals underwent trace fear learning, in order

to resolve the underlying patterns of network activity and their

modifications with learning. Our findings show that persistent

activity does not manifest strongly during this paradigm, incon-

gruous with sequence or attractor models of temporal associa-

tion learning. Instead, learning instigated broad changes in

network activity and the emergence of a sparse and temporally

stochastic code for CS identities that was absent prior to condi-

tioning. These findings suggest that the role of the hippocampus

in trace conditioning may be fundamentally different from

learning that requires continual maintenance of sensory informa-

tion in neuronal firing rates.

RESULTS

We previously developed a head-fixed variant of an auditory tFC

paradigm (Kaifosh et al., 2013) conducive to two-photon micro-

scopy.Water-deprivedmicewere head-fixed and immobilized in

a stationary chamber (Guo et al., 2014) to prevent locomotion

from confounding learning strategy (MacDonald et al., 2013)

(Figure 1A). Mice were presented with a 20 s auditory cue (CS),

followed by a 15 s temporal delay (‘‘trace’’), after which the ani-

mals received aversive air puffs to the snout (US). A water port

was accessible throughout each trial, and we used animals’
284 Neuron 107, 283–291, July 22, 2020
lick suppression as a readout of learned fear (Kaifosh et al.,

2013; Lovett-Barron et al., 2014; Rajasethupathy et al., 2015).

We first verified that learning in auditory head-fixed tFC was

dependent on activity in the dorsal hippocampus. Optogenetic

inhibition of CA1 activity resulted in a significant reduction in

lick suppression (Figure S1), indicating that, as in freely moving

conditions (Raybuck and Lattal, 2014; Huerta et al., 2000; Fendt

et al., 2005; Chowdhury et al., 2005), head-fixed tFC is depen-

dent on the dorsal hippocampus.

In order to investigate the underlying network dynamics during

tFC, we selectively expressed the fluorescent calcium indicator

GCaMP6f in CA1 pyramidal neurons (Figure 1B) via injection of

an adeno-associated virus (AAV) containing Cre-dependent

GCaMP6f in CaMKIIa-Cre mice (Dragatsis and Zeitlin, 2000).

The head fixation apparatus was mounted beneath the two-

photon microscope objective, and mice were again water-

restricted and trained to lick for water rewards while immobilized

in the chamber (Guo et al., 2014). Once mice licked reliably, we

began neural recordings during a differential tFC paradigm (Fig-

ure 1A), in which on each trial mice were exposed to one of two

auditory cues (CS+ and CS�; either constant 10 kHz or pulsed 2

kHz, randomized across mice). After collecting 10–15 ‘‘Pre-

Learning’’ trials per CS cue with exposure to the cue alone, we

conditioned mice by selectively pairing CS+ trials with the US.

Mice quickly acquired the trace association in the first 6 trials

of CS+/US pairings (‘‘Learning’’ trials). We recorded subsequent

trials with continued US reinforcement, to prevent extinction;

behavioral responses maintained a steady asymptote during

these 20–25 ‘‘Post-Learning’’ trials (Figures 1C and 1D). Mice

readily discriminated between the two cues throughout Post-
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Figure 2. Temporal Dynamics of CA1 Activity during tFC

(A) Summary of neural activity during Post-Learning CS+ trials, shown separately for even- and odd-numbered trials. Activity is trial averaged and sorted by

neurons’ peak firing rate latency during 0–40 s in even trials. The population average event rate is overlaid.

(B) Schematic of time decoding analysis. Top: trial-averaged tuning curves of a hypothetical sequence of time cells. Bottom: state space representation of the

neural data. Dots indicate the neural state on single trials at three time points in the task. Right: a separate support vector machine (SVM) was trained to

discriminate between population activity from every pair of time points in the task.

(C) Matrix of classifiers for an example mouse during Post-Learning CS+ trials. Each square is the classifier result for comparing the pair of time bins corre-

sponding to the x- and y-axis positions. The upper triangle reports the cross-validated accuracy, while the lower triangle reports the p value relative to a shuffle

distribution. Most pairwise classifiers perform at chance level.

(D) Time prediction performance for the example shown in (C). For each time bin in a test trial, all classifiers vote to determine the decoded time. Decoding

accuracy is the absolute error between real and predicted time. Black, cross-validated average of time decoding error. Yellow shading, 95% bounds of the null

distribution. Decoding error is within chance levels throughout the trial.

(E) Summary of decoding significance relative to the null distribution during Pre-Learning and Post-Learning trials. Bold lines are combined p values across mice

via Fisher’s method. Red dashed line is the example shown in (C) and (D). Scatter shows individual p values across mice. Gold dashed line indicates p = 0.05.
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Learning, as they suppressed licking consistently on CS+ trials

but not CS� trials, in which the air puff was never presented (Fig-

ures 1C and 1D). Mice consistently discriminated between cues

on the first trial of each day in the Post-Learning period, prior to

receiving US reinforcement on that day, indicating retention (24 h

recall) of the memory (Figure 1E).

Imaging data from each trial were motion corrected (Kaifosh

et al., 2014; Pachitariu et al., 2017), and region of interest (ROI)

spatial masks and activity traces were extracted using the

Suite2p software package (Pachitariu et al., 2017). All traces

were deconvolved (Friedrich et al., 2017) to estimate underlying

spike event times. After registering ROIs across sessions, we

identified 1,991 CA1 pyramidal neurons from six mice (158–

500 neurons per mouse) that were each active on at least four tri-

als, whichwere used for subsequent analyses (Figure 2A). Neural

activity spanned all trial periods during the task, with a large pop-

ulation response to the US (Figure 2A). We also noted a transient

increase in activity prior to CS onset (�10 s), which may reflect

neural responses to a mixture of salient events at the beginning
of each trial (e.g., lick port access, reward onset, shutter, and

scanning mirror sounds).

We first asked whether the hippocampus generated a consis-

tent temporal code during each trial to connect the CS and US

representations (Sellami et al., 2017; Kitamura et al., 2015). After

ordering trial-averaged population activity by the latency of neu-

rons’ peak firing rates, a sequence naturally appears to span the

trial period (Figure 2A, left), but this activity is not necessarily

consistent across trials (compare with Figure 2A, right). We

used decoding to probe for evidence of sequential activity in

the neural data that was consistent across trials, as the presence

of sequential dynamics such as ‘‘time cells’’ (MacDonald et al.,

2011) should allow us to decode the passage of time from the

neural data (Bakhurin et al., 2017; Robinson et al., 2017; Cueva

et al., 2019).

We used an ensemble of linear classifiers trained to discrimi-

nate the population activity between every pair of time points

(Bakhurin et al., 2017; Cueva et al., 2019) in the tone and trace

periods of the trial (0–35 s, 2.5 s bins) to decode elapsed time
Neuron 107, 283–291, July 22, 2020 285
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from the neural data (Figure 2B; see also STAR Methods). As the

ability to decode time is not an exclusive feature of neural se-

quences but a signature of any consistent dynamical trajectory

whereby the neural states become sufficiently decorrelated in

time (e.g., consider monotonically ‘‘ramping’’ cells [Cueva

et al., 2019] or chaotic dynamics [Buonomano and Maass,

2009]), our analysis addresses the broader question of whether

any temporal coding arises during the task, without a priori as-

sumptions on its form.

We assessed whether neural activity was linearly separable

between each pair of time points in the tone and trace periods

of the task (Figure 2C). Decoding accuracy was no better than

chance for most pairwise classifiers, suggesting that either the

pattern of neural activity remains relatively constant, or the dy-

namics are not consistent across trials. As an additional test of

temporal coding, we can combine the output of the classifier

ensemble to predict the time bin label of individual activity vec-

tors (Bakhurin et al., 2017; Cueva et al., 2019). For each time

bin in a test trial, the neural activity is given to all pairwise classi-

fiers, whose binary decisions are combined to determine the

predicted time bin label of the data. Despite combining the infor-

mation learned by all classifiers, decoding accuracy did not

exceed chance-level performance (Figure 2D). We did not find

consistent evidence of temporal coding during either Pre- or

Post-Learning trials (Figure 2E). We obtained similar results us-

ing a nonlinear decoder and using data binned at a coarser

time resolution (Figure S2A). In other tasks, hippocampal time

cells were previously identified in simultaneously recorded pop-

ulations of just tens of neurons (Pastalkova et al., 2008; MacDon-

ald et al., 2011, 2013), an order of magnitude smaller than the re-

cordings we analyzed here, suggesting that CA1 time cell

sequences are not a prominent phenomenon during this trace

fear memory paradigm.

One caveat of the time decoding analysis is that it is sensitive

mainly to temporal dynamics that have consistent onset timing

and scaling; any variation in these parameters across trials could

degrade our ability to detect sequences. We alternatively

analyzed the order of each cell’s peak firing time across trials,

but the order consistency was within chance levels for both CS

cues, during Pre- and Post-Learning (Figures S2B–S2E). Here

we also assessed whether any sequential dynamics might

have rapidly and transiently emerged during the initial ‘‘Learning’’

trials but did not find evidence for reliable temporal patterns (Fig-

ures S2B–S2E). We finally tested the hypothesis that the neural

population might transition between different patterns of activity

during each trial in a way that was not time locked to specific

sensory or behavioral events but via neural sequences occurring

at different times in each trial. We fit hidden Markov models

(HMMs) to the data to identify these network motifs (Mazzucato

et al., 2019; Maboudi et al., 2018), but despite considering a

range of model parameters, we could not find evidence for

sequential activity during any task phase (Figures S3A–S3F).

These results indicate that temporal coding is not a dominant

network phenomenon during tFC, so sequential activity is un-

likely to bridge the gap between CS and US presentations

even during the initial Learning phase.

Our time decoding analyses indicated that most periods in

time during the task were not consistently separable, which sug-
286 Neuron 107, 283–291, July 22, 2020
gests that the network state during each trial may be relatively

static. We considered an alternative hypothesis consistent with

static activity, in which CS information is maintained by persis-

tent activation of a subgroup of neurons (Kami�nski et al.,

2017), as in attractor models of working memory (Amit and Bru-

nel, 1997; Barak and Tsodyks, 2014; Takehara-Nishiuchi and

McNaughton, 2008). Under this scenario, the population dy-

namics would not evolve in time but discretely shift to a static

state according to the trial’s CS cue, permitting the identity of

the cue to be decoded throughout the duration of the trial.

To test this, we trained a separate linear decoder at each time

bin during the task to predict the identity of the CS cue (Figures

3A–3C). Our choice of linear classifiers also allowed us to mea-

sure the importance of each neuron to the decoder’s decisions,

by examining the weights of each neuron along a vector orthog-

onal to the separating hyperplane (Figures 3A and 3B). Exam-

ining these results across time bins, we found that we were

unable to decode the CS identity with high accuracy during

Pre-Learning or Post-Learning trials at any point prior to the de-

livery of the US (Figure 3D), indicating that information about the

CS identity does not appear to be maintained in the moment-to-

moment activity of CA1 pyramidal cell populations. Relatedly,

activity was not robustly tied to instantaneous licking behavior,

which differed markedly between cues during Post-Learning tri-

als (Figures 1C and 1D). CS decoding accuracy was generally

high during US delivery in Post-Learning trials, consistent with

the reliable population response to the air puff (Figure 2A). We

note that similar analyses applied to appetitive trace condition-

ing paradigms in monkeys allowed CS identity to be decoded

from activity in amygdala and prefrontal cortex (Saez et al.,

2015), though the trace periodwas an order ofmagnitude shorter

than in our paradigm. We did notice an increase in the accuracy

of classifiers’ performance during the tone delivery in Post-

Learning trials, such that across the distribution of decoders,

performance exceeded chance levels (Figure 3E). This sug-

gested to us that there may be cue-selective responses in the

population that appeared with variable timing across trials, so

they could not be reliably decoded at more granular time

resolutions.

We tested the hypothesis that neural activity levels were pre-

dictive at longer timescales, first by attempting to decode the

CS identity from the average activity rate across theCS and trace

periods of each trial (0-35 s; Figure 4A). Surprisingly, we found

that at this timescale, we could significantly decode the CS iden-

tity from the population activity rates in all mice. Decoding accu-

racy exceeded chance only during Post-Learning trials,

congruent with a change in network organization following

learning. As external sensory information about the stimulus is

available only during the CS period, we next asked whether

average activity rates during other trial periods were still predic-

tive of the cue identity and how those activity patterns compared

with CS-period activity. To address this, we constructed a cross-

time period decoding matrix (Figure 4B). Values along the diag-

onal of the matrix gauge how reliably activity during each time

block predicts the cue, while off-diagonal entries assess how

decoders generalize to other trial periods. Decoding during

Pre-Learning trials was at chance level for all conditions, but dur-

ing Post-Learning, significant decoding accuracy was observed
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cross-validated decoding accuracy of individual mice at each time point. The example shown in (B) and (C) is marked in purple.
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in all time blocks starting from the tone onset (Figure 4B). Addi-

tionally, decoders showed significant generalization between the

CS and trace periods, suggesting that a representation of the

tone is maintained in the stimulus-free trace interval, and that

this representation is similar to activity during the CS. Decoders

trained or tested on the trace period performed worse than those

trained and tested on the CS period, indicating that activity dur-

ing the trace was less stable than in the CS period. Decoders

trained on the US period showed significant generalization to

all other times, though accuracy was low and the reverse rela-

tionships were not significant. It follows that representation of

the CS and US were largely distinct following trace learning, un-

like observations in the basolateral amygdala during delayed

conditioning (Grewe et al., 2017).

Our analysis established that stimulus identity could be read

out from the population activity during the tone and trace

period in a learning-dependent manner, so we sought to con-

nect these findings to changes in neural activity at the level

of individual neurons. Although some neurons exhibited robust

cue preferences following learning (Figure 4C, top), these were

rare, and most cells showed graded firing rate changes (Fig-

ure 4C, bottom). We quantified neuronal tuning with a selec-

tivity index and measured the fraction of significantly CS-tuned

neurons. Selectivity mirrored the population decoding results

when computed over the tone and trace periods (Figure 4D)

and was tightly correlated with neurons’ weights in the popula-

tion decoder (Figure 4E), demonstrating that the decoding anal-

ysis relied on neurons in the population with strong tuning to

CS identity. Similar to decoding accuracy measured during

the trace (Figure 4B), the fraction of tuned neurons was lower
during the trace than the CS period (Figure 4F) but above

chance levels, consistent with some maintenance of cue infor-

mation during the trace period.

Finally, we sought to characterize how network structure

changed during learning on a trial-to-trial basis. Specifically,

we asked how the set of active neurons compared across tri-

als by measuring the overlap between the set of neurons

active during the CS and trace periods, between each pair

of trials (Figure S4A). Activity patterns shifted from Pre- to

Post-Learning, demonstrating that learning is accompanied

by a large modification in the active neuronal population (Fig-

ures S4B and S4C). Across all epochs, the active ensemble

between CS+ and CS� trials largely overlapped, although

this tended to decrease in Post-Learning (Figure S4D). Given

the established role of hippocampal circuits in contextual

memory (Maren et al., 2013; Urcelay and Miller, 2014; Fanse-

low, 2010), this overlap may reflect a representation of the

broader context, in addition to or independent of the encoding

of the individual CS cues.

DISCUSSION

Here we show that network dynamics during tFC are inconsis-

tent with hypotheses of sequential (Kitamura et al., 2015; Sellami

et al., 2017) or static (Kami�nski et al., 2017) activity in CA1. Rather

we find that learning is underpinned by the emergence of a sub-

set of cue-selective neurons in CA1 with stochastic dynamics

across trials. These units encode cue information in a learning-

dependent manner and may relate to descriptions of hippocam-

pal memory ‘‘engram cells,’’ identified via immediate-early
Neuron 107, 283–291, July 22, 2020 287
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(D) Percentage of active cells with significant CS selectivity, computed from average activity across CS and trace periods.
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gene (IEG) products (Liu et al., 2012; Vetere et al., 2017; Tanaka

et al., 2018; Rao-Ruiz et al., 2019).

Consistent with this notion, CS-selective cells that emerge

with learning fall within the range of the 10%–20% of CA1 py-

ramidal neurons recruited in engrams supporting hippocampal-

dependent memory (Tayler et al., 2013; Tanaka et al., 2018;

Rao-Ruiz et al., 2019). If the sparse subset of cells we identified

do represent engram cells, then this would further support the

notion that gating mechanisms exist to ensure sparsity of en-

grams, as the engram size does not vary with behavioral para-

digms, such as tFC used here compared with contextual

learning in freely moving animals (Rao-Ruiz et al., 2019). We

also speculate that neuromodulatory circuits may play an

important role in regulating engram recruitment. For example,
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cholinergic inputs can have long-lasting effects on neuronal

excitability (Letzkus et al., 2011, 2015) and may contribute to

the emergence of CS-selective cells in CA1 through mecha-

nisms similar to that recently reported in auditory cortex (Guo

et al., 2019), in which there is also an absence of persistent

principal cell activity in a 5 s ‘‘trace’’ learning paradigm. It is

important to note, however, that in our data, CS selectivity

manifested along a continuum of firing rate differences be-

tween conditions (Figures 4C and 4E), and it is unclear how

coding differences at these scales would be resolved with

IEG-based engram analysis.

Our data show that cue information is not actively transmitted

by principal neurons’ moment-to-moment firing rates. Neural

activity is instead relatively sparse across time and conditions.
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The lack of reliable CS coding during the Pre-Learning epoch is

consistent with prior evidence that few CA1 pyramidal neurons

respond to passive playback of auditory stimuli (Aronov et al.,

2017). It is possible that these dynamics also differ according

to sensory modality and behavioral states, such as locomotion.

In previous studies that report neural sequences in CA1 during

delay periods (Pastalkova et al., 2008; MacDonald et al., 2011;

Wang et al., 2015; Robinson et al., 2017), the hippocampal

network state was in a regime dominated by frequent burst firing

by pyramidal neurons (Buzsáki and Moser, 2013) reminiscent of

activity during active behaviors such as spatial exploration.

Indeed, in these experiments the animals were trained to run dur-

ing the delay period (Pastalkova et al., 2008; Wang et al., 2015;

Robinson et al., 2017) or could freely move in the delay area

(MacDonald et al., 2011). Delay sequences in immobility are

less stable with lower firing rates (MacDonald et al., 2013), and

in freely moving animals, they are absent at time intervals longer

than a few seconds (Sabariego et al., 2019). The dynamics we

observe resemble more closely the activity often seen during

immobility and awake quiescence, where pyramidal neurons

fire only sparsely (Buzsáki, 2015).

We observe sparse and temporally variable activity that never-

theless is predictive of task information when averaged over

longer time periods. It is possible, then, that these dynamics

may arise from stochastic reactivation of memory traces (Mon-

gillo et al., 2008; Barak and Tsodyks, 2014). We attempted to

identify patterns of neural co-activity in our data (Figures S3G

and S3H) but did not find strong evidence for cue-selective, reli-

ably synchronous events, at least at fine timescales. Given the

general sparsity of activity during the task and the unreliability

of single spike detection with calcium imaging, it is likely that

we have underestimated the task-related activity here. Co-active

neurons may be more readily apparent with faster imaging

speeds and with denser sampling of CA1 populations (Malvache

et al., 2016).

Sparse reactivation of neural assemblies may also suggest a

fundamentally different mode of propagating information over

time delays during trace fear learning, for example, by storing in-

formation transiently in synaptic weights (Mongillo et al., 2008;

Barak and Tsodyks, 2014). Such a method could confer a

considerable metabolic advantage for maintaining memory

traces over long time delays. Previous theoretical work to this

end has focused on short-term plasticity in networks with pre-

existing attractor architectures, where pre-synaptic facilitation

among the neurons in a selected attractor drives its reactivation

in response to spontaneous input (Mongillo et al., 2008) by out-

competing the other attractors. The time constant of facilitation

limits the lifetime of these memory traces to around the order

of a second, which is much shorter than the trace period we

considered here. Instead, we speculate that coding assemblies

may develop through continual Hebbian potentiation over trials

and that plasticity induced by the most recently presented cue

biases reactivated network states by increasing the depth of

the corresponding basins of attraction. A similar scheme has

been explicitly modeled in the case of visuo-motor associations

(Fusi et al., 2007), and it is known to require synaptic modifica-

tions on multiple timescales (Benna and Fusi, 2016). However,

it has never been considered in the case of fear learning and
long time intervals and will be an important direction for

future work.

We observed an overall marked turnover in the set of active

neurons from Pre- to Post-Learning trials and a high degree of

overlap in the active population between CS+ and CS� trials

(Figure S4). It is possible that this broader change in representa-

tion associates the context with the US itself or reflects an asso-

ciation with more abstract knowledge of the cue-outcome rules

(Maren et al., 2013; Urcelay and Miller, 2014; Fanselow, 2010).

Relatedly, memories experienced closely in time may be en-

coded by overlapping populations of neurons (Cai et al., 2016),

consistent with a shared neural ensemble between CS trial types

in Post-Learning. This linking of distinct but related memories

may occur as a result of transient increases in the excitability

of neural subpopulations, which bias engram allocation (Yiu

et al., 2014; Cai et al., 2016; Rashid et al., 2016).

Our findings highlight a hippocampal-dependent learning pro-

cess that associates events separated in time in the absence of

persistent activity. Given that associations in real-world sce-

narios are often dissociated from emotionally valent outcomes

by appreciable time delays (Raybuck and Lattal, 2014), our find-

ings have broad implications for models of temporal association

learning and circuit dynamics underlying the dysregulation of

anxiety and fear in neuropsychiatric disorders.
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H., Carandini, M., and Harris, K.D. (2017). Suite2p: beyond 10,000 neurons

with standard two-photon microscopy. bioRxiv. https://doi.org/10.1101/

061507.

Pastalkova, E., Itskov, V., Amarasingham, A., and Buzsáki, G. (2008). Internally
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All unique resources generated in this study are available from the Lead Contact with a completed Materials Transfer Agreement.

Data and Code Availability
The data and analysis code generated in this study are available upon reasonable request to the corresponding authors.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experiments were conducted in accordance with the NIH guidelines and with the approval of the Columbia University Institutional

Animal Care and Use Committee. Experiments were performed with adult (8-16 weeks) male and female C57BL/6 mice (Jackson

Laboratory) and transgenic CaMKIIa-Cremice on a C57BL/6 background, where Cre is predominantly expressed in pyramidal neu-

rons (R4Ag11 line, Dragatsis and Zeitlin (2000); Jackson Laboratory, Stock No: 027400).

METHOD DETAILS

Behavior and Imaging
Viruses

Optogenetic experiments were performed by bilaterally injecting (see below) either recombinant adeno-associated virus (rAAV) ex-

pressing ArchT (rAAV2/1-Syn-ArchT) or tdTomato control protein (rAAV2/1-Syn-tdTom), under the Synapsin promoter, into male and

female C57BL/6mice. These viruseswere the generous gift of Dr. Boris Zemelman. Imaging experiments were performed by injecting

Cre-dependent recombinant adeno-associated virus (rAAV) expressing GCaMP6f (rAAV1-Syn-Flex-GCaMP6f-WPRE-SV40,

Addgene/Penn Vector Core) into male and female transgenic CaMKIIa-Cre mice (Dragatsis and Zeitlin, 2000) to label pyramidal

neurons.

Surgical procedure

Viral delivery to hippocampal area CA1 and implantation of headposts, optical fibers, and imaging cannulae were as described pre-

viously (Kaifosh et al., 2013; Kheirbek et al., 2013; Lovett-Barron et al., 2014). Briefly, mice were anesthetized under isofluorane and

viruses were delivered to dorsal CA1 by stereotactically injecting 50 nL (10 nL pulses) of rAAVs at three dorsoventral locations using a
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Nanoject syringe (�2.3 mm AP; �1.5 mmML; �0.9, �1.05 and �1.2 mm DV relative to bregma). For head-fixed optogenetic exper-

iments, mice were chronically implanted with bilateral optical fiber cannulae above the CA1 injection sites immediately after virus

delivery (Lovett-Barron et al., 2014; Kheirbek et al., 2013). A stainless steel headpost was then fixed to the skull (Kaifosh et al.,

2013). The cannula, headpost, and any exposed skull were secured and covered with black grip cement to block light from the im-

planted optical fibers. For imaging experiments, mice were allowed to recover in their home cage for 3 days following virus delivery

procedures. They were then surgically implanted with a custom metal headpost (stainless steel or titanium) along with an imaging

window (diameter, 3.0 mm; height, 1.5 mm or 2.3 mm) over the left dorsal hippocampus. Imaging cannulae were constructed by

adhering (Narland optical adhesive) a 3 mmglass coverslip (64-0720, Warner) to a cylindrical steel cannula. The imaging window sur-

gical procedure was performed as detailed previously (Kaifosh et al., 2013; Lovett-Barron et al., 2014). Briefly, mice were anesthe-

tized and the skull was exposed. A 3 mm hole was made in the skull over the virus injection site. Dura and cortical layers were gently

removed under visual guidance while flushing with ice-cold cortex buffer. The imaging cannula was inserted through the surgical

opening in the skull and secured so that external capsule fibers were visible through the cannula glass. Finally, the metal headpost

was affixed to the skull with dental cement. For all surgeries, monitoring and analgesia (buprenorphine or meloxicam as needed) was

continued for 3 days postoperatively.

Behavioral apparatus

We adopted our previously described (Kaifosh et al., 2013; Lovett-Barron et al., 2014) head-fixed system for combining 2-photon

imaging with microcontroller-driven (Arduino) stimulus presentation and behavioral readout. To maintain immobility and constrain

neural activity related to locomotion (MacDonald et al., 2013), mice were head-fixed in a body tube chamber (Guo et al., 2014).

The chamber was linedwith textured fabric that was interchanged between trials to control for mouse excretions and prevent contex-

tual conditioning. Tones were presented via nearby speakers and air-puffs delivered by actuating a solenoid valve, which gated

airflow from a compressed air tank to a pipette tip pointed at the mouse’s snout. Water reward delivery during licking behavior

was gated by another solenoid valve in response to tongue contact with a metal water port coupled to a capacitive sensor. Electrical

signals encoding mouse behavior and stimulus presentation were collected with an analog-to-digital converter, which was synchro-

nized with either optogenetic laser delivery or 2-photon image acquisition by a common trigger pulse.

Head-fixed trace fear conditioning

Starting 3-7 days after surgical implantation, mice were habituated to handling and head-fixation as previously described (Kaifosh

et al., 2013; Lovett-Barron et al., 2014; Guo et al., 2014). Within 3 days, mice could undergo up to an hour of head-fixation on the

behavioral apparatus while remaining calm and alert. They were then water deprived to 85%–90% of their starting body weight

and trained to lick operantly for small-volume water rewards (~500 nL/lick) while head-fixed. Before undergoing experimental para-

digms, mice were required to maintain consistent licking for multiple (6-12) 60 s trials per day while maintaining their body weight

between 85%–90% of starting weight.

For optogenetic experiments, we utilized our previously described head-fixed ‘trace’ fear conditioning paradigm (Kaifosh et al.,

2013). Briefly, we paired a 20 s auditory conditioned stimulus (CS, either 10 kHz constant tone or 2 kHz tone pulsed at 1Hz) with

air-puffs (unconditioned stimulus, US; 200 ms, 5 puffs at 1 Hz), separated by a 15 s stimulus-free ‘trace’ period. During each condi-

tioning trial, we recorded licking from mice over a 50 s period: 10 s pre-CS, 20 s CS, 15 s trace, and 5 s US. Mice were conditioned

across trials spaced throughout three consecutive days. On each trial, we used suppression of licking during the tone, normalized to

licking during the 10 s pre-CS period, as a measure of conditioned fear. We changed the fabric material in the behavioral chamber

between every trial to prevent contextual fear conditioning (Kaifosh et al., 2013; Lovett-Barron et al., 2014).

For 2-photon imaging experiments, we expanded our behavioral paradigm to a differential learning assay using the 2 different audi-

tory cues above as either a CS+ or CS� (where only CS+ is paired with the aversive US). We randomized the assignment of CS+ and

CS� tones across mice. Prior to the introduction of US-paired conditioning trials, we obtained multiple trials of behavioral responses

(10-15 trials; ‘‘Pre-Learning’’) to each CS cue presented alone in pseudorandom order over 2-3 days. Mice underwent blocks of 4-6

trials with 1-5 min inter-trial intervals each day (¿1 hour between trial blocks). We then subjected mice to our 3-day conditioning pro-

tocol with US-pairing as above, but with alternation between CS+ and CS� trials (‘‘Learning’’). Finally, over another 2-3 days, we

collected additional trials beyond where behavioral responses plateaued (~20-25 of each CS presented in pseudo-random order,

with trial blocks of 4-6 trials as above, ‘‘Post-Learning’’) with continued US reinforcement on CS+ trials (to avoid extinction). During

Pre-Learning and Post-Learning trials, contextual cues, consisting of the chamber fabric material and a background odor of either

70% ethanol or 2% acetic acid, were randomly changed across trials.

Head-fixed optogenetics

200 mmcore, 0.37 numerical aperture (NA) multimode optical fibers were constructed as previously detailed (Kheirbek et al., 2013). A

splitter patch cable (Thorlabs) was used to couple bilaterally implanted optical fibers to a 532 nm laser (50mW,OptoEngine) for ArchT

activation while mice were head-fixed. All cables/connections were shielded to prevent light leak from laser stimuli and matching-

color ambient LED illumination was continuously provided in the behavioral apparatus so as to prevent the laser activation from

serving as a visual cue. After the 10 s pre-CS period on each trace fear conditioning trial, 10 mW of laser light was continuously

delivered through each optical fiber for the entire CS-trace-US sequence. Experimenters were blinded to subject viral injections. After

data collection, mice were processed for histology and recovery of optical fibers. Subjects were excluded from the study if the

implant entered the hippocampus, if viral infection was not complete in dorsal CA1, or if there were signs of damage to the optical

fiber that could have compromised intracranial light delivery.
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2-photon microscopy

For imaging experiments, mice were habituated to the imaging apparatus (e.g., microscope/objective, laser, sounds of resonant

scanner and shutters) during the training period. All imaging was conducted using a 2-photon 8 kHz resonant scanner (Bruker)

and 40x NIR water immersion objective (Nikon, 0.8 NA, 3.5mm working distance). Images were acquired as either single plane

(n = 3 mice) or dual-plane (n = 3 mice) data. For dual-plane acquisitions, we coupled a piezoelectric crystal to the objective as

described in Danielson et al. (2016), allowing for rapid displacement of the imaging plane in the z dimension, which permitted

simultaneous data collection from CA1 neurons in 2 different optical sections. To align the CA1 pyramidal layer with the horizontal

two-photon imaging plane, we adjusted the angle of the mouse’s head using two goniometers (±10� range, Edmund Optics). For

excitation, we used a 920 nm laser (50-100 mW at objective back aperture, Coherent). Green (GCaMP6f) fluorescence was collected

through an emission cube filter set (HQ525/70 m-2p) to a GaAsP photomultiplier tube detector (Hamamatsu, 7422P-40). A custom

dual stage preamp (1.4 3 105 dB, Bruker) was used to amplify signals prior to digitization. All experiments were performed at 1-2x

digital zoom, covering ~166-332 mm3 166-332 mm per imaging plane. Dual-plane images (5123 512 pixels each) were separated

by 20 mm in the optical axis and acquired at ~8 Hz given a 30ms settling time of the piezo z-device. Single-plane data (512 3 512

pixels each) was collected at 30 Hz in the absence of the piezo z-device.

QUANTIFICATION AND STATISTICAL ANALYSIS

Image preprocessing
All imaging data were pre-processed using the SIMA software package (Kaifosh et al., 2014). For dual-plane acquired data, motion

correction was performed separately on individual trials using a modified 2D hidden Markov model (Dombeck et al., 2007; Kaifosh

et al., 2013) in which themodel was re-initialized on each plane in order to account for the settling time of the piezo. Formotion correc-

tion of single-plane acquired data, trials were registered (non-rigid registration) using the Suite2p software package (Pachitariu et al.,

2017). All recordings were visually assessed for residual motion. In cases where motion artifacts were not adequately corrected, the

affected data were discarded from further analysis. We then used the Suite2p software package (Pachitariu et al., 2017) to identify

spatial masks corresponding to neural region of interest (ROIs) and extract associated fluorescence signal within these spatial foot-

prints, correcting for neuropil contamination. Identified ROIs were curated post hoc using the Suite2p graphical interface to exclude

non-somatic components.

For each session, we detected only a subset of neurons that were physically present in the FOV. Once signals were extracted for all

sessions, we registered ROIs across each session as follows. We first chose the session with the largest number of detected neurons

as the reference session, and then computed an affine transform between the time-averaged FOV of all other sessions to the refer-

ence. Transforms were visually inspected to verify accuracy. Using these transforms, we processed each session serially to register

ROIs to a common neural pool across sessions. For a given session (referred to now as the current session), the calculated FOV trans-

formwas applied to all ROI masks tomap them to the reference session coordinates. We calculated a distancematrix (using Jaccard

similarity) that quantified the spatial overlap between all pairs of reference and current session ROIs. We then applied the Hungarian

algorithm (Kuhn, 1955) to identify the optimal pairs of reference and current ROIs. All pairs with a Jaccard distance below 0.5 were

automatically accepted as the same ROI. For the remaining unpaired current ROIs, pairs were manually curated via an IPython note-

book, which allowed the user to select the appropriate reference ROI to pair or enter the current ROI as a new ROI (i.e., not in the

reference pool). Any current ROIs whose centroids were more than 50 pixels away from an unpaired reference ROI were automat-

ically entered as new ROIs, to accelerate the curation. Once all ROIs for the current session were processed (either paired with a

reference ROI or labeled as new), the new ROIs were appended to the reference list. The remaining sessions were then processed

serially in the same fashion, where the reference ROI list is augmented on each step to include additional ROIs that were not pre-

sented in any previously processed session. Once all sessions were processed, this process yielded a complete list of reference

ROIs and their identity in each individual session. As a final step, the reference ROIs were warped back to the FOVs of each individual

session via affine transform andROIs that fell outside the boundaries of any session FOVwere discarded, so that all analyzed neurons

were physically in view for all sessions. Inbound reference ROIs that were not functionally detected in any individual session were

assumed to be silent in that session for subsequent analysis.

Neural data analysis
Event detection

All fluorescence traces were deconvolved to detect putative spike events, using the OASIS implementation of the fast non-negative

deconvolution algorithm (Friedrich et al., 2017). Following spike inferencing, we discarded any events whose energy was below 4

median absolute deviations of the raw trace. This avoided including small events within the range of the noise, which could artificially

inflate activity rates and correlations between neurons.

Given the dominant sparsity of activity, we then discretized each ROI trace to indicate whether an event was present in each frame.

Trials for each experiment were collected over the span of several days. Consequently, we found that discretization was necessary to

prevent variations in imaging system parameters from exerting undue influences on the analysis, as this could introduce arbitrary

variance in the scale of calcium events across sessions.
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Decoding

All classifiers in the main text were support vector machines (SVM) with a linear kernel, using the implementation in scikit-learn (Pe-

dregosa et al., 2011). For cross-validation, data were randomly divided into two non-overlapping groups of trials, used for training and

testing the classifiers (75/25% split). This procedurewas repeated 100 times for each classifier with random training/test subdivisions

and reported as the average across cross-validation folds. Trials were balanced by subsampling the overrepresented class, and all

decoding results were compared against a null distribution built by repeating the analyses on appropriately shuffled surrogate data,

which controlled for the effects of finite sampling. This is particularly important for fear learning paradigms such as ours, where trial

counts are very limited.

Decoding elapsed time

We designed a decoder to predict the elapsed time during each trial, in order to assess whether there were consistent temporal dy-

namics in the neural data during the experiment, such as sequences of time cells. To illustrate the idea behind this analysis (see Fig-

ure 2B schematic), we can summarize the activity of the network at each point in time as a point in a high dimensional neural state

space, where the axes in this space corresponds to the activity rate of each neuron. The state of the network at each point in time

during a trial traces out a path of points in neural state space. If the neural dynamics continually evolve in time (e.g., time cell se-

quences), then the neural state at one point in time (t) should be different from the states that occur at points further away in time

(t +Dt), reflecting the recruitment of different neurons at each point in the sequence. If these dynamics are reliable across many trials,

we should be able to train a linear decoder to accurately classify whether data came from one time point or the other, by finding the

hyperplane that maximally separates data from time t and t + Dt in the neural state space. By extending this analysis to compare all

possible pairs of time points (i.e., for all possibleDts), we can identify moments during the task that exhibit reliable temporal dynamics

across trials (Bakhurin et al., 2017; Cueva et al., 2019).

Time decoding was done separately for CS+ and CS� trials, and for Pre- and Post-Learning trial blocks, to assess differences be-

tween cues and over learning. We analyzed data during both the tone and trace period, for a total of 35 s on each trial. We averaged

each neuron’s activity in non-overlapping 2.5 s bins, so that each trial was described by a sequence of 14 population vectors of ac-

tivity in time.

Our time decoder uses a 1 versus 1 approach through an ensemble of linear classifiers. For each pair of time bins in the experiment,

we train a separate classifier to distinguish between population vectors of activity that came from those two time bins. For comparing

14 time bins, this results in a set of 91 binary classifiers trained on all unique time comparisons (Bakhurin et al., 2017; Cueva et al.,

2019). We first evaluated the performance of the individual classifiers by testing their ability to correctly label time bins from held out

test trials, where in this analysis each classifier is tested only on time bins from the trial times that it was trained to discriminate. This

result is presented as amatrix in Figure 2C, and demonstrates the linear separability of any two points in time during the task.We then

used the decoder to perform amulti-class time prediction analysis. Here each population vector in a held-out test trial is presented to

all pairwise classifiers, which ‘‘vote’’ on what time bin the data came from (i.e., for each possible time bin, we tabulate the number of

classifiers that decided the population activity came from that time). We take the decoded time to be the time bin with the plurality of

votes, and repeat this procedure across all sample population vectors in each test trial to decode the passage of time.

For all time decoding analyses, we compare the classification accuracy or prediction error to a null distribution, which we calculate

by repeating these analyses on 1000 surrogate datasets, where for each trial independently, we randomly permute the order of the

time bins. This destroys any consistent temporal information across trials, while preserving the average firing rates and correlations

between neurons within each trial.

We repeated the above analyses at a coarser time resolution (5 s, yielding a sequence of 7 population vectors in each trial), as well

as repeated the analysis for both fine and coarse time resolutions using a nonlinear SVM (RBF kernel via scikit-learn, Pedregosa et al.

[2011]), all of which produced similar results to those reported in the main text (see Figure S2A).

Decoding stimulus identity from instantaneous firing rates

We also used a population decoding approach to assess the times in the experiment during which there was significant information

about the stimulus identity in the neural data. This analysis can be schematized similar to that above, where the different CS cues are

associated with different network states that can be reliably segregated in state space by a hyperplane (Figure 3A). On each trial, we

averaged the activity of each neuron in non-overlapping 1 s bins. We then trained a separate linear classifier on each time bin to pre-

dict whether the population vector came from aCS+ or CS� trial. Classifiers were cross-validated as above on held-out test data.We

similarly compared the classification accuracy for trial information to a null distribution, where here we repeated the decoding anal-

ysis on 1000 surrogate datasets where the CS trial label was randomly shuffled.

Decoding from average firing rates

We similarly assessed our ability to decode stimulus identity from the average firing rates of the neurons within a set trial period on

each trial. This procedure is identical to the one outlined above, and we used it to assess our ability to decode the CS identity during

the Pre-CS (�10 to 0 s), CS (0 to 20 s), Trace (20 to 35 s), US (35 to 40 s), and Post-US (40 to 170 s) periods of the trial (Figure 4B), as

well as during the CS and trace periods combined (0 to 35 s, Figure 4A).

We additionally assessed how decoders learned at one time period in the task generalize to activity observed in other time periods,

by constructing a cross-time period decoding analysis. Here on each cross-validation fold, we trained different decoders to predict

CS identity from the activity during each trial period separately. Then on the held-out test data, we tested each decoder not only on

the activity from the time period on which it was trained, but on the activity of all other time periods as well (e.g., train on CS, test on
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trace). The result is a matrix of pairwise trial period comparisons, where the columns indicate the time period used for training the

classifier and the row indicate the time period for testing. These comparisons are not necessarily symmetric (e.g., we find that CS

period decoders can be used to predict the cue when tested on trace-period activity better than the reverse).

Selectivity index analysis

To assess CS-selectivity at the level of single neurons, we computed a selectivity index as:

SI =
f+ � f�
f+ + f�

where f+ and f� are the average activity of the neuron in the examined trial time period on CS+ and CS� trials, respectively. This yields

an index bounded between +1 (all activity during CS+ trials) and�1 (all activity during CS� trial). Similar to the decoding analysis, we

compared this selectivity index to those calculated from 1000 surrogate datasets where the trial type labels were randomly shuffled,

which controlled for spurious firing rate differences attributable to small numbers of trials. We computed these scores separately for

Pre- and Post-Learning trials, and quantified the fraction of cells active during that trial type which showed significant CS-selectivity,

determined by calculating a p value from the observed SI relative to its shuffle distribution. For the regression to population decoder

weights shown in Figure 4E, we z-scored each SI (computed from average activity over CS and trace periods; 0-35 s) relative to its

shuffle distribution’s mean and standard deviation.

Sequence score

For analysis of neural sequences using cell firing orders, we detected the latency to peak firing rate for each neuron during the CS and

trace periods (0 to 35 s) that was active on at least one trial. We compared this firing order between all trial pairs via Spearman’s rank

correlation, and assigned a sequence score as the average pairwise rank correlation between trials. This analysis was done sepa-

rately for CS+ and CS� trials. To assess significance, sequence scores were compared to those calculated from 1000 surrogate da-

tasets, where for each neuron, its activity trace was randomly permuted on each trial independently to randomize the temporal

ordering between cells’ activity events.

Hidden Markov model

We used hidden Markov models (HMMs) as an additional, more flexible probe for sequential dynamics in the neural data (Mazzucato

et al., 2019; Maboudi et al., 2018). The HMM identifies a set of latent neural states, which can be thought of as a recurring pattern of

population activity: each state dictates a probability for each neuron that it will be active when the network is in that state. The HMM is

simultaneously a clustering algorithmwhich identifies periods of similar neural activity, and amodel of neural sequences, as it models

the transitions between latent states over time. We use this framework to analyze both the temporal and covariance structure of neu-

ral population activity.

Formally, we model the neural states as evolving in time under first order Markovian dynamics. Let q denote the discrete state var-

iable and {S1.SK} be the set of possible states. Then the probability of transitioning from one state q(t) = Si to the next q(t + 1) = Sj

depends only on the current state, and these ‘‘transition’’ probabilities are described by a K 3 K matrix A with elements aij:

Pðqðt + 1Þ = SjÞ = Pðqðt + 1Þ = Sj

��qðtÞ = SiÞ= aij

The state variable q is never observed directly, but rather exerts an influence on the observed neural activity. Since we are working

with binarized calcium events, it is natural to describe each neuron as an independent Bernoulli process, whose activation probability

depends on the current neural state. Letting ni(t) be the activation of the ith neuron at time twhich can take values ˛{0,1}, and {n1(t).
nN(t)} = n(t):

PðniðtÞjqðtÞ = sjÞeBernoulli½bij�
PðnðtÞjqðtÞ = sjÞ =
YN
i = 1

b
niðtÞ
ij ð1� bijÞ1�niðtÞ

Here the bij are elements of the ‘‘observation’’ matrix B, which summarizes the firing rates (activation probability) of the ith neuron

when the network is in the jth state. In sum, the columns of B give us the pattern of activity observed when the network is in each

neural state, and A describes how the network moves dynamically between states over time. Together with the vector p which de-

scribes the probability of starting in each state, the model is completely specified by these parameters {A,B,p} (Rabiner, 1989).

The HMM parameters {A,B,p} are not known a priori and must be fit to the observed neural data. We used the standard Baum-

Welch expectation-maximization algorithm to iteratively update the model parameters in order to maximize the likelihood of the

data (Rabiner, 1989), treating each trial as an observation sequence. During each M-step of the procedure, we enforced a minimum

activity rate of 0.001 Hz to regularize the model (Maboudi et al., 2018). The optimization is non-convex and prone to local minima,

which we combated by first initializing B using a modified K-means clustering of the neural data. The hyperparameter K, which spec-

ifies the number of latent neural states in the model, is not learned andmust be set manually. We fit 12 models to the dataset for each

value of K ˛ {5.50}, using randomized initial conditions, and for each K we retained the model that maximized the likelihood of the

data. We trained a separate set of models for Pre-Learning and Post-Learning trials, for each mouse.
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HMM transition analysis

After fitting themodel, we estimated themost likely sequence of states on each trial via the Viterbi algorithm (Rabiner, 1989). From this

sequence, we constructed single trial transition matrices by counting state transitions along the Viterbi path. Similar to the rank

sequence analysis described previously, we computed the correlation between these transition matrices for all pairs of trials, as a

measure of the similarity of trial activity sequences. For this calculation, we set the diagonal of each transition matrix to zero, so

that the correlations focused on which state transitions appeared on a given trial, rather than the state duration implicit in self-tran-

sition probabilities. To determine significance, we compared this averaged sequence correlation to a distribution of correlations

generated by randomly shuffling the order of time bins independently on each trial prior to calculation (Recanatesi et al., 2020).

This procedure was repeated for all model complexities, separately for CS+ and CS� trials.

Decoding CS using HMM states

For each trial, we calculated the posterior probability of each state at each point in time, given the model parameters and the

observed neural data. From this, we estimated the frequency that each state appeared in the trial as the average of the state posterior

probability over time (Rabiner, 1989). Similar to our decoding analysis usingmean firing rates described previously, we trained a linear

SVM to decode the identity of the CS cue using the state frequencies on each trial, calculated from 0-35 s relative to the cue onset

(i.e., CS and trace period).

We gauged how much each state reflected strongly co-active neurons by counting the number of neurons whose observation

probabilities exceeded 75%. We also assigned each state a CS selectivity ranking based on the absolute value of its weight in

the decoder trained on state frequencies. We then plotted the average number of strongly co-active neurons in each state, separately

for each selectivity rank (Figure S3).

Ensemble overlap analysis

We measured the similarity in the active set of neurons between a pair of trials by computing the Jaccard similarity index, which for

two sets is given by the size of the set intersection divided by the size of the set union (Figure S4). Intuitively, if the sets of active neu-

rons overlap completely, the set intersection and union are equal and the index is 1, while if trials recruit orthogonal sets of neurons,

the intersection and thus the index are 0. This metric is biased by the fraction of active neurons on a given trial; if two trials randomly

recruit 50% of neurons, the Jaccard similarity will tend to be higher than if they randomly recruited 10% of neurons, as the former will

tend to havemore overlapping elements purely by chance. To control for differences in activity rates across trials, we generated 1000

surrogate scores for each trial pair where we recomputed the index between two binary vectors whose elements were randomly as-

signed as active or inactive tomatch the fraction of active neurons in the real trials. The observed indexwas then z-normalized relative

to this distribution, to quantify the population similarity beyond that expected from random recruitment of the same number of

neurons.

Statistics

Statistical details of experiments can be found in the figure legends. Statistical details of analysis methods are described in the cor-

responding sections above. No statistical methodswere used to predetermine sample sizes, but our sample sizes are similar to those

reported in previous publications.
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