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Abstract. Gesture recognition devices provide a new means for natu-
ral human-computer interaction. However, when selecting these devices
to be used in games, designers might find it challenging to decide which
gesture recognition device will work best. In the present research, we com-
pare three vision-based, hand-gesture devices: Leap Motion, Microsoft’s
Kinect, and Intel’s RealSense. The comparison provides game designers
with an understanding of the main factors to consider when selecting
these devices and how to design games that use them. We developed
a simple hand-gesture-based game to evaluate performance, cognitive
demand, comfort, and player experience of using these gesture devices.
We found that participants preferred and performed much better using
Leap Motion and Kinect compared to using RealSense. Leap Motion also
outperformed or was equivalent to Kinect. These findings were supported
by players’ accounts of their experiences using these gesture devices.
Based on these findings, we discuss how such devices can be used by
game designers and provide them with a set of design cautions that pro-
vide insights into the design of gesture-based games.

Keywords: Hand-gesture · Games · Game design · Leap Motion ·
Kinect · RealSense · Vision-based

1 Introduction

The proliferation of gesture-recognition technology enables players to interact
with games in new ways [13,36,57]. Such devices enable players to use different
parts of their body as a controller, increasing physical immersion and enabling
designers to explore novel game mechanics and interaction methods [36,47].

Human hands are one of the most expressive body parts [14,40,43]. To detect
the different hand movements and gestures, several technologies have been devel-
oped and employed for various domains and applications: education [60,62],
entertainment [12,15,63], navigation [28], and training games [51,52]. However,
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the accuracy and performance of these technologies vary greatly [7], and in some
cases the characteristics of the technologies may be incompatible with the game
design [8,32].

When selecting hand-gesture recognition devices, game designers might find
it challenging to decide which device will work best for their game. The present
research enables game designers to understand the differences between these
devices, how to select them, and how to incorporate them within their games.
Based on our motivation and prior research, we evaluate three commonly used
hand-gesture recognition devices: Leap Motion (LM), Intel RealSense (RS), and
Microsoft Kinect (MK). This comparison develops an understanding of the main
factors that influence their performance and use in games. Based on our study of
prior work [29,35,41,46,50,56,58], we hypothesized that LM would outperform
MK and that MK would outperform RS in games across the following measures:

H1–H4: Game performance (H1: overall completion time, H2: completion time
for small objects, H3: completion time for large objects, H4: error rate): LM >
MK > RS.

H5–H10: NASA Task Load Index (NASA-TLX) [18,19] workload measurement
item scores (H5: mental demand, H6: physical demand, H7: temporal demand,
H8: effort, H9: frustration, H10: performance1): LM < MK < RS.

H11–12: Perceived comfort (H11) and accuracy (H12): LM > MK > RS.
To test our hypotheses, we developed a simple hand-gesture game, Handy. In

this game, players move an embodiment [6] on the screen with the gesture device
and collect gems by performing a “grab” hand gesture when the embodiment is
over them. The goal of the game is to collect all the gems as fast as possible. The
development of the game identified issues in developing cross-platform gesture-
based systems. In a mixed methods, within-subjects study, 18 participants played
Handy using the three different hand-gesture recognition devices: LM, MK, and
RS. We investigated the impact of these devices on game completion time, error
rate, cognitive workload, and player experience.

We found that players performed better and felt most comfortable when they
used LM and MK. Players also reported that LM and MK are more accurate, and
they felt most comfortable using these devices. Through this work, we contribute:

1. a comparative study of three different vision-based hand-gesture recognition
devices and analyzed how they might impact performance, cognitive load,
and player experience in games; and

2. provide a set of design cautions that game designer can take into consideration
when working and designing with hand-gesture recognition devices.

In the reminder of this paper, we synthesize background on gesture-based
interaction, prior hand-gesture studies, and gesture-based interaction in games.
We then provide a description of the methodology, the design of the game Handy,
1 In the NASA-TLX, the performance score is reverse-coded so that, like the other
scores, a higher score is worse, thus, a high score on performance indicates worse
perceived performance.
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and the user study. Finally, we discuss our results and provide a set of design
cautions for future hand-gesture based games.

2 Background

In this section, we synthesize prior research on gesture-based interaction, discuss
prior hand-gesture comparative studies, and provide an overview of prior designs
and studies of gesture-based interaction in games.

2.1 Gesture-Based Interaction

Gesture-recognition technology enables users to interact with systems and games
with their body in novel ways [13,36,57]. For example, users can use their hands
to create different mid-air gestures to perform a number of actions, such as
scrolling through an application window, flipping a page in a digital book, or
pointing and selecting a folder in a computer desktop [16,40]. Such natural
human-computer interaction has being shown to be useful and effective in a
number of domains, such as in education [60,62], entertainment [12,15,63], nav-
igation [28], and training games [51,52].

To enable such gesture-based interaction, a number of technologies have been
designed and developed that utilize different techniques and sensors. Based on
prior work [1,2,11,43,57], these devices can be divided into three types: vision-
based (e.g., Leap Motion [25]), sensor-based (e.g., Myo Armband [23]), and
hybrid-based (e.g., Electronic Speaking Glove [2]).

Gestures can be divided into dynamic or static [16,43]. A dynamic gesture
consists of the movement of the hand, arm, and/or fingers over time (e.g., waving,
writing in the air), whereas a static gesture involves the hand remaining in
a certain posture at a point in time (e.g., fist, open palm) [44]. Vision-based
systems need three phases: hand detection, hand tracking, and gesture recognition
[43]. Infrared (IR) sensing is one of the technologies that vision-based recognition
devices use to detect gestures. Some IR sensors depend on an IR projector which
projects different dots on the recognized object within the range of the device;
then captures the different movements with a camera [54].

While these devices provide designers and users with a set of different affor-
dance that can enable novel ways to interact with applications and games, they
pose new challenges and limitations that are worth investigating. In this work,
we focus on investigating the differences between three vision-based hand-gesture
recognition devices in the context of games.

2.2 Prior Hand-Gesture Comparative Studies

Prior studies have addressed how gesture-based interaction compares to more
traditional approaches [45,46], as well as investigated the performance of specific
devices [9,58]. For example, Sambrooks and Wilkinson [45], conducted a com-
parative study between MK, mouse, and touchscreen, in which they concluded
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Fig. 1. The hand-gesture game Handy ; the player collects gems of various sizes by
moving their embodiment (a hand cursor) over the gem and executing a grab gesture.
A: Collecting a small gem (green) near the top. B: Collecting a large gem (yellow) to
the right. C: Collecting a small gem (black, circled in red) in the lower-right corner;
in some cases, gems are placed in difficult areas that might require players to be more
precise when moving their hand and making the grab gesture. (Color figure online)

that the performance of MK was much worse than mouse and touch screen for
simple computer tasks. Furthermore, Seixas et al. [46] compared between LM,
mouse, and touchpad, and found that LM performed poorly in pointing tasks
compared to both mouse and touchpad. These studies together provide insights
into the performance and usability of mid-air gesture device compared to tradi-
tional input modalities for 2D pointing tasks.

On the other hand, comparing between different mid-air hand gesture devices
showed that these devices perform differently and can be selected based on the
specific tasks [9,58]. Carvalho et al. [9], conducted a comparative study that
considers LM and MK to evaluate their performance with relation to the user’s
age difference. Overall, device performance was consistent when comparing both
devices side-by-side with specific groups of users; however, there was a significant
difference in terms of performance of each device between some of the age groups.
The authors reported that the performance of mid-air gesture devices could be
varied based on age of the users. Furthermore, Weichert et al. [58] investigated
the accuracy and robustness of LM. The authors conducted an experiment with
an industrial robot to look at static gestures to drive the robot and dynamic
ones to draw a path. The authors stated that the level of accuracy of LM is
higher than other gesture devices within its price range, such as MK.

These studies together point to the advantages and disadvantages of these
input modalities and provide insights into the performance of various gesture-
recognition devices. However, they do not focus on vision-based gesture devices,
do not provide enough insight into how such devices can be used in games, and
are, thus, unable to assist game designers in making sound decisions about how
to design and work with hand-gesture devices in games.

2.3 Gesture-Based Interaction in Games

Within the context of games, priorwork investigated the performance andusability
of different hand-gesture devices [30]. Correctly performing gestures in games can
be part of the main mechanics, challenges, and experience of playing these games
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[42,57]. However, hand-gesture recognition devices need to be responsive, consis-
tent, intuitive, and comfortable for them to be used successfully in games [57].

Delays or lack of accuracy can negatively impact the experience of playing
games. Moser and Tscheligi [35], examined the accuracy of LM when playing
the physics-based game Cut the Rope, and found out that using gesture devices
provided a positive player experience, however, a number of accuracy and orien-
tation issues materialized when playing such games with a mid-air gesture device
when compared to touch screens.

Muscle-controlled games, such as The Falling of Momo [51,52] have been
developed to explore novel ways to utilize gesture recognition devices in physical
therapy and training, and have been shown to be an effective mode of interaction.

Recognizing players hands is one of most common ways to enable interaction
in virtual reality games [4,22,27,64]. Prior research investigated the use of such
devices in VR games and how they influence players experience and the ability
to perform different mid-air gestures correctly [24,26].

While prior research provides an understanding of how gesture recognition
devices can be used in games, and sheds light on the challenges of using these
devices, they do not provide game designers with an understanding of the differ-
ences between these gesture recognition devices and what they need to consider
when designing games using this type of interaction.

3 Methodology

In this section, we explain the methods used to evaluate our hypotheses. We pro-
vide a detailed description of the process of recruiting participants, our hypothe-
ses and experimental design, measures used, the game design, and study protocol.

3.1 Participants

We invited participants from New Mexico State University to volunteer for the
formal study. Data collection occurred over a four-week period in the sum-
mer of 2018. 18 participants (n = 18, 3 female, 15 male; Mage = 30.83 years,
SDage = 8.87) were recruited. All participants were right-handed and were cur-
rent computer science students.

3.2 Experimental Design

We used a within-subjects design with one independent variable (IV), device
type, with three factors (i.e., LM, MK, RS). The dependent variables (DVs) were
time taken to collect all objects, gesture recognition error rate, and workload.
Game experience was taken as a co-variate (CV) (Table 1).

Participants played the game three times with each of the three devices. To
rule out order effects, a complete counterbalance of the factors was achieved.
With three conditions in this within-subject experiment, the total number of
sequences required to achieve a complete counterbalance was six. We had a total
of three participants in each sequence.
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Fig. 2. Vision-based hand-gesture recognition devices compared in the present study.
Left: Leap Motion (LM); middle: Intel RealSense (F200) (RS); right: Microsoft Kinect
v2 (Windows Version) (MK).

Table 1. Description of the variables in this within-subject study.

Variable Description

Hand-gesture devices (IV) LM, RS, and MK

Game completion time (DV) Time spent collecting all game objects in seconds

Error rate (DV) Number of unrecognized hand-gestures

Cognitive workload (DV) NASA-TLX used to assess workload

Game experience (CV) Questionnaire used to assess game experience

Measures. Game completion time accounts for how long it took players to move
from each gem to the next, performing the gesture accurately. We captured this
data automatically with a logging system built into the game software, which
separates how long it took the player to collect each goal.

Gesture error rate was determined by observing the player during gameplay.
One researcher performed the observation and recorded false positives and neg-
atives from the gesture system.

To assess cognitive workload, we used the NASA Task Load Index (NASA-
TLX) [19], one of the most commonly used and the most widely validated of
the various tools available for measuring workload [18]. NASA-TLX consists of
six items measuring different aspects of workload (i.e., mental demand, physi-
cal demand, temporal demand, performance, effort, frustration) on a 100-point
scale. Overall, higher values are worse, indicating that the participant found the
task taxing or perceived low performance. In this study, the weighting compo-
nent of NASA-TLX was omitted to reduce the time it took to complete the
questionnaire [34].

To gauge subjective experience, after each session, we asked participants
about the perceived accuracy of each device, perceived comfort, preference, and
overall experience.

3.3 Research Artifact: Handy

To compare between the three hand-gesture devices, we designed Handy, a hand-
gesture-based single-player game, in which the player uses their hand movements
and gestures to play. The goal is to collect 36 objects that appear in a sequence
and come in two different sizes (i.e., small, large) (Fig. 1). These objects need
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Table 2. The hand gestures supported by each device.

Device Supported hand gesture

LM Different hand gestures can be defined using a detection utility [25]

RS Open hand, close hand, grab, thumb up, thumb down, ‘V’ sign, two
fingers pinch, full pinch, tap, wave, swipe, fingers spread

MK Open hand, close hand, lasso

to be collected by placing the player’s embodiment over the gem and using a
“grab” gesture as fast as possible. The player’s hand position is presented as
a hand-shaped cursor embodiment on a 2D space. To successfully collect one
object in the game, players need to perform the following:

– move their hand in any direction using hand movements with an open palm
gesture and try to position their hand over the visible game object; then

– perform the “grab” gesture to successfully collect the game object.

On each play through, the player first has 6 randomly positioned targets,
which do not count for score, followed by 30 that are pre-positioned. The pre-
positioning was accomplished with an algorithm to randomly position the objects
a consistent distance apart; the results were saved and used for each game round.
This design enables the player to have a tutorial with the new device, followed
by a consistent set of targets. Players are scored based on the time it takes them
to collect each object. The gesture devices can be interchanged in the game for
the purpose of this study.

3.4 Apparatus

Participants played Handy in a laboratory using a Windows PC (processor:
Intel Core i7-5960X 3.00 GHz; RAM: 16GB; graphics: NVIDIA GeForce GTX
980 Ti; monitor: 4K LED 27-in., wide screen), which was sufficient to run the
game without performance issues. In each condition, the participants played
the game with a different hand-gesture device. These vision-based hand-gesture
recognition devices were selected based on their popularity and wide use within
games:

– Leap Motion2 (LM; Fig. 2, left): a small device for detecting hand position
and gestures released in 2012. It is placed on a surface in front of a monitor,
then can detect hands above it using IR sensors. The device contains two IR
cameras and three IR LEDs [58]. We use LM SDK Orion Beta v3.2 to process
captured data.

– Intel RealSense3 (RS; Fig. 2, middle): a device for tracking human bodies,
hands, and faces released in 2015. We use the F200 model, which uses an

2 https://www.leapmotion.com.
3 https://downloadcenter.intel.com/product/92255.

https://www.leapmotion.com
https://downloadcenter.intel.com/product/92255
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Fig. 3. Data plotted for completion time and error rate. Error bars represent 95%
confidence intervals.

IR depth camera and RGB camera (1080p resolution) to capture imagery
20–120 cm from the device. We use the RS SDK version 2016 R2.

– Microsoft Kinect4 (MK; Fig. 2, right): a motion-sensing input device by
Microsoft for Xbox 360 and Xbox One video game consoles and Windows
PCs, originally introduced in 2009, then upgraded in 2013 [55]. MK projects
an IR dot pattern into the environment, which is uses for an IR depth camera;
it also includes an RGB camera. For our study, we use the Kinect for Windows
v2 and Kinect SDK v2.0.

3.5 Study Protocol

Before the beginning of the experiment, participants read and signed a consent
form. Participants were then asked to complete the demographics questionnaire
and asked about their prior experience with hand-gesture devices. Participants
then played each of the three rounds of the game, with each of the different hand-
gesture recognition devices. Between each round, they completed the NASA-
TLX and the two Likert-scale-based questions. When participants finished the
last session of the experiment, they were asked two open-ended questions to
assess their overall experience.

4 Results

In this section, we present both the quantitative and qualitative results from our
mixed methods within-subjects user study and discuss the main findings.

4.1 Performance

Repeated-measures analyses of variance (ANOVAs; IV: device) were used to eval-
uate the impact of using LM, RS, and MK on game performance, including com-
pletion time (overall, large objects, small objects) and error rate. The sphericity
4 https://developer.microsoft.com/en-us/windows/kinect.

https://developer.microsoft.com/en-us/windows/kinect
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Fig. 4. Data plotted for cognitive workload. Error bars represent 95% confidence inter-
vals.

assumption was violated for each of the completion time metrics (see Table 3), so
we used the Hyunh-Feldt correction for degrees of freedom and significance in the
corresponding ANOVAs.

As noted in Table 4 the main effect of device was significant across all of the
behavioral measures; effect sizes were all very large. Pairwise comparisons showed
RS to be worse than LM and MK across all measures (p < 0.05 in all cases). Pair-
wise comparisons also showed LM outperformed MK in measures of overall com-
pletion time, completion time for small objects, and error rate (p < 0.05 in all cases;
see Fig. 3). So, hypotheses H1–H4 were generally supported, except in instances
where LM and MK performed similarly.

4.2 Cognitive Workload

Repeated-measures ANOVAs (IV: device) were used to evaluate the impact
of using LM, RS, and MK on the measures included in the NASA-TLX. The
sphericity assumption was only violated for temporal demand (see Table 3), so
we used the Hyunh-Feldt correction for degrees of freedom and significance in
the corresponding ANOVA.

As noted in Table 4, the main effect of device was significant across all of the
TLX; effect sizes ranged from medium to small. Pairwise comparisons showed
LM to be better than RS across all measures (p < 0.05 in all cases). Pairwise
comparisons also showed MK to be better than RS across measures of perceived
performance (p < 0.05) and marginally better (p < 0.10) in frustration. Addi-
tionally, pairwise comparisons showed LM to be similar to MK other than in
temporal demand where LM performed better (p < 0.05) (Fig. 4). So, hypothe-
ses H5–H10 were generally supported, except in instances where self-reports of
LM and MK use were similar.
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Table 3. Mauchly’s Test of Sphericity. When the sphericity assumption was violated
(p < 0.05), we used the Hyunh-Feldt correction for degrees of freedom and significance
in the corresponding analyses of variance.

Measure Mauchly’s W DF p-value Epsilon (Hyunh-Feldt)

Completion time (all) .460 2 .002 .681

Completion time (small) .476 2 .003 .689

Completion time (large) .460 2 .002 .681

Mental .742 2 .092 .864

Physical .898 2 .421 1.0

Temporal .370 2 .0003 .637

Performance .971 2 .790 1.0

Effort .889 2 .391 1.0

Frustration .994 2 .950 1.0

Comfort .947 2 .646 1.0

Accuracy .973 2 .802 1.0

Error Rate .993 2 .944 1.0

Table 4. Results of the one-way ANOVAs for each of the DVs.

Measure Treat. DF Error DF F value p-value η2
p

Completion time (all) 1.361 23.144 28.915 <.0001 .630

Completion time (small) 1.379 23.439 14.862 .0003 .466

Completion time (large) 1.361 23.138 16.524 .0002 .493

Mental 2 34 1.689 .199 .09

Physical 2 34 6.154 .005 .266

Temporal 1.273 21.644 4.887 .030 .223

Performance 2 34 9.294 .0006 .353

Effort 2 34 7.462 .002 .305

Frustration 2 34 9.563 .0005 .360

Comfort 2 34 26.039 <.0001 .605

Accuracy 2 34 24.924 <.0001 .595

Error Rate 2 34 53.334 <.0001 .758

4.3 Perceived Comfort and Accuracy

We considered the responses to the questionnaire and coded the response values
1–5, with positive responses being higher. Repeated-measures ANOVAs (IV:
device) were used to evaluate the impact of using LM, RS, and MK on measures
of perceived comfort and accuracy. The sphericity assumption was not violated
(see Table 3).
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Fig. 5. Data plotted for perceived comfort and accuracy. Error bars represent 95%
confidence intervals.

As noted in Table 4, the main effect of device was significant across both
measures and the effect sizes were both large. Pairwise comparisons showed RS
to be significantly worse than LM and MK across both measures (p < 0.05),
whereas LM and MK did not differ from one another (p < 0.05) (Fig. 5). So,
hypotheses H11–H12 were partially supported.

4.4 Player Experience

We examined the participants’ reflections on their experiences using these dif-
ferent hand-gesture devices in the game. Players stated that the accuracy of the
three gestures devices varied:

I prefer Leap Motion because I could handle objects with better accuracy
than Kinect which would be second choice. [P15]

Players reported that they were more comfortable during the game when they
used certain devices.

I was more comfortable when I used the first device [LM] to play the game.
[P17]

Some participants were more comfortable using MK:

I prefer Kinect because it was way more comfortable compared to other two
devices. [P13]
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In contrast, players reported that they felt tired when they used RS to play
the game.

I felt tired when I worked with the second device [RS], also, with it I lost
the accuracy. [P7]

We asked the participants about their prior experience with hand-gesture
devices, and our data showed that participants had no prior experience with RS.
Most of the participants have prior experience with LM and MK devices.

I liked to use Kinect to play the game because it is accurate and I am so
familiar with it. I have been using it for three years now. [P16]

5 Discussion and Design Cautions

In this section, we develop discussion and point out design cautions for designing
and developing these types of games. Specifically, our take-away is that mid-air
hand gesture devices are hard to design for and do not support the design of
cross-platform games. Designers need to find novel solutions to overcome some
of the challenges they may face when designing hand-gesture based games to
provide players with an overall positive experience. The objective of this study
was to compare three hand gesture recognition devices (LM, MK, RS) in the
context of games and to provide insights and point to solutions for designing
hand gesture-based games. Our results show that LM has better performance
and accuracy compared to MK and RS, and players felt more comfortable when
they played the game using LM and MK. These results align with prior research
[49,58]. In the following, we present a number of cautions when designing and
working with hand gesture-based devices. Attending to these cautions will help
designers to improve their game design and player experience.

5.1 Arm and Body Fatigue

Our data showed that players felt tired when they played the hand-gesture game.
We observed that some players experienced hand and arm fatigue. To overcome
this, they switched to their left hand to support their right hand and to be able
to continue playing the game. This problem is known as the “gorilla-arm effect”
[20]. The reason for this problem is that participants had to raise and extend
their arms and keep it in the air for extended periods while they were playing
the game. This type of input modality is not suitable for long-term and extended
use [5].

Designers of hand-gesture-based games need to understand the potential
degrees of freedom for arms and hands [33,37,48], and be able to distinguish
between which hand gestures are perceived as natural or easy to perform. Allow-
ing players to use both hands to interact with the game can help players to
switch between both hands during the game, which helps them rest and reduce
any fatigue. An alternative solution is to position the gesture recognition device
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so that players do not raise their arms high. For example, a player could wear
a small gesture recognition device, such as LM, and strap it to their thigh [28],
allowing the arms to hang naturally at the sides of the body, reducing the need
to raise their hands.

Another solution is to manipulate the level of interaction required by these
games. For example, instead or requiring players to constantly interact with the
game using their hands, the game can shift between different periods of active and
regular hand-gesture interaction to periods of idling with essentially no interac-
tion, allowing players to rest between these periods. This shift in interaction levels
has shown to be effective in reducing click fatigue in clicker and idle games [3,39].

We observed that some of these devices worked best while a player is standing
instead of seating. Such differences in how these devices can be interacted with
may cause not only arm fatigue, but also whole body fatigue. When selected
these devices, designers need to consider whether the designed game is intended
to be player while seating or standing to ensure that such design can be better
supported by the device.

5.2 Challenges with Designing Hand-Gesture Games

Designing games that can be played using hand gestures poses challenges. Not all
gesture-recognition devices support the same set of hand gestures. For example,
RS can recognize multiple predefined hand gestures (e.g., thumbs up, two fingers
pinch, full pinch), on the other hand, MK and Myo Armband do not support
these gestures by default (see Table 2). Some of these devices enable designers to
create their own set of hand gestures using SDKs, detection utilities, and toolkits,
making it possible to build cross-platform and cross-device games. Designers
need to make sure that their designs and gestures used are supported, this calls
for a unified set of predefined gestures that devices need to support by default.

During the iterative process of designing our game Handy, we experimented
with three different hand gestures (i.e., open hand, close hand, ‘V’ sign) that
map to particular gems to be collected, which were color-coded. The problem
with such a design is that it does not provide a natural mapping [38] between
the action that the player is performing (i.e., collecting objects), and the hand
gesture itself (e.g., ‘V’ sign) which could impact the performance of the players.
Thus, avoiding unnatural gestures and mapping is critical to ensure the usability
and comfort of such games. One solution is to focus on designing and supporting
hand microgestures [10], or simple gestures that can be created in small inter-
action spaces. Further research is encouraged to provide game designers with a
set of clearly identified natural mapped hand gestures and their possible uses
within games (e.g., upward finger flick can be mapped to jumping) [48].

5.3 Size and Position of Game Objects

Our results showed that participants collected large game objects faster than
small ones. We believe the reason for this is that using mid-air gesture devices
is difficult when interacting with small objects. These results align with prior
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research [35], and are consistent with Fitts’s Law [53]. Game designers should
consider designing game objects that players and gesture devices can easily rec-
ognize and interact with.

Each vision-based gesture recognition device has a fixed detection range. For
example, the detection range of RS for hand tracking and gesture recognition
is 20–60 cm [21], if a player moves their hand closer to the camera, where the
distance between the player hand and the device less than 20 cm (e.g., playing a
3D game), the device will stop detecting the player’s hand. Thus, game designers
need to take into consideration the detection range of these devices and make
sure that the interaction space aligns with it.

5.4 Usability Considerations

Another caution is whether this kind of technology can be usable, responsive,
intuitive, and comfortable within the context of games and how designer can
find solutions for any usability problems. Our data indicated that participants
were more accurate and perceived themselves to be more accurate when using
some devices over others. We observed that such devices can easily lose track of
the players’ hands and fail to recognize the performed gestures. Due to such low
accuracy level of most of these devices, designers need to make sure to provide
appropriate feedback and awareness cues [17,59] to enable players to be aware
if their hand gestures were correctly recognized or not. Objects that players
need to interact with in the game should be made as obvious and accessible as
possible. For example, avoiding the edges of the screen can help players maintain
the position of their embodiment within the game.

While we only recruited right-handed players in this work, designers are
encouraged to support both right and left-handed players to improve accessi-
bility in games [61]. Our results indicated that participants preferred to use
some devices over others for playing hand-gesture games, such preference was
attributed to the accuracy, comfort, and familiarity with these devices. Design-
ers of such games can make it possible for players to define or select their own
gestures to play these games.

Finally, while providing players with the ability to interact with games using
hand gestures can improve player experience and enjoyment [35], designers need
to make sure that their games can still be played using other interaction modes
if necessary.

6 Conclusions

In this study, we investigated three different vision-based gesture devices, LM,
RS, and MK, in a computer game context to understand the differences in accu-
racy and performance between these devices. We found that participants pre-
ferred and performed better using the LM and MK than using the RS device. LM
also outperformed MK along some metrics but not others, where they were equiv-
alent. These findings were supported by players’ accounts of their experiences
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using these gesture devices. Additionally, we found that participants preferred
to used either LM or MK to play the game because of their improved accuracy
(over RS) and prior familiarity with these devices.

While gesture devices proliferate and are capable of impressive hand track-
ing, they are still in a nascent stage. We found it challenging to develop similar
experiences across multiple devices and ran into a number of issues with track-
ing errors in practice (even when playing in ideal conditions). We provide game
designers with a set of design cautions and solutions to overcome some the chal-
lenges they might face when designing hand gesture games. It is our expectation
that, as these technologies improve, these issues will get better.

7 Limitations

We acknowledge that this work is limited, and not intended to provide a complete
analysis of the differences between hand-gesture devices for games. Here we focus
on providing an initial understanding of how these devices might be different and
how these differences might influence how they are used in games, which can help
game designers to be aware of the challenges these hand-gesture devices might
impose.

Our study was conducted with a small, specific sample (computer science
students) which may limit the generalizability of the findings. Further research
is encouraged to evaluate a wider range of devices with a larger sample of players
using different off-the-shelf games in a more ecologically valid environment. We
also did not conduct an analysis using Fitts’s Law [31], doing that would have
enabled us to conduct a more robust analysis, however, due to the design of the
game and the collected data, such analysis is not possible. While the findings of
this study provide insights and suggest a number of design cautions, they must
be viewed within the limitations of the study.
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