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Abstract
Gesture recognition devices provide a new means for nat-
ural human-computer interaction. However, when selecting
these devices for games, designers might find it challenging
to decide which gesture recognition device will work best. In
the present research, we compare three vision-based, hand
gesture devices: Leap Motion, Microsoft’s Kinect, and Intel’s
RealSense. We developed a simple hand-gesture based
game to evaluate performance, cognitive demand, com-
fort, and player experience of using these gesture devices.
We found that participants’ preferred and performed much
better using Leap Motion and Kinect compared to using Re-
alSense. Leap Motion also outperformed or was equivalent
to Kinect. These findings suggest that not all gesture recog-
nition devices can be suitable for games and that design-
ers need to make better decisions when selecting gesture
recognition devices and designing gesture based games to
insure the usability, accuracy, and comfort of such games.

Author Keywords
Gesture recognition devices; games; hand gesture; Leap
Motion; Kinect; RealSense.

Introduction & Background
The proliferation of gesture-recognition technology enables
players to interact with games in new ways [8]. Such de-
vices enable players to use different parts of their body as a
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controller, which increases physical immersion and enables
designers to explore novel game mechanics and interaction
methods [4].

Our hands are one of the most expressive parts of our body
that can be used to interact with the world around us [9]. To
detect the different hand movements and gestures, several
technologies have been developed to be used for different
domains and applications, including in education [19], en-
tertainment [3], and training games [14]. However, the ac-
curacy and performance of these technologies vary greatly
[1], and in some cases these technologies even can be af-
fected by how they are being used and designed for.

Prior studies have addressed how gesture-based interac-
tion compares to more traditional approaches [11], as well
as investigated the performance of specific devices [2]. For
example, Sambrooks and Wilkinson [11], conducted a com-
parative study between Microsoft Kinect, mouse, and touch-
screen, in which they concluded that the performance of
Microsoft Kinect was much worse than mouse and touch
screen for simple computer tasks. Furthermore, Seixas et
al. [12] compared between Leap Motion, mouse, and touch-
pad, and found that Leap Motion performed poorly in point-
ing tasks compared to both mouse and touchpad. These
studies together provide insights into the performance and
usability of mid-air gesture device compared to traditional
input modalities for 2D pointing tasks.

These studies together point to the advantages and disad-
vantages of these different input modalities, and provide in-
sights into the performance of these different gesture recog-
nition devices. However, they do not focus on vision-based
gesture devices, do not provide enough insight into how
such devices can be used in games, and are thus unable
to assist game designers into making sound decisions on
designing and working with hand-gesture devices in games.

Within the context of games, prior work investigated the
performance and usability of different hand-gesture devices
[6]. Correctly performing gestures in games can be part of
the main mechanics, challenges, and experience of playing
these games [17]. However, hand-gesture recognition de-
vices need to be responsive, intuitive, and comfortable for
them to be used successfully.

While all of these prior research provide an understanding
of how gesture recognition devices can be used in games,
and shed light on the challenges of using these devices,
they do not provide game designers with an understand-
ing of the differences between these gesture recognition
devices and what they need to consider when designing
games using this type of interaction.

Thus, when selecting these devices, game designers might
find it challenging to decide which hand-gesture recognition
device will work best for their game. The present research
enables game designers to understand the differences be-
tween these devices, how to select them, and how to in-
corporate them within their games. Based on our motiva-
tion and prior research, we evaluate three commonly used
gesture recognition devices: Leap Motion (LM), Intel Re-
alSense (RS), and Microsoft Kinect (MK). This comparison
develops an understanding of the main factors that influ-
ence their performance and use in games.

Based on our study of prior work [7, 10, 12, 16, 5, 13, 18],
we hypothesized that LM would outperform MK and that MK
would outperform RS in games across the performance and
accuracy.

Methods
To compare between LM, RS, and MK, we run a pilot study.
A within-subjects design was used consisting of one within-
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subjects factor, device type, with three levels: (a) LM, (b)
MK, (c) RS.

Participants
Three students (all male; mean age = 34.66; SD = 3.51)
from New Mexico State University participated in the experi-
ment.

Measures
Game completion time accounts for how long it took players
to move from each gem to the next, performing the gesture
accurately. We captured this data automatically with a log-
ging system built into the game software, which separates
how long it took the player to collect each goal.

Gesture error rate was determined by observing the player
during gameplay. One researcher performed the observa-
tion and recorded false positives and negatives from the
gesture system.

To gauge subjective experience, after each session, we
asked participants about the perceived accuracy of each
device, perceived comfort, preference, and overall experi-
ence.

Research Artifact: Handy
To compare between the three hand-gesture devices, we
designed Handy, a hand-gesture single-player game, in
which the player uses their hand movements and gestures
to play. The goal is to collect 36 objects that appear in a se-
quence and come in two different sizes (i.e., small, large)
(Figure 1). These objects need to be collected by placing
the player’s embodiment over the gem and using a “grab”
gesture as fast as possible. The player’s hand position is
presented as a hand-shaped cursor embodiment on a 2D
space. To successfully collect one object in the game, play-
ers need to perform the following:

Figure 1: The hand-gesture game
Handy. A: Players need to
collected the green small object to
increase their score in the game.
B: players also need to collect
large objects. C: in some cases,
these objects are placed in difficult
areas that might require players to
be more precise when moving their
hand and making the hand
gesture.

• move their hand in any direction using hand move-
ments with an open palm gesture and try to position
their hand over the visible game object; then

• perform the “grab” gesture to successfully collect the
game object.

On each play through, the player first has 6 randomly po-
sitioned targets, which do not count for score, followed by
30 that are pre-positioned. The pre-positioning was accom-
plished with an algorithm to randomly position the objects a
consistent distance apart; the results were saved and used
for each game round. This design enables the player to
have a tutorial with the new device, followed by a consistent
set of targets. Players are scored based on the time it takes
them to collect each object. The gesture devices can be
interchanged in the game for the purpose of this study.

In each condition, the participants played the game with a
different hand-gesture device. These vision-based hand-
gesture recognition devices were selected based on their
popularity and wide use within games:

• Leap Motion1: a small device for detecting hand position
and gestures released in 2012. It is placed on a surface in
front of a monitor, then can detect hands above it using IR
sensors (Figure 2).

• Intel RealSense2: a device for tracking human bodies,
hands, and faces released in 2015. We use the F200
model, which uses an IR depth camera and RGB camera
(1080p resolution) to capture imagery 20–120cm from the
device (Figure 2.

• Microsoft Kinect v23: a motion sensing input devices by
Microsoft for Xbox 360 and Xbox One video game consoles

1https://www.LeapMotion.com
2https://downloadcenter.intel.com/product/92255
3https://developer.microsoft.com/en-us/windows/kinect
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and Windows PCs, originally introduced in 2009, then up-
graded in 2013 [15] (Figure 2).

Study Protocol
Before the beginning of the experiment, participants signed
a consent form. Participants were then asked to complete
the demographics questionnaire and asked about their prior
experience with hand-gesture devices. Participants then
played each of the three rounds of the game, with each of
the different hand-gesture recognition devices. Between
each round, they completed two Likert-scale-based ques-
tions. When participants finished the last session of the ex-
periment, they were asked open ended question to assess
their overall experience.

A

B

C

Figure 2: All the vision-based
gesture recognition devices
compared in this study. A: Leap
Motion; B: Microsoft Kinect v2
(Windows Version); C: Intel
RealSense (F200).

Preliminary Results
In this section, we present both the quantitative and qual-
itative preliminary results from our mixed methods within-
subjects user study and discuss the main initial findings.

Performance
Repeated-measures analyses of variance (ANOVAs; IV:
device) were used to evaluate the impact of using LM, RS,
and MK on game performance, including completion time
(overall, large objects, small objects) and error rate. The
main effect of device was significant across all of the be-
havioral measures; effect sizes were all very large. Pair-
wise comparisons showed RS to be worse than LM and
MK across all measures (p < 0.05 in call cases). Pairwise
comparisons also showed LM outperformed MK in measure
error rate (p < 0.05). In addition, pairwise comparisons
showed that there is no significant difference between LM
and MK in measures of completion time (overall, large ob-
jects, small objects).

Perceived Comfort and Accuracy
We considered the responses to the questionnaire and
coded the response values 1–5, with positive responses be-
ing higher. Repeated-measures ANOVAs (IV: device) were
used to evaluate the impact of using LM, RS, and MK on
measures of perceived comfort and accuracy. The main ef-
fect of device was significant across both measures and the
effect sizes were both large. Pairwise comparisons showed
RS to be significantly worse than LM and MK across both
measures (p < 0.05), whereas LM and MK did not differ
from one another.

Player Experience
We examined the participants reflections on their experi-
ences using these different hand-gesture devices in the
game. Players stated that the accuracy of the three ges-
tures devices varied:

I think leap motion is more accurate the other
devices [P3]

Players reported that they were more comfortable during
the game when they used certain devices.

I am more comfortable with Microsoft Kinect.
[P1]

These preliminary results suggest that mid-air hand ges-
ture devices are quite different, hard to design for, and do
not support the design of cross-platform games. Game de-
signers need to find novel solutions to overcome some of
the challenges they may face when designing hand-gesture
based games to provide players with an overall positive ex-
perience. The objective of this current study and research
is to compare between hand gesture recognition devices
in the context of games and to provide insights and point
to solutions for designing hand gesture-based games. Our
preliminary results show that LM has better performance
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and accuracy compared to MK and RS, and players felt
more comfortable when they played the game using LM and
MK.

Conclusion and Future work
In this study, we investigated three different vision-based
gesture devices, LM, RS, and MK, in a computer game con-
text to understand the differences in accuracy and perfor-
mance between these devices. We found that participants
preferred and performed better using the LM and MK than
using the RS device.

For future work, we plan to run a full user study to com-
pare between LM, RS, and MK. Also, we plan to expand the
number of included gesture devices to better understand
the main factors that may influence how they can be used
in games (e.g., Myo armband, TAP). In addition, to under-
stand if these devices pose different cognitive demands on
player, we will use the NASA Task Load Index (NASA-TLX)
to assess cognitive workload.
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