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SUMMARY

Neurons are often considered specialized functional units that encode a single variable. However, many neu-
rons are observed to respond to a mix of disparate sensory, cognitive, and behavioral variables. For such
representations, information is distributed across multiple neurons. Here we find this distributed code in
the dentate gyrus and CA1 subregions of the hippocampus. Using calcium imaging in freely moving mice,
we decoded an animal’s position, direction of motion, and speed from the activity of hundreds of cells.
The response properties of individual neurons were only partially predictive of their importance for encoding
position. Non-place cells encoded position and contributed to position encoding when combined with other
cells. Indeed, disrupting the correlations between neural activities decreased decoding performance, mostly
in CA1. Our analysis indicates that population methods rather than classical analyses based on single-cell
response properties may more accurately characterize the neural code in the hippocampus.

INTRODUCTION

The hippocampus has been studied extensively in experiments

regarding navigation and spatial memory. The responses of

some of its cells are easily interpretable because these tend to

fire only when the animal is at one location in an environment

(place cells). However, it is becoming clear that, in many brain

areas, which include the hippocampus and entorhinal cortex,

the neural responses are very diverse (Rigotti et al., 2013; Ei-

chenbaum, 2018; Fusi et al., 2016; Hardcastle et al., 2017) and

highly variable in time (Fenton and Muller, 1998; Ziv et al.,

2013; van Dijk and Fenton, 2018). Place cells might respond at

single or multiple locations in an orderly (grid cells) or disorderly

way, and multiple passes through the same location typically

elicit different responses. Part of the diversity can be explained

by assuming that each neuron responds non-linearly to multiple

variables (mixed selectivity) (Rigotti et al., 2013; Kriegeskorte

and Douglas, 2019; Saxena and Cunningham, 2019). Some of

these variables may not be monitored in the experiment and,

hence, contribute to what might appear as noise. A neural

code based on mixed selectivity is highly distributed because

some variables can be reliably decoded only by reading out

the activity of a population of neurons. It has been shown

recently that the mixed selectivity component of the neuronal re-

sponses is important in complex cognitive tasks (Rigotti et al.,

2013; Fusi et al., 2016) because it is a signature of the high

dimensionality of the neural representations. Place cell dis-

charges are also highly variable (Fenton and Muller, 1998) to

the extent that the variability, not the spatial tuning alone, can

capture changes because of learning in a spatial memory task

(Olypher et al., 2003; Kelemen and Fenton, 2010; van Dijk and

Fenton, 2018). These recent studies naturally pose the question
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of how position is encoded within the population activity in the

hippocampus. To answer this question, we used calcium imag-

ing to record the activity of large populations of neurons in the

dentate gyrus (DG), a region of the hippocampus in which the

neural responses are highly sparse and diverse (Leutgeb et al.,

2007; Danielson et al., 2016; van Dijk and Fenton, 2018), and in

CA1, a region that has been studied extensively in relation to

spatial navigation using electrophysiology (Moser et al., 2008;

Harvey et al., 2009; Keinath et al., 2014; Agarwal et al., 2014)

and imaging (Dombeck et al., 2010; Ziv et al., 2013).

We show that the position of a mouse freely exploring an envi-

ronment can be decoded from the activity of a few tens of

granule cells (GCs) of the DG with an accuracy comparable

with that of CA1. Using machine learning techniques, we ranked

neurons by their contribution to position encoding.We found that

trial-averaged, single-neuron tuning properties are insufficient to

predict a neuron’s contribution to position encoding at the pop-

ulation level. Cells that were not spatially tuned according to a

statistical test based on spatial information (non-place cells)

also contributed to the population code, to the extent that posi-

tion could be decoded from the ensemble of these untuned cells

alone in both areas. We further found that neurons in the DG and

CA1 reliably encoded other variables, such as the direction and

speed of movement. These neurons were not distinct from the

neurons that encoded position; i.e., the majority of neurons en-

coded multiple variables and contributed to all of them. We

then found that destroying correlated activities among neurons

while maintaining their spatial tuning had an effect on decoding

performance in CA1 but not in the DG. Taken together, these re-

sults show that the information encoded at the population level is

far richer than at the single-cell level and allowed us to uncover

the strong robustness of DG and CA1 spatial coding through

the distributed nature of their neural representation.

RESULTS

We studied the neural code in the DG and in the CA1 area of the

hippocampus of freely moving mice. We used miniaturized

head-mounted microscopes to perform calcium imaging of

GCs in the DG and of pyramidal cells in CA1. To image cell activ-

ity patterns, we injected a virus encoding the calcium indicator

GCaMP6 and implanted a gradient index (GRIN) lens for chronic

imaging (Figure 1A–1C). Four weeks after surgery, we imaged

cellular activity while mice foraged for sucrose pellets in an

open field arena. We then used a recently developed algorithm

for reliably extracting the GCaMP signals from the raw videos,

CNMF-E (Zhou et al., 2018; Figures 1D–1G). This algorithm sep-

arates local background signals resulting from changes in fluo-

rescence in the neuropil from signals resulting from calcium con-

centration changes in individual cells. This was necessary to

identify signal sources in our GC imaging data without intro-

ducing spurious distortions or correlations among cells because

of artifacts. We identified a total of 1,109 DG cells across 3 ani-

mals, of which 352 (32%) were significantly tuned to position,

A D E

GFB C

Figure 1. Calcium Image Recordings

(A) Experiment protocol. Mice were anesthetized with isoflurane and placed in a stereotactic apparatus. DGmice were then injected in the dorsal DG with a virus

encoding GCaMP6m. CA1 mice were injected with GCaMP6f. Mice were then implanted with a GRIN lens, and a baseplate was attached to the skull at the

optimal imaging places. Three weeks after surgery, they were checked for GCaMP expression with a miniaturized microscope (Inscopix, Palo Alto, CA) and

procedures described previously (Resendez et al., 2016). The imaging plane was later assessed through histology (Figure S22).

(B) DG recording site. GCL, GC layer; SGZ, subgranular zone.

(C) CA1 recording site. Pyr: pyramidal layer; Or, stratum oriens; Rad, stratum radiatum.

(D–G) Automated signal extraction using CNMF-E (Zhou et al., 2018). The algorithm identifies the spatial (D, F) and temporal (E, G) components of the signal sources;

i.e., putative cells. It uses a generativemodel of calcium traces and non-negativematrix factorization to separate actual signal sources from the background because

of diffused neuropil fluorescence. The extracted spatial components are displayed in (D) (DG) and (F) (CA1), where a few representative ones are highlighted. The

corresponding signals are shown in (E) (DG) and (G) (CA1), where vertical ticks correspond to the times of the inferred calcium events and gray lines to the temporal

profiles (Figure S1). In line with electrophysiology studies, DG GCs are sparsely active but often in bursts (Pernı́a-Andrade and Jonas, 2014).

Scale bars, 1 min and 1 SD.
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and a total of 863 CA1 cells across 3 animals, of which 38 (4%)

were significantly tuned to position (STAR Methods; Figure S2).

The low fraction of place cells in CA1 seems to be in contrast

with reports from previous studies in CA1 (Meshulam et al., 2017;

Pfeiffer and Foster, 2013; Talbot et al., 2018; Ziv et al., 2013).

However, modern tools for source extraction from calcium imag-

ing can detect cells with very low activity, which are largely

underestimated in electrophysiological recordings, as other

recent studies have also suggested (Dipoppa et al., 2018; Tang

et al., 2018). If one excludes these low firing rate cells from the

analysis, the fraction of place cells becomes significantly higher

(Figure S3; Table S1). Moreover, although calcium signal extrac-

tion may miss isolated spikes, this is likely less of an issue for DG

GCs than pyramidal cells because the former are often active in

burst, as electrophysiology studies have shown (Pernı́a-Andrade

and Jonas, 2014) and as our data also show (Figure 1E). See Fig-

ure S3 and Table S1 for a brief review of the literature comparing

firing rates in the DG and CA1 across studies.

The first step of our analysis was to assess whether the posi-

tion of the animal is encoded in the recorded neural activity

during mobility. We therefore removed all time bins in which

the animal was slower than 2 cm/s for a period longer than 1 s

after confirming by visual inspection that this procedure would

exclude moments of immobility. To decode position, we discre-

tized the x and y coordinates of the animal by dividing the arena

into 64 regions (83 8 grid) (50-cm square arena for DGmice and

50 3 28 cm for CA1 mice). We then trained a battery of linear

classifiers for each pair of discrete locations. Each session was

divided into 10 1-min-long intervals, 9 of which were used to train

the classifiers and the remaining ones to test them (10-fold cross

validation). We used a majority rule (Bishop, 2006) to combine

the outputs of the linear classifiers as an instantaneous estimate

of the animal’s location, using the center of the selected location

as the decoded position.

In both areas, themedian decoding error was comparable with

the animal size, revealing for the first time that instantaneous po-

sition can be decoded from DGGC population activity (Figure 2).

Our analysis of the CA1 data shows a comparable decoding ac-

curacy in the DG and CA1 after correcting for the number of cells

(Figure 2C; Figure S4). The accuracy was slightly higher than the

one observed in previous studies in CA1 (Ziv et al., 2013).

Different decoding strategies, such as decoding from raw cal-

cium traces or events, produced similar results (Figure S6). The

decoding error was found to weakly correlate to the speed of

movement (Figure S7). To our knowledge, this is the first time

that decoding of position from populations of DG cells has

been reported.

We could also decode the direction of motion of the animal in

both regions and its speed only in the DG. Speed was weakly

correlated with the overall level of activity in the DG, and we

could decode it in two animals of three using linear regression

(Figures 2B and 2C). To decode the direction of motion, we

divided the full range of possible directions into 8 angular bins

and labeled time bins according to the instantaneous discrete di-

rection of motion of the mouse (STAR Methods). To our knowl-

edge, this is also the first time that decoding of direction and

speed of motion from populations of the DG and CA1 cells has

been reported, although direction tuning has been observed pre-

viously in CA1 pyramidal cells in rats (Acharya et al., 2016). We

did not find differences in decoding performance for direction

of motion between the DG and CA1 areas (Figure 2C).

To better characterize the neural code, we tried to determine

which features of the response properties of individual neurons

are important for encoding the variables we could decode. It is

important to realize that these response properties could be

dissociated from the contribution of a cell to the accuracy of a

decoder that reads out a population of neurons. For example,

there could be neurons that are only weakly selective to position

and individually would not pass a statistical test for spatial tun-

ing. However, when combined with other neurons, they can still

contribute to position encoding. Alternatively, there are situa-

tions where the decoder might assign a large weight to neurons

that are weakly selective or even not selective at all, but they are

correlated to selective neurons. This situation can be illustrated

with the intentionally extreme case shown in Figure 3, where

we show how the responses of individual neurons can be disso-

ciated from their importance for the decoder. A simulated animal

visits two locations of the arenamultiple times. The activity of two

hypothetical neurons is represented in the activity space (Fig-

ure 3B), with the horizontal and vertical axes representing the ac-

tivity of the first and the second neuron, respectively. At each

pass through each location, the two neurons have different activ-

ity because of other variables that might also be encoded; e.g.,

the direction of movement, the speed of the animal, or other vari-

ables that are not under control in the experiment. Each point in

the activity plot represents the activity of the neurons in a single

pass. The responses of neuron 2 to the two different locations

have the same distribution (Figures 3B). A cell with such

response properties is untuned to space (a non-place cell),

and, therefore, it is typically considered unimportant for encod-

ing position. However, a linear decoder trained to decode the po-

sition of the animal canmake use of the untuned neuron because

of the correlations between the activities of the two neurons.

Although the activity of neuron 1 is only partially predictive of

the animal’s location (the distributions partially overlap), by

reading out neuron 2 together with neuron 1, it is possible to

decode position with no errors using a linear decoder. In such

a situation, the linear decoder would assign equal weights to

the two neurons, as shown in Figure 3B.

In the real data, theremight be a spectrumof different situations

that are less extreme than the one illustrated in Figure 3, in which a

decoder can take advantage of weakly tuned cells. Cells like the

untuned one shown in Figure 3 or weakly tuned cells can ‘‘coop-

erate’’ with more tuned cells to more precisely encode a variable

like position. This is a situation similar to the one shown in Figure 3,

where the correlations between the activities of different neurons

would be important. However, there might also be weakly tuned

cells that are uncorrelated but, when combined, would contribute

to the accuracy of a decoder. In both cases, the decoder can use

the weakly tuned cells to improve its accuracy. Analogously, a

downstream neuron can, in principle, harness the activity of

weakly tuned neurons to read out the animal’s position.

In our analysis, we took the perspective of such a readout

neuron and analyzed the weights assigned to cells by our

decoder to determine the importance of input neurons in a pop-

ulation for encoding position. The procedure we adopted was to
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first train the position decoder on each pair of locations and then

to combine the resulting weights to obtain a single importance

index (u) for each cell (STAR Methods). Similar methods are

used to assess the importance of individual features in a feature

space (Haufe et al., 2014; Mladeni�c et al., 2004) and have been

used recently to identify important synapses in learning models

(Zenke et al., 2017). We then ranked the neurons according to

this importance index and estimated the decoding accuracy

for populations of 50 neurons (Figures 4A and S17) to assess

the validity of our approach. The 50 neurons with the largest

importance index indeed performed significantly better than

the worst 50 neurons, although position could be decoded

above chance level even from the worst neurons. The accuracy

decreases progressively between the performance for the best

and for the worst neurons, validating the method for ranking

the neurons on the basis of the importance index. We also

controlled that the ranking was stable within the session (Fig-

ure S8) and that it was not due to poor cell segmentation

(Figure S24).

The observation that most neurons could contribute to decod-

ing of position indicates that the neural code is highly distributed.

Indeed, the importance index is rather similar for most of the

cells. To quantify the distribution of importance across cells,

we used the Gini coefficient, a quantity that is often used to

represent wealth inequality in a country. A high Gini coefficient

indicates high inequality, as in a dedicated code where few neu-

rons strongly encode a given variable, whereas low values corre-

spond to an equal distribution of resources, as in a distributed

code. We observed low values in the DG and CA1, indicating

that different neurons tend to contribute equally to the encoding

of position, a signature of a distributed code rather than a situa-

tion where only a few cells are important (Figure S13).

Not too surprisingly, one important feature of an individual

neuron is its average activity, which is strongly correlated with

A C

B

Figure 2. Decoding Position, Speed, and Direction of Motion

(A and B) Decoding results for a representative DG mouse. See also Videos S1 and S2.

(A) Selected frames of a video showing the arena and a DG animal from above. The black filled dot represents the mouse’s actual position, and the black circle

with the dot in the center is the decoded position, obtained with a probabilistic decoder that reads the activity of 317 DG cells (STARMethods). Neural activity was

pre-processed to identify putative calcium events, as explained in STAR Methods.

(B) Examples of decoding position, speed, and direction of motion (DG-representative mouse). Grey lines correspond to the real values of position and speed

variables in the top left and bottom left panels, respectively, whereas the red dots correspond to their decoded values. The time bins marked in light red for

position and direction ofmovement correspond tomoments of immobility that were excluded from the training data. The gray line in the right panel corresponds to

the position of the mouse, and the red arrows correspond to the decoded direction of motion in a 30-s time window.

(C) Decoding accuracy (top, DG; bottom, CA1). The decoding error for position and head direction is computed as the median of the distances computed

between the decoded value in each time bin and the actual value of the decoded variable in the test data. For the direction of motion, the smallest angle between

the decoded and the actual value is considered. The black and red vertical bars correspond to the mean over the 10-fold cross-validation (error bars correspond

to SD). Gray, chance error obtained by decoding from shuffled data in a way that preserves the autocorrelations in the data (*p<0.05, **p<0.01, ***p<0.001, STAR

Methods; Figure S5).

Number of cells: 483, 309, and 317 in DG mice; 371, 286, and 206 in CA1 mice.

See also Figures S4–S7 and S12.
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the importance index and, hence, to the overall ability to encode

position (Figures 5A and 5B; Figures S9 and S19). However, in-

spection of the firing fields of Figure 4B indicated that there

were no other obvious properties that predicted whether a

neuron is important in the DG and CA1 neuron populations.

We then identified which neurons were spatially tuned and called

them place cells when the spatial information contained in their

activity was statistically significant (see STAR Methods for de-

tails). The difference between the spatial information for the re-

corded activity and the spatial information obtained for shuffled

data, properly normalized, is what we defined as significance of

spatial information (SSI). It is indeed a measure used to assess

whether a cell is a place cell relative to a null distribution (Allegra

et al., 2019; Danielson et al., 2017; Meshulam et al., 2017; Pan-

zeri et al., 2007; Skaggs et al., 1992).

From Figure 4B, it is clear that, in our data, there are non-place

cells that have a large importance index. The animal’s position

could be decoded from these cells alone in the DG and CA1 (Fig-

ures 4C and S17. This indicates that the activity of the non-place

cells contains some spatial information. However, because of

noise and limited data, the activity of these cells did not pass

the statistical test we adopted to characterize place cells.

Although the SSI is a property of a single cell, the importance

index depends on the contribution of a cell to the population

code. We thus analyzed the relation between each cell’s SSI

and its importance index. Although we did not find a one-to-

one correspondence between SSI and importance index, the

two quantities were correlated (Figures 5A–5C; Figure S19), indi-

cating that some individual response properties are at least

partially informative about the importance of a cell in encoding

position. To compute the SSI, one has to compute the spatial in-

formation and subtract a baseline obtained by shuffling the activ-

ity. The spatial information without the baseline subtraction,

which is sometimes used as a measure of the tuning of the cells,

was actually negatively correlated with the importance index

(Figure S9A; Kelemen and Fenton, 2010). However, the baseline

was also negatively correlated with the importance index (Fig-

ure S9B). The net effect is that the correlations between SSI

and importance index were positive. The negative correlations

are a reflection of the sampling bias problem that affects cells

with low activity (Panzeri et al., 2007). Low-activity cells tend to

be more selective because the fluctuations of the activity are

relatively large. However, these cells are typically unreliable

(e.g., they fire at a particular location only during one pass);

hence, their importance index is low.

We performed a similar analysis of importance for the direction

of movement. In Figure 6 (see also Figure S18), we show that we

could rank the cells according to their contribution to decoding

(Figure 6A; Figure S18) and that the important cells were highly

heterogeneous in their direction tuning (Figure 6B). Considering

all recorded cells, we also found that a cell’s activity correlated

with the importance index for direction of movement in the DG

and in CA1 (Figure 6C). We defined the significance of directional

information (SDI) in a similar way as the SSI by comparing the

mutual information between direction of motion and a cell’s ac-

tivity to a distribution obtained by shuffling the cell’s calcium

events in time. The importance index and this directional infor-

mation were correlated in the DG and CA1 (Figure 6D;

Figure S20).

All of these analyses indicate that single-neuron properties are

only partially predictive of the importance of a cell for decoding.

Moreover, the importance is not an intrinsic property of an

A B

Figure 3. The Contribution of Untuned Cells for Encoding Position

We show an extreme situation where one simulated neuron has the same activity distribution when the animal is in two different locations of the arena. Hence, the

neuron is not selective to position. Nevertheless, for a decoder, this neuron can be as important as other selective neurons because of its contribution to the

population coding.

(A) Activity of two simulated neurons as a function of time. Top: the simulated animal visits the same discrete location twice (location A in green, location B in red).

Bottom: simulated traces around the time of pass through each location. Different responses for the two neurons are elicited by different experiences; for

example, because of the different direction of motion.

(B) Example of how place cells and non place-cells can be equally important for encoding the position of the animal. In the scatterplot, the x axis represents the

average activity of the first neuron during one pass, and the y axis represents the activity of the second neuron. Each point in the space represents an average

population response in a single pass. Their responses are typically highly variable and scattered around their mean values. The two neurons in the example have

very different activity profiles; the first has a strong spatial tuning (place cell), whereas the second has only a weak tuning. The distributions of their activities in

each location, reported along the axis, overlap only partially (neuron 1, place cells) or almost completely (neuron 2). Despite this variability in the single neuron

responses, the neural representations at the population level are well separated, making it possible for a linear decoder (blue dashed line) to discriminate them

with high accuracy. The resulting decoder’s weight vector has two equal components corresponding to the importance of the two neurons in encoding position. In

this example, both neurons are important for encoding position despite their very different tuning properties.
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individual cell because it clearly changes depending on which

other cells are part of the population of neurons that are used

by the decoder. This is illustrated in Figure 3, where the untuned

cell is important when combined with the cell represented on the

horizontal axis, but it would be useless when combined with

another untuned cell or with an uncorrelated tuned cell.

Because we could decode at least two variables from the neu-

ral activities, we wondered whether we could identify some form

of specialization where segregated groups of neurons encoded

different variables. In Figure 7, we report the importance index

for the direction of movement versus the importance index for

position (Figure 7A; Figure S21). The situation where different

variables would be encoded by segregated populations of neu-

rons would predict a negative correlation between these two

importance indices: cells with a large importance index for posi-

tion should have a small importance for the direction of move-

ment and vice versa. Instead, for both regions we analyzed, we

found a positive correlation between the two quantities, with a

higher correlation in CA1, suggesting that neurons that are

important for encoding one variable are also important for en-

coding the other. This is partially explained by the fact that, for

position and direction of movement, the most active cells tend

to be the most important ones. However, when we regressed

out the components explained by the activity, we still found a

positive correlation between the importance indices of the two

variables (Figure 7A). In addition, this could not be explained

A C

B

Figure 4. Ranking Neurons According to Their Contribution to the Decoding Accuracy for Position

(A) Validation of the importance index. We show the median error for various selections of 50 DG cells from a representative animal ranked by their importance

index as obtained using the decoder’s weight. Each point in the plot is aligned to the rank of the first cell in the selection (for example, the first dot corresponds to

the selection of the first 50 cells from index 1 to index 50; the shaded region represents the SD for the 10-fold cross-validation). Gray: chance level and SD. As

expected, the median error for the population of the 50 top-ranked (best) cells is much smaller than the median error for the last (worst) 50 ones.

(B) Spatial tuning maps for groups of 18 cells ordered by importance index (the same cells as in A). We ranked the cells using the importance index for position

(STARMethods). The three groups of best, mid, and worst cells are highlighted with the color bands in (A) for reference. Themaps are normalized to the peak rate

in eachmap. Dashed red borders indicate cells that do not pass the criteria for place cells using a commonly used statistical test for tuning (STARMethods). Even

among themost important cells, there appear some non-place cells (and vice versa). Similarly, some place cells appear in the group of cells withmedium and low

importance. The small fields in the group of low-importance cells are due to significantly lower activities (Figure 5).

(C) The position of DG and CA1 animals can be decoded from the activity of the non-place cells with a performance significantly higher than chance (vertical bars

correspond to mean and SD, ***p<0.001, STAR Methods).

Number of cells: 451, 208, and 98 in DG mice; 350, 277, and 198 in CA1 mice.

See also Figures S2, S3, S8, S10, and S24 and Table S1.
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by a correlation between direction of movement and position

(Figure S11).

We then focused on cells that had a high importance for one

variable but not for the other as candidate specialized cells.

However, we could decode position from the most important

cells for encoding direction of motion and vice versa, showing

that even the most important cells for one variable carry informa-

tion about the other variable in both regions (Figure 7B). We

conclude that, in CA1 and the DG, neurons have mixed selec-

tivity to the variables we decoded, in line with recent studies in

CA1 (Meshulam et al., 2017) and in the cortex (Rigotti et al.,

2013; Fusi et al., 2016; Hardcastle et al., 2017; Lindsay et al.,

2017; Discussion).

So far, we have shown that the code that is used to represent

position is distributed; i.e., all active cells contribute to some

extent to the population code. We therefore sought to see

whether correlations between the activities of different neurons

contribute to the decoding performance in a similar way as

what we described in Figure 3. To understand the contribution

of correlations to the encoding of position, it is important to

distinguish different components, and in particular the correla-

tions generated by the signal (i.e., the position of the animal)

and those that can be considered noise (i.e., not related to en-

coding of position). The signal component is induced by the tun-

ing properties of individual neurons. For example, two place cells

that have highly overlapping fields are going to be correlated

because they tend to be co-active when the animal is at a partic-

ular location. Noise correlations represent the component that

cannot be explained by the signal, and they are essentially due

to the fact that every time the animal is at particular location,

the neural response can be different. Noise correlations can be

beneficial, detrimental, or irrelevant for the neural code (Abbott

and Dayan, 1999; Schneidman et al., 2003; Brody, 1999). How-

ever, our initial hypothesis was that a large portion of the noise

variance can be explained by the fact that neurons encode mul-

tiple variables besides position (Discussion). For example, the

different points that encode the same position in Figure 3 might

correspond to visitations where the head direction and/or the

speed were different. In this case, destroying the correlations

would result in a decrease or no change in decoding perfor-

mance (Figure 8A).

We devised a procedure to shuffle the data in a way that de-

stroys the noise correlations across neurons maintaining the

spatial tuning of each cell (STAR Methods; Figure S14). We

then studied the effect of this procedure on the decoding accu-

racy for position. At each pass through a location, we randomly

picked the activity of a cell from the pool of recordings corre-

sponding to that location and that cell (Figure 8B). We then

corrected for the different time spent in each pass at the same

location and repeated the procedure for all cells independently.

A B

C

Figure 5. Correlation between Importance Index and Spatial Information

(A and B) Left: scatterplot of the importance index and overall cell activity for each cell in one representative animal. As expected, we found a strong correlation

between these quantities because it is unlikely that a weakly active cell can contribute to decoding. Right: scatterplot of the importance index and statistical SSI

with respect to independent random temporal shuffling of each cell’s identified calcium events. DG cells are shown in (A) and CA1 cells in (B). Each dot cor-

responds to one cell in one representative animal. Pearson’s correlation factor r between the plotted quantities are reported (Pearson’s correlation significance,

***p<0.001). Significant correlations are found between the analyzed quantities, but single-cell statistics only partially capture the information available at the

population level. For each quantity, overall histograms are reported on the side of the plot. The dashed red line corresponds to a value of a threshold of 3 used to

define place cells (STAR Methods).

(C) The same plots as in (A) and (B) but for all cells identified in all fields of view (FOVs) in DG (left) and CA1 (right) (Pearson’s correlation significance, ***p<0.001).

See also Figures S9 and S13.
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By using this procedure, we effectively destroyed the noise cor-

relations between neurons because, after this manipulation,

each cell’s activity was independent from the others. However,

by restricting the manipulation to each discrete location, we

did not alter the spatial tuning of the cells (Figure 8C) or the signal

correlations among neurons induced by their tuning profiles. By

comparing the performance of the decoder on the modified data

with the one on the original data, we could then assess the

contribution of the noise correlations to decoding. This is a direct

test of the presence of a structure in the neural representations

that is beneficial for representing information (Abbott and Dayan,

1999; Averbeck and Lee, 2006; Pillow et al., 2008; Eyherabide

and Samengo, 2013). In 4 of the 6 analyzed animals, we found

that the decoding error increased when correlations were de-

stroyed through the shuffling procedure, revealing the impor-

tance of correlations (Figure 8D). The effect was very consistent

in CA1 neurons, where performancewas reduced by about 20%,

whereas almost no effect was observed in the DG (Figure S14).

Pairwise correlations were found to be lower in the DG than in

CA1 (Figure S16), and this may partially explain the main effect

that disrupting correlations can lead to different changes in de-

coding accuracy in the two areas. However, it might only partially

explain the effect because the correlations are not completely

absent in the DG, and those we observed certainly changed after

disrupting the noise correlations (for an analysis of how destroy-

ing correlations affects pairwise correlations and the importance

index, see Figures S16 and S23).

DISCUSSION

Neurons in the DG and CA1 have rather diverse response prop-

erties, and often the responses are not easily interpretable (Dan-

ielson et al., 2016; Leutgeb et al., 2007). Despite this seemingly

disorganized neural code, it is possible to decode, from the ac-

tivity of a population of neurons, the position, speed, and direc-

tion of motion of the animal. Neurons respond to mixtures of the

decoded variables, as observed in other highly cognitive brain

areas (Rigotti et al., 2013; Fusi et al., 2016). The information

A

C

D

B

Figure 6. Ranking Neurons According to Their Contribution to the Decoding Accuracy for Head Direction

(A) Validation of the importance index as in Figure 4A, but we ranked the cells according to the importance index for decoding direction ofmotion (STARMethods).

(B) Tuning maps as in Figure 4B. Here we show the tuning for direction of motion of single cells as polar tuning maps for groups of 18 cells ordered by importance

index. The area color represents the overall activity of the cell throughout the trial. Dashed red borders indicate cells that do not pass the criteria for significant

direction tuning using a commonly used statistical test (STAR Methods). As in the case of position tuning, some untuned cells appear among the most important

cells, and highly tuned cells appear among the least important.

(C) Scatterplots of cell activity and importance for position decoding for all identified cells combined from all FOVs in the DG (left) and CA1 (right). The Pearson

correlation factor r between the plotted quantities is reported (Pearson’s correlation, ***p<0.001).

(D) Same as in (C) but for importance index for direction and significance of direction information.
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about these variables is highly distributed across neurons to the

point where the responses of individual neurons are only weakly

predictive of their contribution to the neural code. It is therefore

crucial to consider neurons in one region of the brain as part of

an ensemble to assess their importance for processing and

transferring information about a particular variable.

One implication of such a distributed neural code is that it can

be misleading to characterize the function of a brain region

based only on the statistics of individual neuron properties. In

the specific case of position encoding, for instance, it is not

possible to conclude to what extent the position of the animal

is encoded only by analyzing the tuning of individual cells to

space. Indeed, populations of cells whose activities do not

pass a selectivity criterion for space encoding (for example,

through an information-theoretical approach), may still encode

position via the ensemble activity patterns, as we showed by de-

coding position and direction of motion from untuned cells in the

DG and CA1 regions of the hippocampus.

The population coding rescues the ability of these areas to

encode position despite the sparsity of its activity and the vari-

ability of its representations. Here we show that, indeed, even a

few tens of cells encode position with high precision in both

analyzed areas. Furthermore, the decoding was accurate even

when the model training and model test periods were separated

by up to 18min, indicating that, at the population level, the repre-

sentations were stable despite the elevated variability of individ-

ual cells (Figure S12).

Our findings are in line with studies suggesting that session-

averaged, single-cell statistics fall short in describing the activities

of hippocampal cells. For example, although place fields are

widelyused toanalyzeDGactivities in remappingstudies (Leutgeb

et al., 2007), it is only when sub-second network discharge corre-

lations are taken into account in the analysis thatmemory discrim-

ination signals can be revealed (van Dijk and Fenton, 2018). More

importantly, we address one important question about the role of

non-place cells in the CA1 and DG areas of the hippocampus. A

recent work by Meshulam et al. (2017) used a maximum entropy

model to describe the neural activity recorded in CA1. The model

is constructed from the second-order statistics (the correlations

between neurons), and it accurately predicts the activity of each

neuron from the state of all other neurons in the network, regard-

less of how well that neuron codes for position. They conclude

that correlation patterns in the CA1 hippocampus only partially

arise fromplace encoding.Moreover, their results suggest that un-

derstanding the neural activity may require not only knowledge of

the external variables modulating it (i.e., the position of the animal)

but also of the internal network state. Our results indicate that the

correlation patterns not due to position encoding can be partially

explained by the encoding of other external variables (e.g., the di-

rection of movement). However, it is likely that some components

of the correlation patterns encode the internal state of the animal,

as suggested by Meshulam et al. (2017). Our analysis also shows

directly that non-place cells contribute to encoding of the position

of the animal. This is partially due to the fact that some of the cells,

A B

Figure 7. The Representations for Space and Direction of Motion Are Distributed in DG Cells and CA1 Cells

(A) Left: scatterplots of importance index for position and direction of motion (top, DG cells in one representative mouse; bottom, CA1 cells). Each dot corre-

sponds to one cell for whichwe computed the importance index for the variables we decoded. Pearson’s correlation values r are reported (Pearson’s correlation,

***p<0.001). Right: same as left, but the component due to the correlation between importance index and cell activity was removed from the data. Residuals from

linear regression are considered for both quantities. The residuals also show a positive correlation.

(B) Even the most important cells for encoding one variable carry information about the other variable. We show the decoding performance of position (left) and

direction of motion (right) using the most important cells for direction and position (left and right plots, respectively). Vertical bars correspond to mean and SD

(*p<0.05, **p<0.01, ***p<0.001, STAR Methods).
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when taken individually, encode position only weakly and, hence,

do not pass the statistical test for being categorized as place cells;

the criterion used byMeshulam et al. (2017) to select place cells is

similar to ours. However, non-place cells contribute toposition en-

coding also because of their correlations with place cells. Indeed,

when the noise correlations are destroyed, the decoding accuracy

decreases in CA1. This is compatible with their observation that

place and non-place cells belong to the same network when the

patterns of correlations are considered, but it also goes beyond

their analysisbecause it showsdirectly that correlationsare impor-

tant for encoding position. In conclusion, to study the neural code

inoneparticular regionof thebrain, onehas toconsiderall cells in a

populationbecause tuningproperties that are based on single-cell

statistics might not be sufficient to understand how task-relevant

variablesareencoded (Fusi etal., 2016;KriegeskorteandDouglas,

2019; Saxena and Cunningham, 2019).

Poor Spatial Tuning and the Advantages of Mixed
Selectivity
One of the important observations we discussed in the article is

that there is a large proportion of cells that exhibit poor spatial tun-

ing. The computational advantage of poor spatial tuning can be

understood only when one considers a situation where the neu-

rons in a population encode not only the position of the animal

but also several other variables (e.g., head direction, the velocity

of the animal, and other unknown variables that are not under con-

trol in our experiment). This can be implemented in different ways.

For instance, each variable could be encoded by a different group

of highly specialized neurons. However, these representations are

low-dimensional; hence, they greatly limit the number of combina-

tions of input variables to which a linear readout or a downstream

neuron can respond; see, for instance, Fusi et al. (2016). One sim-

ple example is a downstream neuron that must respond when the

animal is looking at the center of the arena from two opposite cor-

ners. Such a simple situation is equivalent to the exclusive-or

(XOR) problem in which the combinations of variables (position

and headdirection) that should activate the neuron (animal looking

at the center of the arena) and those that should not (same posi-

tions, animal looking in the opposite directions) are not linearly

separable. Instead, when head direction and position are mixed

non-linearly, the neural representations can be high-dimensional,

and a linear readout can separate any set of combinations of

A C D

B

Figure 8. Destroying Correlations Affects Decoding Performance in CA1 but Not in the DG

For a Figure360 author presentation of this figure, see https://doi.org/10.1016/j.neuron.2020.05.022.

(A) Procedure to test the presence of correlations between cells. We recorded neural activity during multiple passes through location A (green). Then we gen-

erateed a new recording by randomly choosing one of the activities recorded in that location for each cell independently. The green dot below the decoder’s

discrimination line in the activity plot corresponds to the newly generated activity. We repeated this procedure for all the passes through each location and for

each cell independently, destroying the correlations between cells, if any. In the extreme case depicted in the cartoon, this procedure will introduce errors in

decoding position because the generated activity will be classified as the wrong location.

(B) Cartoon activity traces for the two correlated neurons during the two passes through the same location. As described in (A), we destroyed correlations by

choosing, for each neuron, the activity during one of the passes through that location and combined them to generate a new activity pattern corresponding to that

location. In this example, we chose pass 2 for neuron 1 and pass 1 for neuron 2.

(C) Spatial tuning maps of four representative cells before (left) and after (right) applying the shuffling procedure to destroy correlations. The spatial tuning of the

cells remain unaltered after the procedure.

(D) Decoding performance before (light colors) and after destroying correlations through shuffling (full colors). Top: DG animals. Bottom: CA1 animals. Vertical

bars correspond to mean and SD (*p < 0.05, **p < 0.01, ***p < 0.001, STAR Methods).

See also Figures S14, S15, and S24.
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inputs from the others. This is why, in most problems that involve

at least two variables, mixing all relevant variables non-linearly is

beneficial.Mixing positionwith other variables, like headdirection,

leads to relatively poor spatial tuning, but it also confersmore flex-

ibility to linear readouts, greatly increasing the computational abil-

ity of the network.

In our paper, we also showed that our data support the hy-

pothesis for mixed selectivity, already entertained by previous

research, in the specific case of spatial representations in the

hippocampus. We verified this hypothesis by showing that neu-

rons in the DG and CA1 encode multiple spatial variables, not

only position, through decoding. In such a situation, it is possible,

and very likely, to find that neurons that do not explicitly encode

position; i.e., they do not have significant spatial tuning but are

still important to discriminate between pairs of locations through

correlations imposed by the geometry of the neural representa-

tions. In the cartoon in Figure 3, for instance, we show howmod-

ulation of activity imposed by correlations can be used by a

decoder to perfectly discriminate two locations (see also recent

reviews in Kriegeskorte and Douglas, 2019; Saxena and Cun-

ningham, 2019). That modulation must therefore be intended

as the result of the population response to combinations of vari-

ables that include position, speed, movement direction, and

possibly other variables that were not under our control (Allegra

et al., 2019). We modeled such a situation in Figure S15 and

found regimes in which correlations imposed by other variables

help and situations where they do not have a significant effect on

decoding performance, depending on the geometry of the neural

representations. Taken together, our results show the advan-

tages of a distributed code in that it can reliably represent multi-

ple combinations of variables.

The Encoding Role of Correlations
Destroying correlations among neurons did not have a strong ef-

fect on decoding performance in DG neurons, but it consistently

reduced decoding performance in CA1 data. Whether neural cor-

relations are used in the population code is a long-standing ques-

tion. In the data, it has been shown in the past that the pairwise

correlations only accounted for about 10%of the information con-

tained in neural activities (Averbeck and Lee, 2006; Latham and

Nirenberg, 2005; Schneidman et al., 2006), whereas usingmodels

that exploit higher-order correlations can recover about 20%of in-

formation related to the stimulus in a population of retinal ganglion

cells (Pillow et al., 2008). Here we showed that the disruption of

correlations leads to a relativelymodest but statistically significant

decrease in decoding accuracy in CA1 but not in the DG.

These observations indicate that the correlations we are de-

stroying should be considered signal correlations rather than

noise correlations, at least in CA1. The variability across visita-

tions can probably be explained by the fact that neurons encode

multiple variables in a consistent way and may induce the

observed neural correlations (Wood et al., 1999; Allegra et al.,

2019). This situation would be similar to the one discussed in Fig-

ure 3 (e.g., passes 1 and 2 would correspond to two visitations of

location A with a different direction of motion); i.e., the disruption

of the correlations decreases the performance of the decoder. In

Figure S15, we show, in simulations, that this is indeed the case.

We considered a model where the neural activity depends on

multiple variables; for instance, the position of the animal, the di-

rection ofmotion, etc. Each variable can assume a discrete set of

different values, and every set of values of the encoded variables

defines one specific condition. We then constructed different

neural representations by arranging the different conditions in

the space of neural activities. In particular, we considered two

scenarios, one with unstructured representations, where

different conditions are represented by different random vectors

in the activity space, and one with a kind of structured geometry

that is beneficial for generalization across conditions (Bernardi

et al., 2018). In both cases, the encoded variables are linearly

separable; i.e., they can be decoded with a linear classifier. We

then compared the linear decoder’s performance before and af-

ter destroying the correlations, as we did in the real data, for

different numbers of conditions in each scenario.

In most of the scenarios we simulated, the decoder perfor-

mance is either disrupted, or it remains the same when the cor-

relations are destroyed. The beneficial effect of the correlations

is maximal when the representations are fairly unstructured. In

the case of random representations, the effect is maximal for a

certain number of conditions. This number depends on the num-

ber of encoded variables and on the number of values each var-

iable can hold (i.e., the total number of conditions). Our experi-

mental observations that show that the decoder’s performance

is disrupted more in CA1 than in the DG are compatible with a

scenario in which the representations in CA1 are unstructured,

similar to the simulated representations obtained with the

random model. Our results also show that the representations

in the DG are compatible with at least two scenarios: (1) they

could be structured, as we described them in Figures S15D–

S15F, or (2) they could also be unstructured as in CA1 but with

a different number of encoded variables, either very small or

very large. It is important to stress that the scenarios studied in

Figure S15 are all plausible in the sense that they are based on

representations that have already been observed in other studies

(Rigotti et al., 2013; Bernardi et al., 2018). However, the exam-

ples we report are certainly not exhaustive, and so we cannot

exclude that other codes we did not consider may be more

appropriate to describe DG and CA1 representations.

One alternative explanation for the difference between CA1

and the DG comes from the fact that the performance reduction

that follows the disruption of correlations depends on the level of

activity of the cells and that CA1 and the DG exhibit different

levels of activity. However, in our data, this difference in activity

levels could not fully account for the difference between CA1 and

the DG in the effect of destroying correlations because we did

not observe any performance reduction in the DG when the level

of activity was matched to the one observed in CA1 (Figure S14).

Our simulations where multiple variables are encoded are

compatible with recent models of the hippocampus that empha-

size its role in memory compression (Gluck and Myers, 1993;

Benna and Fusi, 2019), and memory prediction (Dayan, 1993;

Stachenfeld et al., 2014, 2017; Gershman et al., 2012; Recana-

tesi et al., 2018; Whittington et al., 2019). For all of these models,

the neural representations in the hippocampus are constructed

by learning the statistics of the sensory experiences to generate

compressed representations of the memories to be stored or,

when focused on temporal sequences, to generate a prediction
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of the next memory (successor representation). Future theoret-

ical work will establish more quantitatively whether this scenario

is fully compatible with our observations and what the different

roles of CA1 and DG could be in this compression process.

Average Activity in the DG Is Larger Than in CA1
One of the observations that requires some discussion is that the

average activity in the DG is larger than that in CA1 in our data.

This might sound surprising, but a careful review of the literature

shows that our observations are compatible with other studies

(Figure S3; Table S1). Indeed, the average firing rate that is re-

ported varies from study to study, depending on the recording

technique, the type of experiment, and whether rats or mice

were employed. Our conclusion is that our results fall within

the range of values reported in the existing literature. The review

reported in the Table S1 is not exhaustive by any means, but we

believe it is highly representative of the existing literature.

Conclusion
Our results strengthen the hypothesis that the neural code in the

DG and CA1 area of the hippocampus is highly distributed and

that it is important to analyze it using a population approach

(Fenton et al., 2008; Meshulam et al., 2017; van Dijk and Fenton,

2018). Analysis of the averaged response properties of individual

neurons is certainly informative, but it is not sufficient to charac-

terize the neural code of a brain area. Critically, the role of the DG

and CA1 area of the hippocampus should be revisited in light of

our observations. The methods we propose will shed new light

on the general role of other brain areas implicated in high-level

cognitive functions, such as spatial navigation, and in which

place cells are not observed.
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Gini, C. (1912). Variabilità e mutabilità. Reprinted in Memorie di metodologica

statistica, E. Pizetti and T. Salvemini, eds. (Libreria Eredi Virgilio Veschi).

Gluck, M.A., and Myers, C.E. (1993). Hippocampal mediation of stimulus rep-

resentation: a computational theory. Hippocampus 3, 491–516.

GoodSmith, D., Chen, X., Wang, C., Kim, S.H., Song, H., Burgalossi, A.,

Christian, K.M., and Knierim, J.J. (2017). Spatial representations of granule

cells and mossy cells of the dentate gyrus. Neuron 93, 677–690.e5.

Hardcastle, K., Maheswaranathan, N., Ganguli, S., and Giocomo, L.M. (2017).

A Multiplexed, Heterogeneous, and Adaptive Code for Navigation in Medial

Entorhinal Cortex. Neuron 94, 375–387.e7.

Harvey, C.D., Collman, F., Dombeck, D.A., and Tank, D.W. (2009). Intracellular

dynamics of hippocampal place cells during virtual navigation. Nature 461,

941–946.

Haufe, S., Meinecke, F., Görgen, K., Döhne, S., Haynes, J.D., Blankertz, B.,
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Stefano Fusi (sf2237@

columbia.edu).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The datasets and analysis code supporting the current study are available from the lead contact on request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
All procedures were conducted in accordance with the U.S. NIH Guide for the Care and Use of Laboratory Animals and the institu-

tional Animal Care and Use Committees at New York State Psychiatric Institute and UCSF. Adult male C57BL/6J mice were supplied

by Jackson Laboratory and were used beginning at 8-12 weeks of age. Mice were co-housed with litter mates (2-5 per cage). Mice

were maintained with unrestricted access to food and water on a 12-hour light/dark cycle.

Viral Constructs
For calcium imaging, AAVdj-CaMKII-GCaMP6mwas packaged and supplied by Stanford Vector Core at titers of� 4X1012vg/ml, and

AAV1-Syn-GCaMP6f.WPRE.SV40 was packaged and supplied by U Penn Vector Core at titers of � 2X1012vg/ml.

METHOD DETAILS

Calcium imaging
Mice were prepared for in vivo calcium imaging as previously described (Resendez et al., 2016). For dorsal DG imaging, mice were

injectedwith a virus encodingGCaMP6m (AAVdj-CaMKII-GCaMP6m) at the following coordinates:�1.95AP, 1.4ML, 2.2, 2.1, 2.0, 1.9

DV, � 90nl per site) and a � 1:0mm diameter, � 4mm long GRIN lens (Inscopix, Palo Alto, CA) was implanted at (�2.0AP, �1.4ML,

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

AAVdj-CaMKII-GCaMP6m Stanford Vector Core Cat#GVVC-AAV-89

AAV-DJ-CaMKIIa-GCaMP 6f Stanford Vector Core Cat#GVVC-AAV-90

AAV1-Syn-GCaMP6f.WPRE.SV40 U Penn Vector Core Cat#AV-1-PV2822

Experimental Models: Organisms/Strains

C57BL/6J mice Jackson Laboratory CAT#000664; RRID:SCR_004633; http://

www.jax.org/index.html

Software and Algorithms

Ethovision XT 10 Noldus https://www.noldus.com;

RRID:SCR_000441

Mosaic Inscopix https://www.inscopix.com

MATLAB Mathworks https://www.mathworks.com/products/

matlab.html; RRID:SCR_001622

CNMF-E Zhou et al., 2018 https://github.com/zhoupc/CNMF_E

Scikit-learn Pedregosa et al., 2012 https://scikit-learn.org

Decoding Algorithm This paper N/A

Spatial information Skaggs et al., 1992 N/A
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�1.95 DV). For dorsal CA1 imaging, mice were injected with a virus encoding GCaMP6f (AAV1-Syn-GCaMP6f.WPRE.SV40) at the

following coordinates: (�2.15AP, 1.85ML, �1.55, �1.65DV, 256nl per site) and a GRIN lens was implanted at (�2.15AP, 1.30ML,

�1.30DV). Three weeks after surgery, mice were checked for GCaMP expression with a miniaturized microscope (Inscopix, Palo

Alto, CA) with procedures previously described (Resendez et al., 2016). Anesthetized mice were checked for GCaMP+ neurons

and a baseplate was attached to the skull at the optimal imaging plane. For all the mice presented in this report the histology

confirmed the adequate placement of the lens (Figure S22). For dorsal DG imaging, oneweek later, micewere imaged during foraging

in an open field task andwere habituated to the room and enclosure (30min), then 24 hours later they were imaged as they foraged for

sucrose pellets in an open field enclosure (50cm2). For dorsal CA1 imaging, mice were imaged during exploration of an open field

enclosure. Mice were habituated to the room and enclosure (10 minutes) and then imaged 30 minutes later. Imaging frames were

recorded with nVista acquisition software (Inscopix, Palo Alto, CA), and time-synced behavior was acquired using EthoVision XT

10. Calcium imaging videos were acquired at 15 frames per second with 66.56 ms exposure.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavior data pre-processing
The behavior was recorded using a webcam (Logitech) mounted on the ceiling about 3 feet above the arena. The instantaneous po-

sition of the animal was then extrapolated from the video using custom code written in Python using the Scikit-image library (version

0.13.0). We first applied a 9 points piecewise affine transformation to correct for barrel camera distortions.We then applied a smooth-

ing filter with a Gaussian profile to reduce the effect of pixel intensity noise due to low lighting and low image resolution and applied a

threshold to the gray-scale converted image to get a few contiguous regions of pixels as candidate animal tracking. We then used a

method based on the determinant of the Hessian to identify blobs in the pre-processed images and verified that the largest blob was

consistently found to be corresponding to the animal silhouette. Hence, we used the center of the largest blob as the tracked position

of themouse. We further temporally aligned the position data to the imaging data using linear interpolation and smoothed themwith a

7 frames timewindow. Lastly, we identified the time bins in which the speed of the animal was lower than 2 cm/s for more than 1 s and

discarded them from the analysis, unless specified.

Signal extraction and spike deconvolution
All calcium movies were initially processed in Mosaic (Inscopix, Palo Alto, CA) for spatial binning and motion correction and subse-

quently analyzed using a recently developed software algorithm written in MATLAB (Mathworks) called CNMF-E (Zhou et al., 2018).

Briefly, the algorithm separates the large, low-frequency fluctuating background components from the signal produced by ofmultiple

sources in the data, allowing the accurate source extraction of cellular signals. It involves a constrained non-negative matrix factor-

ization problem optimized for endoscopic data whereby calcium temporal dynamics and the shape of spatial footprints are used as

constraints. It includes 3 main steps which are iterated: obtain a first estimate of spatial and temporal components of single neurons

without direct estimation of the background; estimate the background given the estimated neurons’ spatio-temporal activity; update

the spatial and temporal components of all neurons while fixing the estimated background fluctuations. In each of these steps,

manual intervention guided by visual inspection based on temporal profile and spatial footprint shape allowed to further improve

the quality of the signal extraction. The result of this process consists of a list of deconvolved calcium events for each cell with asso-

ciated time-stamp and magnitude and the convolved trace with a calcium decay profile estimated for each cell independently on the

basis of the raw trace.

For our decoding analysis, we did not use the original traces, rather we used the events extracted with CNMF-E convolved with an

exponential kernel. The time constant of the kernel was optimized to maximize the cross-validated position decoding performance

and was equal for all neurons. The results depend only weakly on the kernel time constant, and qualitatively are the same (see Fig-

ure S1). All other quantities derived from the calcium traceswere computed using the calcium events, unless specified otherwise, and

therefore their values do not depend on the shape of the kernel.

Place fields and heading direction tuning
Place fields for each extracted source were constructed in a manner similar to established method applied to electrophysiology data

(Leutgeb et al., 2007). We used the calcium events of each cell as its putative spiking activity. We then summed the total number of

events that occurred in a given location, divided by the amount of time the animal spent in the location and smoothed using a

Gaussian kernel centered on each bin. The rate in each location x was estimated as

rðxÞ =
Pn

i =1g
�
si�x
h

�
R T

0
g
�
yðtÞ�x

h

�
dt

where g is a Gaussian smoothing kernel, h= 5 sets the spatial scale for smoothing, n is the number of events, si is the location of the

i-th event, yðtÞ the location of the animal at time t and ½0;TÞ the period of the recording. In this and all subsequent analysis we removed

the time bins in which the animal had a speed of less than 2 cm/s for more than 1 s, unless specified otherwise. Similarly, for heading
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direction tuning, we first discretized the directions of motion into 8 angular bins of 45 degrees each and then computed the mean

event rate for each cell in each of the 8 bins.

Spatial information statistics
To quantify the statistical significance of the rate maps we measured their specificity in terms of the information content of cell

activity (Allegra et al., 2019; Danielson et al., 2017; Skaggs et al., 1992). We used a 16x16 square grid and computed the amount

of Shannon information that a single event conveys about the animal’s location. The spatial information content of cell discharge

was calculated as a mutual information score between event occurrence per cell and animal position or equivalently using the

formula:

SI =
XN
i = 1

pi

ri
r
log2

ri
r

where i is the spatial bin number, p is the probability for occupancy of bin i, ri is the mean event rate at bin i and r is the overall mean

event rate. We applied the same formula to the direction of motion after discretizing the full angle to 8 bins of 45 degrees. For both

measures, we corrected for the sampling bias problem in information measures (Panzeri et al., 2007) using shuffled distributions of

event occurrences as follows. For each cell independently, we discretized time, generating a long vector of 0’s (no event) and 1’s

(event). We then randomly permuted the elements of this vector and for each permutation we computed the resulting spatial infor-

mation. We repeated this procedure 1000 times, therefore obtaining 1000 values of spatial information to which we compared the

original information content (Ziv et al., 2013; Danielson et al., 2017; Meshulam et al., 2017; Allegra et al., 2019). We labeled a cell

as place cells or a heading direction cell if the original value of spatial information exceeded 3 sigmas from the shuffled distribution

(see also Figures S2 and S3 and Table S1).

Decoding position
For all the datasets, unless otherwise specified, we used 10-fold cross validation to validate the performance of the decoders. We

divided the trial in 10 temporally contiguous periods of equal size in terms of number of datapoints after excluding datapoints cor-

responding to immobility. We then trained the decoders using the data from 9 of them and tested on the remaining data. To decode

the position of the animal, we first divided the arena into 8x8 equally sized, squared locations. We then assigned at each time bin the

label of the discrete location in which the animal was found. For each pair of locations, we trained a Support Vector Machine (SVM)

classifier (Cortes and Vapnik, 1995) with a linear kernel to classify the cell activities into either one of the two assigned locations using

all the identified cells, unless specified otherwise. We used only the data corresponding to the two assigned locations and to correct

for unbalanced data due to inhomogeneous exploration of the arena we balanced the classes with weights inversely proportional to

the class frequencies (Pedregosa et al., 2012). The output of the classifiers was then combined to identify the location with the largest

number of votes as the most likely location (Bishop, 2006). For each choice of train and test set, we computed the median decoding

error as themedian of the physical distance between the center of the decoded discrete location and the actual position of themouse

in each time bin of the test set, unless otherwise specified. The final decoding performance was then computed as themean of all the

median errors across the different choices of train and test sets.

Chance level decoding performance
To assess the statistical significance of our decoders, we computed chance distributions of decoding errors from shuffled data.

This can be done in different ways and we chose a conservative procedure that maintained some structure of the data while de-

stroying the relation between the behavior, e.g., the animal’s position, and the calcium event time series. Briefly, we discretized

time obtaining a vector of positions (or other behavioral variables). We then flipped this vector in time (e.g., the last data point

of position became the first datapoint and vice versa) an then shifted the whole vector in time by a random amount in a torus,

i.e., points that went beyond the time limits of the data were reinserted from the other side. This procedure destroys the relation

between behavior and neural activity, but preserves the time correlations of both the time series representing behavior and, of

course, the time series of the neural activity (which remains untouched). For each random shift, we trained a new decoder on

the data and pooled all the errors obtained. We finally assessed the statistical significance of the decoding error for the 10-fold

cross-validation of the original data by comparing it to the distribution of errors obtained from the manipulated data using the

non-parametric Mann-Whitney U test, from which we obtained a p value of significance. We implicitly assumed that the 10-folds

are statistically independent (the 10 testing time intervals considered for the 10-folds did not have any overlap). This is the proced-

ure we used in all our figures unless specified otherwise.

Another less conservative shuffling strategy is to manipulate the calcium events. We assigned a random time bin to each calcium

event for each cell independently while maintaining the overall density of calcium events across all cells, i.e., by choosing only time

bins in which there were calcium events in the original data and keeping the same number and magnitude of the events in each time

bin. This method destroys spatial information as well as temporal correlations but keeps the overall activity across cells. We verified

that our results did not depend on the particular strategy adopted (see Figure S3 and Table S1).
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Decoding the direction of motion
One behaviorally relevant quantity that was available to us was the direction of motion of the animal. Unfortunately, the visual tracking

didn’t allow for a direct estimate of the direction of motion. The head direction was also not easily measurable so we resorted to using

the positional information to extract the direction of motion. We computed it by using two subsequent datapoints in the animal x-y

trajectory. We discretized the values into 8 angles and then applied similar decoding strategies as for position decoding, i.e., we used

a battery of linear-kernel SVM decoders to distinguish between pairs of angles after balancing the dataset through class weighting.

We report themedian error in radiant on the left-out data of the 10-fold cross validation. We applied themethods described above for

position decoding for assessing the statistical significance of the results.

Decoding speed
To decode the speed of movement of the animal we first computed the speed of motion using two consecutive positions and as-

signed the computed speed to the later time bin among the two. To decode the instantaneous speed of motion we used Lasso (Tib-

shirani, 1996), a linear regression analysis method that minimizes the sum of squared errors while selecting a subset of the input cells

to improve decoding accuracy and interpretability of the results. We applied the methods described above for position decoding for

assessing the statistical significance of the results.

Bayesian decoder
The Bayesian decoder is a theoretical optimal probabilistic method to decode information for the activity of the neural population. It is

based on the Bayes rule and has been extensively used to decode position from electrophysiological data from the hippocampus

(Zhang et al., 1998; Wilson and McNaughton, 1993). Briefly, if x is a discrete position in the arena, we estimate the position using:

PðxjrtÞ = PðrtjxÞPðxÞ =PðrtÞ
where rt is the activity of the population at time t and assuming independent activity of different neurons. The algorithm computes

PðxjrtÞ for all discrete positions and assigns the predicted position to the one that maximizes it:

bxt = argmax
x

PðxjrtÞ:

Importance index
The importance index was introduced to quantify the contribution of each cell in a population to the decoding of a given quantity. We

applied amodified version of a traditional method for feature selection inmachine learning. In our analysis, a feature of the input space

consists of one DG cell. Feature selection is performed using the weights of the decoder after fitting model to the data. In our case,

since we employed multiple decoders, one for each pair of physical location in the arena, we introduced a method to combine the

weights assigned to the cells by each decoder. We defined the importance index of cell i as:

ui =
X
k

jwik jP
j

��wjk

��
wherewik is the weight of the k-th decoder assigned to the i-th cell (and equivalentlywjk is the weight of the k-th decoder assigned to

the j-th cell). The indices i, j run through all cells in the population and k runs through all the binary decoders.

Procedure to destroy correlations
To destroy correlations without impacting the spatial information of single neurons, we considered multiple passes through single

discrete locations in the arena. We then shuffled the calcium event occurrences between different passes in the same location.

Importantly, we corrected the activity of each pass for the different amount of time spent in each pass by radomly sampling events

instead of replacing them in order to reduce artifacts. We verified that the correction does not impact decoding when sampling from

the same pass (see Figure S14).

Software
The data analysis has been performed using custom code written in Python (version 2.7.12) and routines from the Scipy (ver. 0.19.0),

Numpy (ver. 1.11.3) and the Scikit-learn (0.19.1) (Pedregosa et al., 2012) packages. The source extraction has been performed using

MATLAB (Mathworks, R2016a) andCNMF-E (Zhou et al., 2018) using the same parameters across animals andminimal manual inter-

vention only for obvious non-cell like sources based on spatial profile shape and temporal profile dynamics.
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