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Abstract

Widefield calcium imaging enables recording of large-scale neural activity across the mouse
dorsal cortex. In order to examine the relationship of these neural signals to the resulting
behavior, it is critical to demix the recordings into meaningful spatial and temporal compo-
nents that can be mapped onto well-defined brain regions. However, no current tools satis-
factorily extract the activity of the different brain regions in individual mice in a data-driven
manner, while taking into account mouse-specific and preparation-specific differences.
Here, we introduce Localized semi-Nonnegative Matrix Factorization (LocaNMF), a method
that efficiently decomposes widefield video data and allows us to directly compare activity
across multiple mice by outputting mouse-specific localized functional regions that are sig-
nificantly more interpretable than more traditional decomposition techniques. Moreover, it
provides a natural subspace to directly compare correlation maps and neural dynamics
across different behaviors, mice, and experimental conditions, and enables identification of
task- and movement-related brain regions.

Author summary

While recording from multiple regions of the brain, how does one best incorporate prior
information about anatomical regions while accurately representing the data? Here, we
introduce Localized semi-NMF (LocaNMF), an algorithm that efficiently decomposes
widefield video data into meaningful spatial and temporal components that can be
decoded and compared across different behavioral sessions and experimental conditions.
Mapping the inferred components onto well-defined brain regions using a widely-used
brain atlas provides an interpretable, stable decomposition. LocaNMF allows us to

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1007791

April 13, 2020 1/28


http://orcid.org/0000-0003-4655-7050
http://orcid.org/0000-0002-9461-1042
http://orcid.org/0000-0002-5044-5177
http://orcid.org/0000-0002-2485-0144
http://orcid.org/0000-0001-5714-7212
http://orcid.org/0000-0002-3205-3794
https://doi.org/10.1371/journal.pcbi.1007791
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007791&domain=pdf&date_stamp=2020-04-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007791&domain=pdf&date_stamp=2020-04-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007791&domain=pdf&date_stamp=2020-04-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007791&domain=pdf&date_stamp=2020-04-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007791&domain=pdf&date_stamp=2020-04-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007791&domain=pdf&date_stamp=2020-04-23
https://doi.org/10.1371/journal.pcbi.1007791
https://doi.org/10.1371/journal.pcbi.1007791
https://doi.org/10.1371/journal.pcbi.1007791
http://creativecommons.org/licenses/by/4.0/
http://repository.cshl.edu/id/eprint/38599/
http://repository.cshl.edu/id/eprint/38599/

PLOS COMPUTATIONAL BIOLOGY

LocaNMF of widefield calcium imaging data

Funding: We gratefully acknowledge support from
the Swiss National Science Foundation
P2SKP2_178197 (SS), P300PB_174369 (SM),
NIBIB RO1 EB22913 (LP), the Simons Foundation
via the International Brain Lab collaboration (LP,
AC), NSF Neuronex DBI-1707398 (LP), NIH/NINDS
1U19NS104649-01 (LP, EH), NIH/NIMH 1 RF1
MH114276-01 (EH), NIH/NINDS 1R01NS063226-
08 (EH), NIH/EY RO1EY022979 (AC), and
Columbia University’s Research Opportunities and
Approaches to Data Science program (EH). The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript.

Competing interests: The authors have declared
that no competing interests exist.

satisfactorily extract the activity of the different brain regions in individual mice in a data-
driven manner, while taking into account mouse-specific and preparation-specific
differences.

This is a PLOS Computational Biology Methods paper.

Introduction

A fundamental goal in neuroscience is to simultaneously record from as many neurons as pos-
sible, with high temporal and spatial resolution [1]. Unfortunately, tradeoffs must be made:
high-resolution recording methods often lead to small fields of view, and vice versa. Widefield
calcium imaging (WFCI) methods provide a compromise: this approach offers a global view of
the (superficial) dorsal cortex, with temporal resolution limited only by the activity indicator,
calcium dynamics and camera speeds. Single-cell resolution of superficial neurons is possible
using a “crystal skull” preparation [2] but simpler, less invasive thinned-skull preparations that
provide spatial resolution of around tens of microns per pixel have become increasingly popu-
lar [2-14]; of course there is also a large relevant literature on widefield voltage and intrinsic
signal imaging [15-18].

How should we approach the analysis of WECI data? In the context of single-cell-resolution
data, the basic problems are clear: we want to denoise the CI video data, demix this data into
signals from individual neurons, and then in many cases it is desirable to deconvolve these sig-
nals to estimate the underlying activity of each individual neuron; see e.g. [19] and references
therein for further discussion of these issues.

For data that lacks single-neuron resolution, the relevant analysis goals require further
reflection. One important goal (regardless of spatial resolution) is to compress and denoise the
large, noisy datasets resulting from WFCI experiments, to facilitate downstream analyses [20].
Another critical goal is to decompose the video into a collection of interpretable signals that
capture all of the useful information in the dataset. What do we mean by “interpretable” here?
Ideally, each signal we extract should be referenced to a well-defined region of the brain (or
multiple regions)—but at the same time the decomposition approach should be flexible
enough to adapt to anatomical differences across animals. The extracted signals should be
comparable across animals performing the same behavioral task, or presented with the same
sensory stimulus; at the very least the decomposition should be reproducible when computed
on data collected from different comparable experimental blocks from the same animal.

Do existing analysis approaches satisfy these desiderata? One common approach is to
define regions of interest (ROIs), either automatically or manually, and then to extract signals
by averaging within ROIs [7]. However, this approach discards significant information outside
the ROIs, and fails to demix multiple signals that may overlap spatially within a given ROI.
Alternatively, we could apply principal components analysis (PCA), by computing the singular
value decomposition (SVD) of the video [8]. The resulting principal components serve to
decompose the video into spatial and temporal terms that can capture the majority of available
signal in the dataset. However, these spatial components are typically de-localized (i.e., they
have support over the majority of the field of view, instead of being localized to well-defined
brain regions). In addition, the vectors output by SVD are constrained to be orthogonal by
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construction, but there is no a priori reason to expect this orthogonality constraint to lead to
more interpretable or reproducible extracted components. Indeed, in practice SVD-based
components are typically not reproducible across recording sessions from the same animal:
the PCs from one session may look very different from the PCs from another session (though
the vector subspace spanned by these PCs may be similar across sessions). Non-negative
matrix factorization (NMF) is a decomposition approach that optimizes a similar cost function
as SVD, without orthogonality constraints but with additional non-negativity constraints on
the spatial and/or temporal components [6, 21]; unfortunately, as we discuss below, many of
the same criticisms of PCA also apply to NMF. Finally, seed-pixel correlation maps [7] provide
a useful exploratory approach for visualizing the correlation structure in the data, but do not
provide a meaningful decomposition of the full video into interpretable signals per se.

In this work we introduce a new approach to perform a localized, more interpretable
decomposition of WECI data. The proposed approach is a variation on classical NMF, termed
localized semi-NMF (LocaNMF), that decomposes the widefield activity by (a) using existing
brain atlases to initialize the estimated spatial components, and (b) limiting the spread of each
spatial component in order to obtain localized components. We provide both CPU and GPU
implementations of the algorithm in the code here. Running LocaNMF allows us to efficiently
obtain temporal components localized to well-defined brain regions in a data-driven manner.
Empirically, we find that the resulting components satisfy the reproducibility desiderata
described above, leading to a more interpretable decomposition of WFCI data. In experimen-
tal data from mice expressing different calcium indicators and exhibiting a variety of behav-
iors, we find that (a) spatial components and temporal correlations (measured over timescales
of tens of minutes) are consistent across different sessions in the same mouse, (b) the frontal
areas of cortex are consistently useful in decoding the direction of licks in a spatial discrimina-
tion task, and (c) the parietal areas of cortex are useful in decoding the movements of the paws
during the same task. We begin below by describing the model, and then describe applications
to a number of datasets.

Results
Model

Here, we summarize the critical elements of the LocaNMF approach that enable the con-
strained spatiotemporal decomposition of WECI videos; full details appear in the Methods sec-
tion. Our proposed decomposition approach takes NMF as a conceptual starting point but
enforces additional constraints to make the extracted components more reproducible and
interpretable. Our overall goal is to decompose the denoised, hemodynamic-corrected,
motion-corrected video Y into Y = AC, for two appropriately constrained matrices A = {a}
and C = {¢;} (Fig 1). In more detail, we model

¥(n,t) = Y a(met), W

i.e., we are expressing Y as the sum over products of spatial components a; and temporal com-
ponents ¢. It is understood that each imaged pixel n in WFCI data includes signals from a
population of neurons visible at n, which may include significant contributions from neuropil
activity [21]. Here, we assume that the term a;(n) represents the density of calcium indicator at
pixel n governed by temporal component k, and is therefore constrained to be non-negative
for each n and k. Y, on the other hand, corresponds directly to the mean-adjusted fluorescence
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Fig 1. Overview of LocaNMF: A decomposition of the WFCI video into spatial components A and temporal components C, with the spatial
components soft-aligned to an atlas, here the Allen Institute Common Coordinate Framework (CCF) atlas.

https://doi.org/10.1371/journal.pcbhi.1007791.g001

of every pixel (AF/F), and as such may take negative values. Therefore, we do not constrain the
temporal components C to be non-negative. Note that we are not making any assumption here
about the cellular compartmental location of this calcium indicator density (e.g., somatic ver-
sus neuropil). For example, if the indicator is localized to the neuropil (or if the neuropil of the
labeled neural population is superficial but the cell bodies are located more deeply), then a
strong spatial component ay in a given brain region may correspond to somatic activity in a
different brain region.

The low-rank decomposition of Y into a non-negative spatial A matrix and a corresponding
temporal C matrix falls under the general class of “semi-NMF” decomposition [23]. However,
as detailed below, the components that we obtain using this decomposition are not typically
interpretable; the spatial components can span the entire image due to the spatial correlations
in the data. (Similar comments apply to principal components analysis or independent com-
ponents analysis applied directly to Y). To extract more interpretable components as well as to
compare activity across sessions and subjects, we would like to match each of them to a well-
defined brain region. This corresponds to each component a, being sparse, but in a very spe-
cific way, i.e., sparse outside the functional boundaries of a specific region. We use the Allen
CCEF brain atlas [24] to guide us while determining the initial location of the different brain
regions, and constrain the spatial components to not stray too far from these region bound-
aries by including an appropriate penalization as we minimize the summed square residual of
the factorization. Note that a different brain atlas could easily be swapped in here to replace
the Allen CCF atlas, if desired.

To develop this decomposition, we first introduce some notation. We provide a summary
of the notation in Table 1. We use a 2D projection of the Allen CCF map here, as in [8], which
is partitioned into J disjoint regions Il = {m, - - -, 71;}. Using LocaNMF, we identify K compo-
nents. Specifically, each atlas region j gets k; components, possibly corresponding to different
neural populations displaying coordinated activity, and K: = 3; k;. Each component k maps to a
single atlas region.
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Table 1. A summary of the notation for LocaNMF, with the corresponding matrix dimensions and descriptions.

Variable Dimensions Description

N 1x1 Number of pixels in video

T 1x1 Number of time points in video

Ky 1x1 Rank of denoised video

Y NxT Denoised video; Y= UV

U Nx Ky Low-rank denoised spatial components

\%4 KyxT Low-rank denoised temporal components

L Kyx Ky Lower triangular matrix in the LQ decomposition of V; V = LQ
Q KyxT Orthogonal matrix in the LQ decomposition of V; V= LQ

J 1x1 Number of regions predefined in the brain atlas.

k; 1x1 Number of LocaNMF components in j” region

K Ix1 Total number of components found by LocaNMF; K = Z,/: K
A NxK LocaNMEF spatial components

C KxT LocaNMEF temporal components

Y NxT LocaNMF decomposed video; ¥ = AC

B Kx Ky Multiplicative matrix in the decomposition of C; C = BQ

Ly 1x1 Localization constant for the k& component

A Kx1 Lagrangian parameters for the localization constraint in Eq 5.

https://doi.org/10.1371/journal.pcbi.1007791.t001

We solve the following optimization problem, where Y € R™*":

min, . ||Y — AC||; (2)
st. A>0, |laf =1 Vke[l,K], AecR"™K (3)
C e R®T (4)

N
;|dk(n)ak(n)|2 <L, Vkell,K], (5)

where N is the number of pixels and T the number of frames in the video, ||a|| . signifies
max,, |ax(n)|, and Eq 5 signifies a £, distance penalty term, where di(n) quantify the smallest
euclidean distance from pixel # to the atlas region corresponding to component k. {L;} are
constants used to enforce localization.

Application to simulated data

We begin by applying LocaNMF to decompose simple simulated data (Fig 2). We simulate
each region k to be modulated with a Gaussian spatial field centered at the region’s spatial
median, with a width proportional to the size of the region. The temporal components C,,,, for
the K regions were simulated to be sums of sinusoids with additional Gaussian noise. Full
details about the simulations are included in the Methods.

We ran the LocaNMF algorithm with localization threshold 70% (i.e., at least 70% of the
mass of each recovered spatial component was forced to live on the corresponding Allen brain
region; see Methods for details), and recovered the spatial and temporal components as shown
in Fig 2. We also ran SVD for comparison, and aligned the recovered and true components
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A. Example Spatial Components B. Correlations between
Ground Truth LocaNMF SVD spatial components
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Fig 2. LocaNMF can accurately recover the spatial and temporal components in simulated WFCI data. (A) Left column: two example ground truth
spatial components; Middle and Right columns: the corresponding spatial components as recovered by (Middle column) LocaNMF; (Right column)
SVD. (B) Correlation between ground truth spatial components and those recovered by (Top) LocaNMF; (Bottom) SVD.

https://doi.org/10.1371/journal.pchi.1007791.g002

(by finding a matching that approximately maximized the R* between the real A matrix and
the recovered A matrix). While LocaNMF recovered A and C accurately, SVD did not; there is
a poor correspondence between the true A and the A recovered by SVD. Similar results held
for vanilla NMF (here, vanilla semi-NMF; i.e., semi-NMF with no localization constraints);
results are shown in S1 Fig.

Application to experimental data

Next we applied LocaNMF to two real WECI datasets. Data type (1) consisted of WECI videos
of size [540 x 640 x T], with T ranging from 88, 653 to 129, 445 time points (sampling rate of
30Hz), from 10 mice expressing GCaMP6f in excitatory neurons. For each mouse, we analyzed
movies from two separate experimental sessions recorded over different days. LocaNMF run
on one GPU card (NVIDIA GTX 1080T1i) required a median of 29 minutes per session (on
recordings of median length 1 hour) for this dataset. Data type (2) consisted of WFCI videos of
size [512 x 512 x 5990] (sampling rate of 20Hz) from two sessions from one Thyl transgenic
mouse expressing jJRGECO1a. See the Methods section for full experimental details. Unless
mentioned explicitly, the analyses below are performed on data type (1).

We show an example LocaNMF decomposition for one trial with the mouse performing a
visual discrimination task in this video, with localization threshold 80%. This shows the
denoised brain activity for reference, and the modulation of the first two components
LocaNMEF extracted from each region, with different regions assigned different colors. We also
display the rescaled residual as the normalized squared error between the denoised video and
the LocaNMF reconstruction, as a useful visual diagnostic; in this case, we perceive no clear
systematic signal that is being left behind by the LocaNMF decomposition.

In Fig 3 (left), we examine the top three components of the spatial maps of all regions across
three different sessions from two different mice; we can see that the spatial maps are similar
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Fig 3. Spatial and temporal maps of all regions in three different recording sessions from two different mice, as found with
LocaNMF. Note that LocaNMF outputs multiple components per atlas region. Left: the first, second and third component extracted from
each region provided in each row, colored by region. Right: The trial-averaged temporal components for Session 1, Mouse 1 (aligned to
lever grab), with the same color scheme as the spatial components. Link to a decomposed video of one trial here.

https://doi.org/10.1371/journal.pchi.1007791.g003

across sessions and mice (quantified across sessions in Fig 6, below). The trial-averaged tempo-
ral components on the right show modulations of a large number of components, time-locked
to task-related behavioral events during the trial, consistent with recent results [8].

Comparison with existing methods

Comparison with region-of-interest analysis. We implemented a decomposition that
computes the mean denoised activity in each atlas brain region, otherwise known as a ‘region-
of-interest’ (ROI) analysis with the atlas regions providing the ROIs. On a typical example ses-
sion in dataset (1), this led to a mean R* = 0.65 (computed on the denoised data) as compared
to the corresponding LocaNMF R = 0.99; thus simply averaging within brain regions discards
significant signal variance.

It is important to emphasize that the spatial components we obtain using LocaNMF are not
simply confined to the atlas boundaries. To illustrate this point, we show two spatial compo-
nents of one mouse in Fig 4A that extend past the corresponding atlas boundaries. Here, we
show two spatial components anchored to the same atlas region that have very different spatial
footprints A; and A,, and moreover, have significantly different temporal components C; and
C,, respectively. The temporal components are also significantly different from C,,,, which is
the temporal component that is obtained by simply averaging over the pixel-wise 2€ in that
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Fig 4. Comparison with ROI analysis. A. LocaNMF spatial components that are anchored to an Allen region show further specificity
that may be lost if considering the average fluorescence in the Allen region as per an ROI analysis. B. The mean number of
components recovered by LocaNMEF. The bars are colored according to the cortical region they belong in, but note that there is one
bar per subregion (ex. primary somatosensory cortex, right hand side upper limb). The dashed line at 1 signifies the number of
components found with an ROI analysis.

https://doi.org/10.1371/journal.pchi.1007791.g004
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SVD Component LocaNMF Component 1 LocaNMF Component 2

SVD Component LocaNMF Component 1
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Fig 5. LocaNMF can capture long range correlations that are difficult to analyze via SVD. Top left: example de-localized spatial component
recovered by SVD. This component places significant weight on multiple widely-separated brain regions. The corresponding temporal component is
shown in the lower left panel. In the same dataset, two separate components are recovered by LocaNMF, capturing activity in each of the two distant
brain regions activity (top middle and right panels). LocaNMF recovers two separate time courses here (lower right), allowing us to quantify the
correlation between the regions (R = 0.79).

https://doi.org/10.1371/journal.pcbi.1007791.9g005

atlas region (left hand side primary visual cortex), illustrating that an ROI analysis discards sig-
nificant spatiotemporal structure present in the data.

Comparison with singular value decomposition. Above we noted that simple SVD does
a poor job of extracting the true spatial components from simulated data. In real data, we find
that in many cases the SVD-based components are highly de-localized in space. In Fig 5, we
see an example of an SVD component that represents activity across two distinct regions in
the primary somatosensory cortex: the left hand side lower limb region and the right hand side
upper limb region. In these cases LocaNMF simply outputs multiple components with corre-
lated temporal activity, as shown in Fig 5. This allows us to quantify the correlations across
regions (by computing correlations across the output temporal components), rather than just
combining these activities into a single timecourse. See Figs 6 and 7 for additional examples of
de-localized components output by SVD.

Comparison with vanilla NMF. LocaNMF can be understood as a middle ground
between two extremes. If we enforce no localization, we obtain vanilla NMF with an atlas ini-
tialization. Alternatively, if we enforce full localization (i.e., force each spatial component a; to
reside entirely within a single atlas region), we obtain a solution in which NMF is performed
independently on the signals contained in each individual atlas region. (Note that even in this
case we typically obtain multiple signals from each atlas region, instead of simply averaging
over all pixels in the region.) Across the 20 sessions in 10 mice in dataset (1), this fully-localized
per-region NMF requires an average of 452 total components to reach our reconstruction
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Fig 6. LocaNMF extracts localized spatial components that are consistent across two recording sessions across
different days (session length = 49 and 64 minutes; in each case the mouse was performing a visual discrimination
task). Example spatial components extracted from three different regions and two different sessions for one mouse
expressing GCaMPéf, using A. SVD, and B. LocaNMF as in Algorithm 1. Note that LocaNMF components are much
more strongly localized and reproducible across sessions. Cosine similarity of spatial components across two sessions
in the same mouse using C. SVD after component matching using a greedy search, and D. LocaNMF. As in the
simulations, note that LocaNMF components are much more consistent across sessions.

https://doi.org/10.1371/journal.pcbi.1007791.9g006

2. = 0.99) on denoised data, while vanilla NMF requires on average 188

components to capture the same proportion of variance. Meanwhile, LocaNMF with a locali-
zation threshold of 80% outputs an average of 205 components (with the same accuracy
threshold); thus enforcing locality on the LocaNMF decomposition does not lead to an over-
inflation of the number of components required to capture most of the variance in the data.

accuracy threshold (R
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Fig 7. LocaNMF applied to data from a mouse expressing jJRGECO1a, with sessions of length 5 minutes. A-D. Legend and
conclusions similar to Fig 6A-6D.

https://doi.org/10.1371/journal.pchi.1007791.g007

The results for all figures showing SVD are also shown using vanilla NMF with random ini-
tialization in the Supplementary Information (see S1, S2, S4 and S5 Figs). Note that this
method is initialization dependent and thus leads to different results even when run multiple
times on the same dataset (see S3 Fig). While vanilla NMF with an atlas initialization addresses
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this issue, it still leads to non-localized components which are not comparable across sessions
(see S6 Fig).

LocaNMF outputs localized spatial maps that are consistent across
experimental sessions

When recording two different sessions over different days in the same mouse while the mouse
is performing the same behavior, it is natural to expect to recover similar spatial maps. To
examine this hypothesis, we analyzed the decompositions of two different recording sessions
in the same mouse (Fig 6); we then repeated this analysis using a different mouse from dataset
(2) (Fig 7). In both datasets, LocaNMF outputs localized spatial maps that are consistent across
experimental sessions, as shown in Figs 6C, 6D, 7C and 7D, whereas both SVD and vanilla
NMEF outputs components that are much less localized and much less consistent across ses-
sions. The results for vanilla NMF with a random and atlas initialization are shown in S4, S5
and S6 Fig.

Correlation maps of temporal components show consistencies across
animals

Next, we wanted to examine the relationship between the temporal activity extracted from
different mice. We apply LocaNMEF to all 10 mice in dataset (1) and examine the similarities
in correlation structure in the temporal activity across sessions and mice. Since LocaNMF
provides us with multiple components per atlas region, and we wish to be agnostic about
which components in one region are correlated with those in another region, we use Canoni-
cal Correlation Analysis (CCA) to summarize the correlations from components in one
region to the components in another region. CCA maps for four sessions of 49-65 minutes
each, from two different mice, are shown in Fig 8A. In all sessions, the mice were engaged in
either a visual or an audio discrimination task. We see that we recover clear similarities
across CCA maps computed at the timescale of tens of minutes in different recording ses-
sions, and different animals. We find that CCA maps of different sessions in the same mouse
tend to be more similar than are CCA maps of sessions across different mice, as quantified in
Fig 8C.

Event-driven temporal modulation of brain regions is consistent across
mice and is time-locked to key behavioral markers

How are the components extracted by LocaNMF related to behaviorally relevant signals? To
examine this question, we begin by examining the trial-averaged components extracted from
each region (Fig 9A). We see significant lateralized modulation of the primary visual cortex
following the onset of visual stimulation (see top row of Fig 9A for right side). We also see a
significant bilateral modulation of the primary somatosensory cortex (upper limb area) time-
locked to lever grab behavior (bottom row).

Next, we take the trial-averaged response of the LocaNMF components of each functional
region while the mouse is licking the spout in the Left vs Right direction, and form a [Direc-
tion x Components x Time] tensor. We wanted to assess the dependence of the different
regions’ activity on the lick direction, and to quantify the consistency of this dependence across
sessions. Demixed Principal Component Analysis [24] is a method designed to separate out
the variance in the data related to trial type (e.g., lick direction) vs. variance related to other
aspects of the trial such as time from lick event. We show the top demixed principal compo-
nents of the trial-averaged response of the right hand side primary somatosensory area, mouth
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Fig 8. Correlation maps of temporal components extracted by LocaNMF show consistencies acrosssessions and
animals. A. Top canonical correlation coefficient between the temporal components of any two regions, shown for four
different sessions of 49 to 64 minutes each, recorded across two mice. B. Example traces of two highly correlated regions. C.
Violin plot of mean squared difference between the correlation maps of the 20 different sessions across 10 mice; on average,
within-mice differences are smaller than across-mice differences (One-tailed t-test p = 0.0025).

https://doi.org/10.1371/journal.pcbhi.1007791.9g008

region (SSp-m1:R), and the right hand side of the secondary motor cortex (MOs1:R), of one
mouse during two different sessions (Fig 9B). These can be interpreted as 1D latent variables
for the two lick directions, here capturing 87% * 4% of the variance in the trial-averaged com-
ponents. We see that these latents start modulating before lick onset, and continue modulating
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Fig 9. Brain areas show consistencies in their activity around task-related behavior, and in their ability to decode direction of licking activity. A.
The LocaNMF components of the trial-averaged activity of the right hand side primary visual cortex (VISp) under left and right visual stimulus, and of
the primary somatosensory area, upper limb area (SSp-ul), left and right hand sides, before and after the lever grab. Each color indicates a different
component in the same region. Standard error of the mean is shaded. B. The top demixed Principal Component of the trial-averaged activity of the
right hand side primary somatosensory area, mouth (SSp-m1:R) and right hand side secondary motor cortex (MOs1:R) before and after the onset of a
lick to the left or right spout (onset at time 0). Standard error of the mean is shaded. The activity around licking left or right in both regions is consistent
across the two sessions. C. Decoding accuracy on held-out data for the direction of lick (Left vs. Right spout) using only components in a shaded brain
region. A logistic decoder was used on the time courses on data from 0.67s before and 0.33s after the event (lick left or lick right).

https:/doi.org/10.1371/journal.pcbi.1007791.9009

well past lick onset. Moreover, we see that the latents in these two areas modulate consistently
across different sessions before and after a lick.

Finally, we use the activity of different brain regions to decode the direction of individual
lick movements, i.e. the left (lickL) or right (lickR) direction on each instance of the lick move-
ment. The input to the decoder on each lick instance consists of all of the temporal compo-
nents from a given brain region, from 0.67s before each lick, up to lick onset (corresponding
to 21 timepoints per temporal component). We build an £, regularized logistic decoder based
on this input to decode the direction of each lick (using 5-fold cross-validation to estimate the
regularization hyperparameters). For data from held-out lick instances, we test the ability of
each region’s components to decode the lick direction (Fig 9C); we see that the frontal regions
contain significant information that can be used to decode the lick direction.

Decoding of behavioral components quantifies the informativeness of
signals from different brain regions

Finally, we examine how the activity of different brain regions is related to continuous behav-
ioral variables, rather than the binary behavioral features (i.e., lick left or right), addressed in
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Fig 10. Decoding paw position from WFCI signals. Top Left: One frame of the DeepLabCut output, with decoded
positions of left and right paws in blue and red. Top right: Relative decoding accuracy when the decoder was restricted to
use signals from just one brain region, as a fraction of the R* using all signals from all brain regions. Area acronyms are
provided in Table 2. Bottom: Decoding of DLC components using data from all brain regions for one mouse. Link to
corresponding real-time videos for a few trials here, with DLC labels in black, and decoded paw location in blue and red
for left and right paw respectively.

https://doi.org/10.1371/journal.pchi.1007791.9g010

the preceding section. We tracked the position of each paw using DeepLabCut (DLC) [26]
applied to video monitoring of the mouse during the behavior; an example frame is shown in
Fig 10. We decoded the position of these markers using the temporal components extracted by
LocaNMEF (Fig 10 Bottom). (See Methods for full decoder details.) We found (a) that
LocaNMF components are better at decoding paw locations than ROI components (mean

R? = 0.29 with LocaNMF vs. 0.22 with ROI), and (b) that temporal signals extracted from the
primary somatosensory cortex, the olfactory bulb, or the visual cortex lead to the highest
decoding accuracy (Fig 10, top right). The primary somatosensory cortex may be receiving
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proprioceptive inputs resulting from the movements of the paws, and the olfactory bulb is
known to encode movements of the nose which may be correlated with the movements of the
paws.

Discussion

Widefield calcium recordings provide a window onto large scale neural activity across the dor-
sal cortex. Here, we introduce LocaNMF, a tool to efficiently and automatically decompose
this data into the activity of different brain regions. LocaNMF outputs reproducible signals
and enhances the interpretability of various downstream analyses. After having decomposed
the activity into components assigned to various brain regions, this activity can be directly
compared across exprimental preparations. For example, we build correlation maps that can
be compared across different sessions and mice. Recently, several studies have shown the util-
ity of having a fine-grained gauge of behavior alongside that of WFCI activity [8, 14]. We high-
light that in order to have a more complete understanding of how the cortical activity may be
leading to different behaviors, we first need an interpretable low dimensional space common
to different animals in which the cortical activity may be represented.

Although we used the Allen atlas to localize and analyze the WFCI activity in this paper,
LocaNMF is amenable to any atlas that partitions the field of view into distinct regions. As bet-
ter structural delineations of the brain regions emerge, the anatomical map for an average
mouse may be refined. In fact, it is possible to test different atlases using the generalizability of
the resulting LocaNMF decomposition on different trials as a metric. As potential future work,
LocaNMF could also be adapted to refine the atlas directly by optimizing the atlas-defined
region boundaries to more accurately fit functional regions.

Analyses using other imaging modalities, particularly fMRI, have also faced the issue of
needing to choose between interpretability (for example, as provided by more conventional
atlas-based methods) and efficient unsupervised matrix decomposition (for example, as in
PCA, independent component analysis, NMF, etc.) [27]. Typically, diffusion tensor tractogra-
phy [28] or MRI [29, 30] can be used for building an anatomical atlas, and seed-based methods
are used for obtaining correlations in fMRI data. In all these methods, a registration step is
first performed on structural data (typically, MRI), thus providing data that is well aligned
across subjects. More recently, graph theoretic measures as well as other techniques for charac-
terizing the functional connections between different anatomical regions have become increas-
ingly popular in fMRI [31-33]; these first perform a parcellation of the across-subject data into
regions of interest (ROIs), then average the signals in each ROI before pursuing downstream
analyses. Parcellations combining anatomical and functional data have also been pursued [34].

We view LocaNMF as complementary to these methods; here we perform an atlas-based
yet data-driven matrix decomposition; importantly, instead of simple averaging of signals
within ROIs we attempt to extract multiple overlapping signals from each brain region, possi-
bly reflecting the contributions of multiple populations of neurons in each region. One very
related study is [35], where the authors perform NMF on fMRI data, and introduce group
sparsity and spatial smoothness penalties to constrain the decomposition. LocaNMF differs in
the introduction of an atlas to localize the components; this directly enables across-subject
comparisons and assigns region labels to the components (while still allowing the spatial foot-
prints of the extracted components to shift slightly from brain to brain), which can be helpful
for downstream analyses. Furthermore, recent studies have shown that the spatial and tempo-
ral activity recorded from WFCI and fMRI during spontaneous activity show considerable
similarities [3, 36]. Given these conceptual similarities, we believe there are opportunities to
adapt the methods we introduced here to fMRI or other three-dimensional (3D) functional
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imaging modalities [37, 38], while using a 3D atlas of brain regions to aid in localization of the
extracted demixed components. We hope to pursue these directions in future work.

Methods
Experimental details

Data type (1). Detailed experimental details are provided in [8]; we briefly summarize the
experimental procedures below.

Ten mice were imaged using a custom-built widefield macroscope. The mice were trans-
genic, expressing the Ca2+ indicator GCaMP6f in excitatory neurons. Fluorescence in all mice
was measured through the cleared, intact skull. The mice were trained on a delayed two-alter-
native forced choice (2AFC) spatial discrimination task. Mice initiated trials by making con-
tact with their forepaws to either of two levers that were moved to an accessible position via
two servo motors. After one second of holding the handle, sensory stimuli were presented for
600 ms. Sensory stimuli consisted of either a sequence of auditory clicks, or repeated presenta-
tion of a visual moving bar (3 repetitions, 200 ms each). For both sensory modalities, stimuli
were positioned either to the left or the right of the animal. After the end of the 600 ms period,
the sensory stimulus was terminated and animals experienced a 500 ms delay with no stimulus,
followed by a second 600 ms period containing the same sensory stimuli as in the first period.
After the second stimulus period, a 1000 ms delay was imposed, after which servo motors
moved two lick spouts into close proximity of the animal’s mouth. Licks to the spout corre-
sponding to the stimulus presentation side were rewarded with a water reward. After one
spout was contacted, the opposite spout was moved out of reach to force the animal to commit
to its initial decision. Each animal was trained exclusively on a single modality (5 vision, 5
auditory).

Widefield imaging was done using an inverted tandem-lens macroscope (Grinvald et al.,
1991) in combination with an sSCMOS camera (Edge 5.5, PCO) running at 60 fps. The top lens
had a focal length of 105 mm (DC-Nikkor, Nikon) and the bottom lens 85 mm (85M-S, Roki-
non), resulting in a magnification of 1.24x. The total field of view was 12.4 x 10.5 mm and the
spatial resolution was ~20um/pixel. To capture GCaMP fluorescence, a 500 nm long-pass fil-
ter was placed in front of the camera. Excitation light was coupled in using a 495 nm long-pass
dichroic mirror, placed between the two macro lenses. The excitation light was generated by a
collimated blue LED (470 nm, M470L3, Thorlabs) and a collimated violet LED (405 nm,
M405L3, Thorlabs) that were coupled into the same excitation path using a dichroic mirror
(#87-063, Edmund optics). From frame to frame, we alternated between the two LEDs, result-
ing in one set of frames with blue and the other with violet excitation at 30 fps each. Excitation
of GCaMP at 405 nm results in non-calcium dependent fluorescence (Lerner et al., 2015), we
could therefore isolate the true calcium-dependent signal as detailed below.

Motion correction was carried out per trial using a rigid-body image registration method
implemented in the frequency domain, with a given session’s first trial as the reference image
[39]. Denoising was performed separately on the hemodynamic and the GCaMP channels.
The denoising step outputs a low-rank decomposition of Y,,, = UV + E represented as an N x
T matrix; here UV is a low-rank representation of the signal in Y,,,, and E represents the noise
that is discarded. The output matrices U and V are much smaller than the raw data Y,,,, lead-
ing to compression rates above 95%, with minimal loss of visible signal. We use an established
regression-based hemodynamic correction method [4, 8, 40], with an efficient implementation
that takes advantage of the low-rank structure of the denoised signals. In brief, the hemody-
namic correction method consists of low pass filtering a hemodynamic channel Y, (405nm
illumination), then rescaling and subtracting this signal from the GCaMP channel Y, (473nm
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illumination), in order to isolate a purely calcium dependent signal. We utilize the low-rank
structure of the denoised data in order to perform the hemodynamic correction efficiently, i.e.,
we perform the low-rank decomposition separately for each channel, and then perform hemo-
dynamic correction using the low rank matrices. Specifically, we obtain Y}, = UV}, + Ej, and
Y= U,V, + E,. We low pass filter V), (2" order Butterworth filter with cutoff frequency 15Hz)

to get V,ff , and estimate parameters b; and ¢; for each pixel i such that (U,),V, = b,(U,),V, v 4
t, using linear regression. We now obtain our hemodynamic corrected GCaMP activity Y as
the residual of the regression, i.e. Y = U,V, — BU, V¥ 4 T, where Bis a diagonal matrix with
the terms b;’s in the diagonal, and T is a vector made by stacking the terms ¢,. In fact, we keep
the low rank decomposition of Y as UV, with U= [U, - BU, T] and V = [V; V', 1], where

U € RV, vV € R™"", We then convert this value into a mean-adjusted fluorescence value of
every pixel (AF/F).

Data type (2). For this dataset we imaged adult Thyl-jJRGECO1la mice (line GP8.20, pur-
chased from Jackson Labs) [41]. In preparation for widefield imaging, a thinned-skull craniot-
omy was performed over the cortex, in which the mouse was anesthetized with isoflurane,
had its skull thinned, and was implanted with an acrylic headpiece for restraint. The mouse
underwent a two-day post operative recovery period and were habituated to head-fixation
and wheel running for two days. To perform the imaging, we head-fixed the mouse on a cir-
cular wheel with rungs. The mouse was free to run for approximately 5 minutes at a time,
while an Andor Zyla sCMOS camera was used to capture widefield images 512x512 pixels in
size, at 60 frames per second (fps), with an exposure time of 23.4 ms. To collect fluorescence
data along with hemodynamic data, we used three LEDs which were strobed synchronously
with frame acquisition, producing an effective frame rate of 20 fps. Two LEDs were strobed to
capture hemodynamic fluctuations (green: 530nm with a 530/43 bandpass filter and red:
625nm), and a separate LED (lime: 565 nm with a 565/24 bandpass filter) was strobed to cap-
ture fluorescence from jJRGECO1a. A 523/610 bandpass filter placed in the path of the camera
lens to reject emission LED light. Once collected, images were processed to account for hemo-
dynamic contamination of the neural signal. Red and green reflectance intensities were used
as a proxy for hemodynamic contribution to the lime fluorescence channel. The differential
path length factor (DPF) was estimated and applied to calculate the DF/F neural signal. We
performed hemodynamic correction as in [18], and then performed the denoising by per-
forming SVD and keeping the top 200 components. Note that this also outputs a low-rank
decomposition Y,,,, = UV + E. Although the resulting Y = UV is an efficient decomposition of
the data, it consists of delocalized, uninterpretable components, as shown in the Results
section.

Details of simulations

We use LocaNMF to decompose simulated data (Fig 2). We simulate each region k to be
modulated with a gaussian spatial field with centroid at the region’s median, and a width
proportional to the size of the region (a, = 0.21/(d,), where dy is the number of pixels in
region k). The spatial components are termed A,.,(k), and were 534x533 pixels in size. The
temporal components for the K regions in simulated datasets (1) and (2) were specified as the
following.

C,..(k <Z 4 sin(Byt), 0.1) Vk € [1,K] (6)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1007791  April 13, 2020 18/28


https://doi.org/10.1371/journal.pcbi.1007791

PLOS COMPUTATIONAL BIOLOGY LocaNMF of widefield calcium imaging data

%, ~ U(=1515) Vjk (7)
ﬁjk 6 {ﬁ’]?"')ﬁ’][}}? V]7k (8)
B, ~ U(0.5,0.63) Vie[1,10]. (9)

Here, U(a, b) denotes the continuous uniform distribution on the interval (a, b). We simu-
lated 10, 000 time points at a sampling rate of 30Hz, and specified the decomposition U =
Asears and V= Creal'

Preprocessing: Motion correction, compression, denoising, hemodynamic
correction, and alignment

We analyze two datasets in this paper; full experimental details are provided above. After
motion correction, imaging videos are denoted as Y.,y,, with size N x T, where N is the total
number of pixels and T the total number of frames. NT may be rather large (> 10'°) in these
applications; to compress and denoise Y,,,, as detailed above, we experimented with simple
singular value decomposition (SVD) approaches as well as more sophisticated penalized
matrix decomposition methods [20]. We found that the results of the LocaNMF method devel-
oped below did not depend strongly on the details of the denoising / compression method
used in this preprocessing step.

As is well-known, to interpret WECI signals properly it is necessary to apply a hemody-
namic correction step, to separate activity-dependent from blood flow-dependent fluorescence
changes [18, 42]. We applied hemodynamic correction to both datasets as detailed above.
Finally, for both datasets, we rigidly aligned the data to a 2D projection of the Allen Common
Coordinate Framework v3 (CCF) [40] as developed in [8], using four anatomical landmarks:
the left, center, and right points where anterior cortex meets the olfactory bulbs and the medial
point at the base of retrosplenial cortex. We denote the denoised, hemodynamic-corrected
video as Y (i.e., Y = UV after appropriate alignment).

More information about the Allen CCF is provided below.

Details of localized Non-Negative Matrix Factorization (LocaNMF)

Here, we provide the algorithmic details of the optimization involved in LocaNMF, as detailed
in Eqs 2-5; provided here again for the reader’s convenience.

min, . ||Y — AC”;
st. A>0, |all =1 Vke[l,K], AeR"¥

C e R®™T

Z|dk(”)ak(”)|2 <L, Vke[l,K],

We denote D € RY*¥ as the distance matrix comprising the entries di(1). A summary of the
notation for this section is provided in Table 1.

Spatial and temporal updates. Hierarchical Alternating Least Squares (HALS) is a popu-
lar block coordinate descent algorithm for NMF [23] that updates A and C in alternating
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fashion, updating each component of the respective matrices at a time. It is straightforward to
adapt HALS to the LocaNMF optimization problem defined above. We apply the following
updates for the spatial components in A (where we are utilizing the low-rank form of Y = UV):

1
a, [ak + o ((YCT)k —A(CCh), — Xkdk)} (10)
k “k +
1
= |:ak +——(U(vC"), — A(CC"), — ?\kdk)} (11)
€ € ¥
Here, [x], = max{0, x}, k € {1, .., K}, and A4 is a Lagrange multiplier introduced to enforce Eq

5; we will discuss how to set A, below. We normalize the spatial components {a,} after every
spatial update, thus satisfying the constraint ||a;||o, = 1 for each k in Eq 3.
The corresponding updates of C are a bit simpler:

1
¢ — ¢ +E(ATYk — (ATA),C) (12)
k Ck
1
= ¢+ ((A"U),V — (ATA),C). (13)
aa,

We can simplify these further by noting that each temporal component ¢, for a given solution
C is contained in the span of V € R**", Using this knowledge, we can avoid constructing the
full matrix C € R**", and instead use a smaller matrix B € R*** by representing each compo-
nent within a K;-dimensional temporal subspace spanned by the columns of V. Specifically,
we can apply an LQ-decomposition to V, to obtain V = LQ where L € R*** is a lower trian-
gular matrix of mixing weights and Q € R**" is an orthonormal basis of the temporal sub-
space. If we decompose C as C = BQ, it becomes possible to avoid ever using Q in all
computations performed during LocaNMF (as detailed below). Thus, we can safely decompose
V =LQ, save Q and use L in all computations of LocaNMF to find A and B, and finally recon-
struct C = BQ as the solution for the temporal components. In the case where K; < T, this
leads to significant savings in terms of both computation and memory.

Hyperparameter selection. To run the method described above, we need to determine
two sets of hyperparameters. One set of hyperparameters consists of the number of compo-
nents in each region k = (ky, - - -, k), which dictate the rank of each region. Each component k
maps to a single atlas region. ¢: {1, - - -, K} — {m, - - -, 77} (surjective K > J). The second set of
hyperparameters consists of the Lagrangian weights for each component A = (A;, - - -, Ax), cho-
sen to be the minimum value such that the localization constraint in Eq 5 is satisfied. These
two sets of hyperparameters intuitively specify (1) that the signal in each region is captured
well, and (2) that all components are localized, respectively. These hyperparameters can be set
based on two simple, interpretable goodness-of-fit criteria that users can set easily: (1) the vari-
ance explained across all pixels belonging to a particular atlas region, and (2) how much of a
particular spatial component is contained within its region boundary. These can be boiled
down to the following easily specified scalar thresholds.

1. R’ :aminimum acceptable R” to ensure the neural signal for all pixels in an atlas region’s
boundary is adequately explained

2. Ly, the percentage of a particular region’s spatial component that is constrained to be
inside the atlas region’s boundary
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The procedure consists of a nested grid search wherein a sequence of proposals k', k™),
... are generated and for each k™ a corresponding sequence A", A™Y, . are proposed.
We term k; the local-rank of region j. Intuitively, we wish to restrict the local-rank in each
region as much as possible while still yielding a sufficiently well-fit model. Moreover, for
each proposed k™, we wish to select the lowest values for A, while still ensuring that each
component is sufficiently localized. In order to achieve this, each layer of this nested search
uses adaptive stopping criteria based on the following statistics for the j region and k' com-
ponent.

R(yet - LSTIYW=Y@li 1 NTIUML-A@BE
& Y () =Y ()l Il & UL = UL

Zner;‘)(k)ak<n)2

la:

L(k)= (15)

Here, Y(n) and A(n) denote the value of these matrices at pixel #. Note that the right hand
side term in Eq 14 is computationally less expensive, as detailed in the following subsection.
The algorithm terminates as soon as a pair (k™, A”™™) yields a fit satisfying R*(j) > R%,_Vj
and L(k) > Ly, Vk.

Details of the LQ decomposition of V. We show here that we can perform LQ decomposition
of V at the beginning of LocaNMF, proceed to learn A, B using LocaNMF as in Algorithm 1,
and reconstruct C = BQ at the end of LocaNMF, without changing the algorithm or the opti-
mization function. The term C is traditionally used in (1) the spatial updates, (2) the temporal
updates, and (3) computing the optimization function. Here, we address how we can replace C
by B in each of these computations.

1. For the spatial updates in Eq 11, we need two quantities; namely (1) U( vC)and (2) A
(CC™). We can use the decompositions V= LQ and C = BQ to the two quantities; (1) U
(vCh) = U(LQQTBT) = U(LBY) and (2) A(CCT) = A(BQQ'BT) = A(BBT).

2. For the temporal update in Eq 13, using the LQ decomposition, we set C = BQ = (ATA)™!
ATULQ; thus it suffices to update B to (ATA) ' ATUL. The spatial and temporal updates are
also detailed in Algorithms 3 and 4.

3. Finally, we need to compute the errors in Eq 14. We note that
1Y(n) = T)]12 = UV — Am)CI = (UL — AmB)QL = [U(n)L — A(m)BIJ
While computing UV and AC have a computational complexity of O(NK,T) and O(NKT)
respectively, this operation decreases the computational cost to O(NK?) and O(NKK,);
for T large, this denotes a significant saving in both memory and time taken for the
algorithm.

Thus, we do not need the term Q for the bulk of the computations involved in LocaNMF,
making the algorithm considerably more efficient.

Adaptive number of components per region. We wish to restrict the local-rank in each region
as much as possible while still yielding a sufficiently well-fit model. In order to do so, we grad-
ually move from the most to least-constrained versions of our model and terminate as soon as
the region-wise R* is uniformly high as determined by the threshold R, . Specifically, we itera-
tively fit a sequence of LocaNMF models. The search is initialized with k®=1 7 kmin and after
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each fit Y(rx) = A (i) C is obtained, set

k](ife’l() + 1 if R2(iterK)(]') < R‘tzhr

(iterg+1) __
ki =

k(iterK)

¢ otherwise

until R (j) > R2 Vj=1,--- ],

Adaptive L. For brain regions that have low levels of activity relative to their neighbors, or
have a smaller field of view, it is possible that the activity of a large amplitude neighboring
region is represented instead of the original region’s activity. However, we do not want to cut
off the spread of a component in an artificial manner at the region boundary. Thus, we impose
the smallest regularization possible while still ensuring that each component is sufficiently
localized. To do so, we will gradually move from the least constrained (small A) to most con-
strained (large A) model, terminating as soon as the minimum localization threshold is
reached. The search is initialized with A”) = 1;,,,;, and after each fit Y(en) = A (ien) Cliten) jg
obtained, set

(itery,) s iter:;
S
N =

7»;:'”” otherwise

until L#) (k) > L, Vk=1,---, K. This requires a user-defined A-step, 7 = 1 + ¢, where € is
generally a small positive number.

Initialization. Finally, for a fixed set of hyperparameters A, k the model fit is still sensitive to
initialization (since the problem is non-convex). Hence, in order to obtain reasonable results
we must provide a data driven way to initialize all K = ZJJ,ZI k; components.

To initialize each iteration of the local-rank line search, the components for each region
are set using the results of standard semi-NMF (sNMF) fits to their respective regions. To
facilitate this process, a rank k,,,,, SVD is precomputed within each individual region and
reused during each initialization phase. For a given initialization, denote the number of com-
ponents in region j as k;. The initialization is the result of a rank k; SNMF fit to the rank k..
SVD of each region. The components of these initializations are themselves initialized using
the top k; temporal components of each within-region SVD. This is summarized in Algo-
rithm 2.

Computation on a GPU. Most of the steps of LocaNMF involve large matrix operations
which are well suited to parallelization using GPUs. While the original data may be very large,
U and L are relatively much smaller, and often fit comfortably within GPU memory in cases
where Y does not. Consequently, implementations which take low rank structure into account
may take full advantage of GPU-acceleration while avoiding repeated memory transfer bottle-
necks. Specifically, after the LQ decomposition of V, we load U and L into GPU memory once
and keep them there until the Algorithm 1 has terminated. This yields a solution A, B which
can transferred back to CPU in order to reconstruct C = BQ. We provide both CPU and GPU
implementations of the algorithm in the code here.

Decimation. As in [43] and [20], we can decimate the data spatially and temporally in order
to run the hyperparameter search, and then run Algorithm 1 once in order to obtain the
LocaNMF decomposition (A, C) on the full dataset. In this paper, we have not used this func-
tionality due to speedups from using a GPU, but we can envision that it might be necessary for
bigger datasets and / or limitations in computational resources.
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Computational cost. The computational cost of LocaNMF is O(NK,K) (assuming
N > K,; > K), with the most time consuming steps being the spatial and temporal
HALS updates. maxiter, and maxitery both provide a scaling factor to the above cost.
Note that the computational scaling is also linear in T, but this just enters the cost twice,
once during the LQ decomposition of V, and once more when reconstructing C after the
iterations; in practice, this constitutes a small fraction of the computational cost of
LocaNMF.

Algorithm 1: Localized semi Nonnegative Matrix Factorization (LocaNMF)
Data: U, V, I, D, R%, Liu.,

e 7 Kminr MNmine T, maxitersg, maxiters,,

maxitersSyars
Result: A, C
[L, 0] = LO(V) # LQ decomposition of V
ki« kpin Vj € [1, J]
for iterg <+ 1 to maxitersy do
[A, B] < Init-sNMF (U, L, II, k, maxitersyars)
Ax — Apin Vk € [1, K]
for iter, «+ 1 to maxiters, do
for iterya,s «— 1 to maxitersys;s do
A «— HALSspatial (U, L, A, B, A, D)
Normalize A
B «— HALStemporal (U, L, A, B)
end
klyely, TN
end

k:Ly <Ly,

kj:R}?<R'fhr — R <R +1
end
C = BQ
Algorithm 2: Initialization using semi Nonnegative Matrix Factorization (Init-sNMF)
Data: U, L, 1, k, maxitersyars
Result: A, B
for j «— 1 to J do
U; = Ulmy]
Bj = SVD (UL, ky)i Ay=1jy
for iterpyars «— 1 to maxitersyars do
A; < HALSspatial (U;, L, A5, Bjy)
Normalize A,
C; < HALStemporal (U;, L, A;, Bj)
end
end
Algorithm 3: Localized spatial update of hierarchical alternating least squares
(HALSspatial)
Data: U, L, A, B, D (defaults to Oy«x;), A (defaults to 0;)
Result: A
for k «— 1 to K do
a, —a+ | (U(LB"), — A(BB"), — xkdk)]+
end
Algorithm 4: Temporal update of hierarchical alternating least squares (HALStemporal)
Data: U, L, A, B
Result: B
for k «— 1 to K do
b, < b, + ﬁ ((ATU)L — (ATA),B)

end
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Vanilla semi non-negative matrix factorization (vanilla NMF)

We use vanilla NMF with random initialization as a comparison to LocaNMF. When perform-
ing a comparison, we use the same number of components K as found by LocaNMF. The algo-
rithm is detailed in Algorithm 5.

Algorithm 5: vanilla semi-Nonnegative Matrix Factorization (vanilla NMF)
Data: U, V, K, maxitersSyars
Result: 4, C
A, ~ B(N,0.1) Yk € [1,K|# Bernoulli draws over pixels
C,=E[(A, 0 U)V] Vk € [1,K]
for iteryars «— 1 maxitersyars do
Normalize C
A «— HALSspatial (U, V, A, C)
C < HALStemporal (U, V, A, C)
end

Allen Common Coordinate Framework

The anatomical template of Allen CCF v3 as used in this paper is a shape average of 1675
mouse specimens from the Allen Mouse Brain Connectivity Atlas [44]. These were imaged
using a customized serial two-photon tomography system. The maps were then verified using
gene expression and histological reference data. For a detailed description, see the Technical
White Paper here. The acronyms for the relevant components used in this study are provided
in Table 2.

Tracking parts in behavioral video

For the analysis involving the decoding of movement variables in the Results, we used Dee-
pLabCut (DLC) [26] to obtain estimates of the position of the paws. We hand-labeled 144
frames as identified by K-means, with the locations of the right and left paws. We used stan-
dard package settings for obtaining the evaluations on all frames of one session.

For decoding the X and Y coordinate of each DLC tracked variable using inputs as the
LocaNMF temporal components, we used an MSE loss function to train a one layer dense
feedforward artificial neural network (64 nodes each, ReLu activations), with the last layer hav-
ing as target output the relevant X or Y coordinate. We used 75% of the trials as training data
(which is itself split into training and validation in order to implement early stopping), and we
report the R* on the held out 25% of the trials.

Table 2. Acronyms of the regions in the Allen atlas.

Acronym Name

MOp primary motor cortex

MOs secondary motor cortex

SSp primary somatosensory cortex

SSsl supplemental somatosensory cortex
AUD auditory cortex

VIS visual cortex

ACAd1 anterior cingulate cortex (dorsal part)
PL1 prelimbic cortex

RSP retrosplenial cortex

https://doi.org/10.1371/journal.pchi.1007791.t002
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Supporting information

S1 Fig. Results of applying vanilla NMF to simulation data. A-D. Legend and conclusions
similar to Fig 2A-2D.
(TIF)

S2 Fig. Results of applying vanilla NMF to uncover long-range correlations. A-D. Legend
and conclusions similar to Fig 5A-5D.
(TIF)

$3 Fig. Cosine similarity across components after applying vanilla NMF with 10 different
random initializations to an example session in dataset 1. One of the randomly initialized
vanilla NMF decomposition was chosen as the example decomposition, and each gray line
shows the similarity between the components resulting from a different random initialization
to this example decomposition, after component matching using a greedy search. The solid
black line shows the mean similarity over initializations. The similarity across initializations is
1 for LocaNMF, shown here with a dashed black line.

(TIF)

S4 Fig. Results of applying vanilla NMF to dataset 1. A-D. Legend and conclusions similar
to Fig 6A-6D.
(TIF)

S5 Fig. Results of applying vanilla NMF to dataset 2. A-D. Legend and conclusions similar
to Fig 7A-7D.
(TIF)

S6 Fig. Results of applying vanilla NMF with an atlas-based initialization to dataset 1. There
is more stability across sessions as compared to S4A Fig, but LocaNMF provides more stability
still due to the localization constraint. A-D. Legend and conclusions similar to Fig 6A-6D.
(TIF)

S7 Fig. The variance in the time courses of a regions’ activity, where the activity in any one
given region is the concatenation of the activity in all the subregions in that region. The
values are normalized by the maximum variance in a particular session. The values shown
here are means over sessions, for all 20 sessions in 10 mice in dataset 1, with the standard error
of the mean depicted around the mean.

(TIF)
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