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Abstract—To restore the historical sea surface temper-
atures (SSTs) better, it is important to construct a good
calibration model for the associated proxies. In this paper,
we introduce a new model for alkenone (UK′

37 ) based on the
heteroscedastic Gaussian process (GP) regression method.
Our nonparametric approach not only deals with the
variable pattern of noises over SSTs but also contains
a Bayesian method of classifying potential outliers.

I. INTRODUCTION

The alkenone is a widely used proxy for inferring
sea surface temperatures (SSTs) in paleoceanography.
Haplophytes make long-chain ketone lipids (alkenones)
with 37 carbons changing in response to water tempera-
ture. Let UK′

37 be the relative unsaturation index of these
compounds as [1]:

UK′

37 =
C37:2

C37:2 + C37:3
(1)

Because SSTs have other sources of inferences, what
we are interested in is the distribution of UK′

37 given
SST, not the reverse: once the prior information (based
on the latitude, for example) of SST is organized as a
prior distribution and the distribution as a likelihood, it
is possible to integrate those information by computing
the posterior distribution of SST given the observed UK′

37

by the Bayes’ rule. Also, if SSTs are somehow corre-
lated (with respect to their spatial pattern, for example)
one another, the given proxies can be exploited better
than a set of individual posteriors with an associated
graphical model.

[1] has lead the way in the application of Bayesian
statistics in paleoclimatology. The paper approaches to
the problem with a Bayeian B-spline regression model
(BAYSPLINE) on UK′

37 data as well as considering
their seasonality, and it shows improved performance to
extant methods. However, the model lacks of a concrete
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rule of deciding the number of basis splines or their
orders, and does not deal with heteroscedastic noises
over SSTs neatly.

For the last decade, models based on the neural
networks (NN) have been rapidly emerging and soon
overwhelming all research fields requiring machine
learning, including climatology, for the outstanding
performance. Though some theoretical works such as
[2], [3] and [4] guarantee the effectiveness of NNs
in some senses, it remains as a potential problem
in practice that parameters to be learned are often
too many compared to the amount of available data.
Bayesian statistics can give a possible solution of this
problem: its philosophy that parameters are random
variables allows to marginalize all such unknown values
out to get the posterior predictive distributions.

In this point of view, among various nonparametric
regression models, Gaussian processes (GP) ([5]) have
some advantages which make them distinctive from all
the others. Besides their explicit predictive posterior
distributions, with some specific kernels corresponding
to the choice of activation functions, it becomes a
marginalized version of associated NN models: details
can be found in [6] and [7]. The point is that only
a very few hyperparameters (for example, only three
hyperparameters are needed in the squared-exponential
kernel) are now controlling the GP regression models,
and let data explain themselves to make them free from
the structure.

Though tuning hyperparameters can be done effi-
ciently in the homoscedastic (i.e., noises are assumed
to have a constant variance.) GP models ([5]), het-
eroscedastic GP models are not yet clear to learn.
While [8] tries to model logarithms of variances from
empirical variances based on another GP regression,
[9] adapts a variational method which cannot avoid
breaking up the completeness of the models. In this
paper we suggest a heteroscedastic GP model which is
not only intuitive but also easy to learn and apply it to
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constructing a new calibration for UK′

37 .
There is one golden rule: every Gaussian model is

sensitive to outliers in learning. Also, we should be
aware of the model misspecification for the robustness,
unless the model is guaranteed to follow a certain dis-
tribution based on the underlying theoretical arguments.
GP models cannot be free from these limitations. Stu-
dent’s t-processes ([10]) can be an alternative, but they
do not have explicit posterior predictive distributions
if noises are also considered. Instead, classifying and
excluding outliers in learning seems to be a better idea.
We also introduce a Bayesian method of classifying and
treating outliers automatically in the learning procedure.

II. METHOD

Let X = {xn}Nn=1 and Y = {yn}Nn=1 be the SSTs
and UK′

37 observations, respectively. What to construct
is the regression model which returns the distribution
p (y|x,X ,Y) of UK′

37 , y, at an arbitrary query SST, x.
Let β be the regression function of Y at X . Then, what
we assume are the following:

p (Y|β,X ) = N (Y|β,Λ(X )) (2)

p (β|X ) = GP
(
β
∣∣∣~0,K (F(X ),F(X )) + ξ2I

)
(3)

, where Λ is a function returning variances of UK′

37

observations in the form of a diagonal matrix at the
query SSTs given their regression vector, F is a feature
function, and K is the GP kernel function defined as
follows: for a kernel function k,

K(X (1),X (2)) ,
[
k
(
F(X (1)

m ),F(X (2)
n )
)]

m,n
(4)

, where A , B means that A is defined by B.
Because feature functions may not be injective, the

term ξ2I is inevitable to guarantee (3) to be well-defined
by making it nondegenerate.

Then, for a scalar regression b of y at x, the regres-
sion distribution p (y|x,X ,Y) is derived as follows:

p (y|x,X ,Y)

=

∫
p (y|b, x)

∫
p (b|β, x,X ) p (β|X ,Y)dβdb

(5)

As consistent with (2), we have the likelihood of y
given b and x as a Gaussian p (y|b, x) = N (y|b,Λ(x)).

Because the density of regression vector given SSTs
is assumed to be a GP, we have the following extension:

p (β, b|X , x)

= GP
((

β
b

)∣∣∣∣0,(K11 + ξ2I K12

K21 K22 + ξ2

))
(6)

, K11 , K (F (X ) ,F (X )), K22 , K (F (x) ,F (x)),
K12 , K (F (X ) ,F (x)) and K21 , K (F (x) ,F (X ))
are the abbreviations. Thus, the conditional distribution
of b given β, X and x can be computed explicitly as a
Gaussian.

Finally, the posterior distribution of β given X and Y
is derived from the likelihood (2) and prior (3), which
is also a Gaussian.

I.e., three terms in (5) are all Gaussian, so
p (y|x,X ,Y) can be computed analytically as follows:
note that

(
K11 + ξ2I + Λ (X )

)−1 is not a function of
x or y, so only one matrix inversion is required to
compute the following µ and ν.

p (y|x,X ,Y)

= N (y|µ (x,X ,Y) ,Λ (x) + ν (x,X ,Y))
(7)

µ (x,X ,Y) , K21

(
K11 + ξ2I + Λ (X )

)−1 Y
ν (x,X ,Y) , K22 + ξ2

−K21

(
K11 + ξ2I + Λ (X )

)−1K12

(8)

Heteroscedasticity comes from the choice of Λ: if
it is defined to be a constant function, the model
becomes homoscedastic. Some papers, such as [8],
suggest modelling Λ as another GP regression on the
logarithms of the residues. This approach assumes
that such logarithms follow Gaussian distributions so
symmetric, and always underestimates variances by the
Jensens inequality applied to the concave log function:
the average of logarithms is always smaller than or
equal to the logarithm of average!

Here, we use a more intuitive and direct form of Λ
inspired by Nadaraya-Watson kernel regression ([11],
[12], [13] and [14]) as follows: let µn , µ (xn,X ,Y)
and νn , ν (xn,X ,Y) as abbreviations.

Λ (x) ,

∑N
n=1

(
(yn − µn)2 + νn

)
Kh (x− xn)∑N

n=1Kh (x− xn)
(9)

, where K is a density kernel and h is a tuning parameter
which is called the bandwidth. I.e., Λ (x) is defined
as a weighted average of squares of residues, where
weights are determined by how much the query SST
x is departed from the data. (9) is derived from the
following expectation over β|X ,Y :

Eβ|X ,Y

[∑N
n=1 (yn − βn)2Kh (x− xn)∑N

n=1Kh (x− xn)

]
(10)

The choice of K does not substantially affect to
the regression model, but the model does substantially
depend on the value of h. One suggestion is to adapt
the K-nearest neighbor bandwidth ([15] and [16]).
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A GP with arcsine kernel in (11) is interpretable
as a one-layer neural network with infinite number of
marginalized hidden nodes with a sigmoid function as
the activation ([6]). Now we have a scalar η and a
square matrix Σ as hyperparameters to be tuned. To
avoid overfitting, it is common to assume in addition
that Σ is a diagonal matrix. Tuning hyperparameters can
be done by maximizing the marginal likelihood (ML)
p (Y|X ) from (2) and (3) or by the leave-one-out cross-
validation (LOO-CV): more details can be found in [5].

kNN (x, x̃)

, η2 sin−1

 2fTΣf̃√
(1 + 2fTΣf)

(
1 + 2f̃TΣf̃

)
 (11)

, where f , F (x) and f̃ , F (x̃).
In our model, outliers are represented as a hidden

variable H = {Hn}Nn=1, where Hn = 0 if yn is an inlier
and 1 an outlier. Hn’s are assumed to be independent
and each has the following prior distribution:

p (Hn) = Bernoulli (Hn|q) (12)

, where q ∈ (0, 1) is a hyperparameter not to be learned.
A small q implies that most of the observations are
believed not to be outliers. This reflects a point of view
that outliers are in essence subjective.

Once H is given, we specified each UK′

37 observation
in Y as follows: let Λn , Λ (xn) as abbreviation.

p (yn|xn,Hn = 0) , N (yn|µn, νn + Λn) (13)

p (yn|xn,Hn = 1)

,
1

2
N
(
yn

∣∣∣µn + d
√
νn + Λn, νn + Λn

)
+

1

2
N
(
yn

∣∣∣µn − d√νn + Λn, νn + Λn

) (14)

, where d > 0 is a hyperparameter for how much
outliers are deviated from the inlier distribution. Note
that the above outlier classification is working because
outputs are defined on the one-dimensional space in this
problem.

By considering (12) as the prior and (13) and (14)
as the likelihoods given Hn, respectively, we derive the
posterior distribution of Hn given xn and yn by Bayes’
rule:

p (Hn|xn, yn) ∝ p (Hn) p (yn|xn,Hn) (15)

Now we are prepared. Algorithm 1 summarizes the
learning procedure of our heteroscedastic GP regression
(HGPR) on UK′

37 over SSTs.

Algorithm 1: HGPR on UK′

37 over SSTs

1 initialize hyperparameters and H ≡ 0.
2 while convergence do
3 tune kernel hyperparameters in (3) and (11)

with X ,Y |H = 0 .
4 compute µ and ν in (8) with X ,Y |H = 0 .
5 choose the bandwidths in (9).
6 update Λ in (9) with X ,Y |H = 0 .
7 sample H|X ,Y by (15).
8 end
9 return µ, ν and Λ.

One possible way of utilizing the obtained GP re-
gression model in (7) is plugging it in the following
Bayesian inversion:

p (x̃|ỹ) ∝ p (ỹ|x̃) p (x̃) (16)

, where ỹ is the observed UK′

37 data and x̃ is the
associated SSTs to be inferred. The prior p (x̃) can be
given as a distribution of SSTs given their geographical
information, for instance.

In general, (16) does not have a closed form. Because
SSTs are of one dimension, applying the Markov-
chain Monte Carlo (MCMC) is enough to sample from
the posterior p (x̃|ỹ); if the event to infer is of high
dimension, a variational inference to approximate the
posterior with a known distribution must be considered.

III. DATA

We used the dataset same with [1], after discarding
those in the locations that it excluded from their analy-
sis. The rest of data with 1274 observations were used.
We could discard more from them but did not do so
for checking whether or not our model could classify
apparent outliers desirably. Details about data are in [1].

For the density kernel and bandwidth in (9), we
adapted a Gaussian kernel having an unbounded support
and the K-nearest neighbor bandwidth where K is
selected by the LOO-CV among 10 candidates, from
1% to 10% of the data per 10 iterations. Hyperpa-
rameters q in (12) and d in (13) and (14) were set to
be 0.065 and 2.48, respectively: these values lead the
marginal likelihood of yn from (12), (13) and (14) to
approximating the Student’s t-distribution with 6 as the
degree of freedom.

We also regularized the raw data X and Y by
x ← x/6.5656 − 3.0205 and y ← y/0.2104 − 3.3642
so that they fit to the Student’s t-distribution with 6 as
the degree of freedom, and then took a feature function
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Fig. 1. Average log-likelihoods of inliers and proportions of outliers
over iterations.

F (x) = (1, x)T on the regularized X . To identify and
regularize the model, we defined Σ in (11) to be a
diagonal matrix, where the first entry is fixed to be 1.

IV. RESULTS

After 100 iterations in about 7 minutes, we obtained
the results shown in the eight figures, from 1 to 8.
Finally selected K was 4%. Figure 1 shows the av-
erage log-likelihoods of inliers (blue) and proportions
of inferred outliers (red). It shows convergence of the
learning procedure after around the 15th iteration. Only
about 3% of the data were classifed as outliers. Learned
kernel hyperparameters are the following:

η = 2.1962

Σ =

[
1 0
0 0.47122

]
ξ = 2.7253× 10−12

(17)

Figure 2 represents the inferred regression on SSTs
with the classification of inliers (green) and outliers
(red), and figure 3 those on the world map. It clearly
shows the heteroscedasticity of observations and the
associated model, as figure 4. Also, apparent outliers
at 22-26◦C of the upper boundary of the plot are
classified as so. Classified outliers above 25◦C below
the model, however, could be from another cluster. This
can be adjusted by tuning hyperparameters in section
III. One advantage of GP regression is that the inferred
mean at each input is expressed in a closed form and
differentiable as much as the adopted kernel. Curvatures
of the inferred means are shown in figure 5. [1] suggests
that slopes of the means start to change at 23.4◦C,
which is roughly consistent with our inference, but
some more changes are also captured in the inferred
model.

To visually check how residuals are treated appropri-
ately by our heteroscedastic model, figures 6 to 8 were

Fig. 2. The learned regression over SSTs. Green and red points are
inliers and outliers, respectively. The dashed line shows the inferred
means over SSTs and shaded region is the 95% confidence band.

Fig. 3. The world map with data locations. Green and red points
are inliers and outliers, respectively.

also plotted. A normalized residual rn at xn is defined
as follows:

rn ,
yn − µn√
νn + Λn

(18)

I.e., if means and variances of the GP regression
model are properly inferred, normalized residuals at
inliers must follow the standard normal distribution.

In figure 6, most of the normalized residuals seem
to follow the standard normal distribution, and figure
7 supports that assertion as the Q-Q plot of inliers. In
addition, figure 8 shows that normalized residuals are
barely correlated with SSTs: the correlation between
the pairs classified as inliers is 0.0019. These results
strongly suggest that our GP regression model appro-
priately infer the heteroscedasticity of the model.

V. CONCLUSION

Our GP regression on UK′

37 appropriately explains the
heteroscedasticity of data and provides a probabilistic
model with explicit distributions. It converges quickly,
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Fig. 4. Inferred standard deviations over SSTs.

Fig. 5. Inferred curvatures over SSTs.

in about 7 minutes, even if we do not assume any infor-
mative prior structure (see ~0 in (3)) on the regression.
Thus, this work can be considered as a success of the
nonparametric approach on the real data.

However, a GP has several disadvantages to over-
come. Firstly, it requires at least one matrix inversion in
constructing distributions, where its size is the same as
the number of observations. There are only 1274 data,
which is affordable in the currently available computing
power, so it was not problematic in this case. We used
two-dimensional features, which do not suffer from the
curse of dimensionality.

Fig. 6. The histogram of normalized residuals. The green graph is
the standard normal distribution.

Fig. 7. The Q-Q plot of inliers.

Fig. 8. A plot of normalized residuals over SSTs. Green and red
points are inliers and outliers, respectively. The shaded region covers
the 95% confidence intervals [−1.96, 1.96].

Nonetheless, in this paper a model based on GPs
shows its effectiveness on explaining UK′

37 observations
over SSTs, where relatively moderate amount of data
are given and inputs are of low-dimensional. One more
advantage of the nonparametric approaches is that it
does not depend much on the specific characteristics of
data: it is possible to adapt the same approach to any
data to do regression.

Codes which run on MATLAB can be found in
https://github.com/eilion/HGPR SST Proxy Cal.
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