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The supplementary motor area is
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ahead” in time. Russo et al. formalize this
idea and predict a basic property that
neural activity must have to serve that
purpose. That property is present,
explains diverse features of activity, and
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motor areas.
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SUMMARY

The supplementary motor area (SMA) is believed to contribute to higher order aspects of motor control. We
considered a key higher order role: tracking progress throughout an action. We propose that doing so re-
quires population activity to display low "trajectory divergence": situations with different future motor out-
puts should be distinct, even when present motor output is identical. We examined neural activity in SMA
and primary motor cortex (M1) as monkeys cycled various distances through a virtual environment. SMA ex-
hibited multiple response features that were absent in M1. At the single-neuron level, these included ramping
firing rates and cycle-specific responses. At the population level, they included a helical population-trajectory
geometry with shifts in the occupied subspace as movement unfolded. These diverse features all served to
reduce trajectory divergence, which was much lower in SMA versus M1. Analogous population-trajectory ge-
ometry, also with low divergence, naturally arose in networks trained to internally guide multi-cycle

movement.

INTRODUCTION

The supplementary motor area (SMA) is implicated in higher or-
der aspects of motor control (Eccles, 1982; Penfield and Welch,
1951; Roland et al., 1980). SMA lesions cause motor neglect
(Krainik et al., 2001; Laplane et al., 1977), unintended utilization
(Boccardi et al., 2002), deficits in bimanual coordination (Brink-
man, 1984), and difficulty performing sequences (Shima and
Tanji, 1998). Relative to primary motor cortex (M1), SMA activity
is less coupled to actions of a specific body part (Boudrias et al.,
2006; Tanji and Kurata, 1982; Tanji and Mushiake, 1996; Yokoi
et al., 2018). Instead, SMA computations appear related to
learned sensory-motor associations (Nachev et al., 2008; Tanji
and Kurata, 1982), reward anticipation (Sohn and Lee, 2007), in-
ternal initiation and guidance of movement (Eccles, 1982; Romo
and Schultz, 1992; Thaler et al., 1995), timing (Merchant and de
Lafuente, 2014; Remington et al., 2018b; Wang et al., 2018), and
sequencing (Kornysheva and Diedrichsen, 2014; Mushiake et al.,
1991; Nakamura et al., 1998; Tanji and Shima, 1994). SMA neu-
rons show abstracted but task-specific responses, such as se-

lective bursts during sequences (Shima and Tanji, 2000) and
continuous ramping and rhythmic activity during a timing task
(Cadena-Valencia et al., 2018). This suggests that SMA compu-
tations are critical when pending action must be guided by ab-
stract “contextual” factors, e.g., knowing the overall action
and one’s moment-by-moment progress within it (Tanji and
Shima, 1994). Such guidance may be important both when per-
forming movements from memory and for appropriately
leveraging sensory cues (Gamez et al., 2019).

Tracking of context is presumably particularly important dur-
ing temporally extended actions, of which sequences are the
most commonly studied (Kornysheva and Diedrichsen, 2014;
Mushiake et al., 1991; Nakamura et al., 1998; Rhodes et al.,
2004; Shima and Tanji, 2000; Tanji and Shima, 1994; Yokoi
and Diedrichsen, 2019). During sequences, SMA neurons
respond phasically with various forms of sequence selectivity
(Shima and Taniji, 2000; Tanji and Mushiake, 1996). Such selec-
tivity is proposed to reflect a key computation: arranging multiple
distinct movements in the correct order out of many possible or-
ders (Tanji, 2001). Importantly, not all movements require
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sequencing (Krakauer et al., 2019; Wong and Krakauer, 2019).
For example, a tennis swing lacks discrete elements that can
be arbitrarily arranged, and SMA is proposed not to be critical
for movements of this type (Tanji, 2001). Yet there exist many ac-
tions that, although not meeting the strict definition of a
sequence, last longer than a tennis swing and may require com-
putations regarding “what comes next” beyond what can be
accomplished by M1 alone. A unifying hypothesis is that SMA
computations relate to that general need: guiding action by inter-
nally tracking context. What properties should one expect of a
neural population performing that class of computation?

Inquiring whether neural responses are consistent with a hy-
pothesized computation is a common goal (e.g., Gallego et al.,
2018; Pandarinath et al., 2018; Saxena and Cunningham,
2019). Standard approaches include decoding hypothesized
signals (e.g., via regression; Morrow and Miller, 2003) and/or
direct comparisons between empirical and simulated population
activity (e.g., via canonical correlation; Sussillo et al., 2015). An
emerging approach is to consider the geometry of the population
response: the arrangement of population states across condi-
tions (DiCarlo et al., 2012; Diedrichsen and Kriegeskorte, 2017;
Gallego et al., 2018; Saez et al., 2015; Schaffelhofer and Scher-
berger, 2016; Stringer et al., 2019) and/or the time-evolving tra-
jectory of activity in neural state space (Ames et al., 2014; Foster
et al., 2014; Hall et al., 2014; Hénaff et al., 2019; Michaels et al.,
2016; Raposo et al., 2014; Remington et al., 2018a, 2018b; Stop-
fer and Laurent, 1999; Sussillo and Barak, 2013; Sussillo et al.,
2015). A given geometry may be consistent with some computa-
tions, but not others (Driscoll et al., 2018). An advantage of this
approach is that certain geometric properties are expected to
hold for a broad class of computations, regardless of the specific
computation deployed during a particular task. For example, we
recently characterized M1 activity using a metric, trajectory
tangling, that assesses whether activity is consistent with
noise-robust dynamics (Russo et al., 2018). This approach re-
vealed a population-level property—low trajectory tangling—
that was conserved across tasks and species.

Here, we consider the hypothesis that SMA guides movement
by tracking contextual factors and derive a prediction regarding
population-trajectory geometry. We predict that SMA trajec-
tories should avoid “divergence”; trajectories should be struc-
tured across time and conditions such that it is never the case
that two trajectories follow the same path and then separate.
Low trajectory divergence is essential to ensure that neural activ-
ity can distinguish situations with different future motor outputs,
even if current motor output is similar. We hypothesize that the
need to avoid divergence shapes the population trajectory and
thus the response features observed within a particular task.

We employed a cycling task that shares some features with
sequence tasks but involves continuous motor output and thus
provides a novel perspective on SMA response properties. We
found that the population response in SMA, but not M1, exhibits
low trajectory divergence. The major features of SMA responses,
at both the population and single-neuron levels, could be under-
stood as serving to maintain low divergence. Simulations
confirmed that low divergence was necessary for a network to
guide action based on internal/contextual information. Further-
more, artificial networks naturally adopted SMA-like trajectories
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when they had to internally track contextual factors. Thus, a
broad hypothesis regarding the class of computations per-
formed by SMA accounts for population activity in a novel task.

RESULTS

Task and Behavior

We trained two rhesus macaque monkeys to grasp a hand pedal
and cycle through a virtual landscape (Figure 1A; Russo et al.,
2018). Each trial required cycling between two targets. The trial
began with the monkey’s virtual position stationary on the first
target, with the pedal orientated either straight up (“top start”)
or down (“bottom start”). After a 1,000-ms hold period, the sec-
ond target appeared. Its distance determined the required num-
ber of revolutions: 1, 2, 4, or 7 cycles. After a 500- to 1,000-ms
randomized delay period, a go cue (brightening of the second
target) was delivered. The monkey cycled to that target and re-
mained stationary to receive juice reward. Because targets
were separated by an integer number of cycles, the second
target was acquired with the same pedal orientation as the first.
Landscape color indicated whether forward virtual motion
required cycling forward or backward (forward is defined as
the hand moving away from the body at the cycle’s top). Using
a block-randomized design, monkeys performed all combina-
tions of two cycling directions, two starting orientations, and
four cycling distances. Averages of hand kinematics, muscle ac-
tivity, and neural activity were computed after temporal
alignment.

Vertical and horizontal hand velocity had nearly sinusoidal
temporal profiles (Figure 1B). Muscle activity patterns (Figure 1C)
were often non-sinusoidal. Initial-cycle and terminal-cycle mus-
cle patterns often departed from the middle-cycle pattern, an ex-
pected consequence of accelerating/decelerating the arm (e.g.,
the initial-cycle response is larger in Figure 1C). Muscle activity
and hand kinematics differed in many ways yet shared the
following property: the response when cycling a given distance
was a concatenation of an initial-cycle response, middle cycles
with a repeating response, and a terminal-cycle response. We
refer to the middle cycles as “steady state,” reflecting the repe-
tition of kinematics and muscle activity across such cycles, both
within a cycling distance and across distances. Seven-cycle
movements had ~5 steady-state cycles and four-cycle move-
ments had ~2 steady-state cycles. Two- and one-cycle move-
ments involved little or no steady-state cycling.

Cycling is not strictly speaking a sequence. Muscle activity
during a four-cycle movement roughly follows an ABBC pattern,
but these elements lack well-defined boundaries and are neither
discrete nor orderable (C cannot be performed before A). Never-
theless, cycling seems likely to require “temporal structuring of
movement” (Tanji and Shima, 1994) beyond what M1 alone
can contribute. Our motivating hypothesis—that SMA tracks
contextual factors for the purpose of guiding action—predicts
that the SMA population response should be structured to distin-
guish situations with different future actions, even when current
motor output is identical. The cycling task produced multiple in-
stances of this scenario, both within and between conditions.
Consider the second and fifth cycles of a seven-cycle movement
(Figures 1B and 1C). Motor output is essentially identical but will
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(A) Monkeys grasped a hand pedal and cycled through a virtual environment. The schematic illustrates forward cycling, instructed by a green environment.

Backward cycling was instructed by an orange, desert-like environment.

(B) Trial-averaged hand velocity for seven-cycle, four-cycle, two-cycle, and one-cycle movements. Data are for forward cycling, starting at cycle’s bottom
(monkey C). Vertical velocity traces are colored from tan to black to indicate time with respect to the end of movement. Black dots indicate target appearance.
Gray box with shading indicates the epoch when the pedal was moving (preceding go cue not shown). Shading indicates vertical hand position; light shading
indicates cycle apex. Ticks show cycle divisions used for analysis. Small schematics at right illustrate relationship between number of cycles and target distance.
(C) Muscle activity, recorded from the medial head of the triceps (monkey D). Intra-muscularly recorded voltages were rectified, filtered, and trial averaged. Data

are shown for backward cycling, starting at cycle’s top.

differ in two more cycles. The same is true when comparing the
second cycle of seven-cycle and four-cycle movements. Distin-
guishing between such situations requires tracking context via
some combination of “dead reckoning” and interpretation of vi-
sual cues (optic flow and the looming target). Does the need to
track context account for the geometry of the SMA population
response? Although this is fundamentally a population-level
question, we begin by examining single-neuron responses. We
then document specific features of the population response.
Finally, we consider a general property of population-trajectory
geometry that is necessary for tracking context. We ask whether
the data have this general property and whether it explains the
specific response features observed during cycling.

Single-Neuron Responses

Well-isolated single neurons were recorded consecutively from
SMA and M1. M1 recordings spanned sulcal and surface primary
motor cortex and the immediately adjacent aspect of dorsal pre-
motor cortex (Russo et al., 2018). In both SMA and M1, neurons
were robustly modulated during cycling. Of neurons that spiked
often enough to be noticed and isolated, nearly all were task
modulated. Isolations that were not task modulated were aban-
doned and not considered further (a total of 6 SMA and 4 M1 iso-
lations across both monkeys). All other isolated neurons were
analyzed regardless of their response properties. This included
77 and 70 SMA neurons (monkeys C and D) and 116 and 117
M1 neurons. Firing-rate modulation (maximum minus minimum
rate) averaged 52 and 57 spikes/s for SMA (monkeys C and D)
and 73 and 64 spikes/s for M1.

In M1, single-neuron responses (Figures 2A-2C) were typically
complex yet showed two consistent features. First, for a given
cycling distance, responses repeated across steady-state cy-
cles. For example, for a seven-cycle movement, the firing rate
profile was very similar across cycles 2-6 (Russo et al., 2018).
Second, response elements—initial-cycle, steady-state, and
terminal-cycle responses—were conserved across distances.
Thus, although M1 responses rarely matched patterns of muscle

activity or kinematics, they shared the same general structure:
responses were essentially a concatenation of an initial-cycle
response, a steady-state response, and a terminal-cycle
response. Even complex responses that might be mistaken as
“noise” displayed this structure (Figure 2C).

Neurons in SMA (Figures 2D-2F) displayed different properties.
Responses were typically a mixture of rhythmic and ramp-like fea-
tures. As a result, during steady-state cycling, single-neuron re-
sponses in SMA had a greater proportion of power well below
the ~2-Hz cycling frequency (Figures 3A and 3B). Due in part to
these slow changes in firing rate, a clear steady-state response
was rarely reached. Furthermore, the initial-cycle response in
SMA often differed across cycling distances (e.g., compare
seven-cycle and two-cycle responses in Figure 2E), even when
muscle and M1 responses were similar. In contrast, terminal-cycle
responses were similar across distances. For example, in Fig-
ure 2E, the response during a four-cycle movement resembles
that during the last four cycles of a seven-cycle movement.

Individual-Cycle Responses Are More Distinct in SMA
We compared the response on each cycle with that on all other
cycles, both within seven-cycle movements and between seven-
and four-cycle movements. For each neuron, we compared
time-varying firing rates for the two cycles of interest. The
“response distance” between these two firing rates, averaged
across all neurons, was computed using the crossnobis esti-
mator (Diedrichsen and Kriegeskorte, 2017; Yokoi et al., 2018),
providing an unbiased estimate of squared distance. Response
distance was normalized based on the typical intra-cycle
firing-rate modulation for that condition. This analysis thus as-
sesses the degree to which responses are different for two cy-
cles, relative to the response magnitude within a single cycle.
Response distance for a given comparison was averaged across
the two cycling directions and starting positions (Figures 3C-3F,
31, and 3J) or shown independently for each (Figures 3G and 3H).
Figures 3C-3F plot response distances in matrix form. For M1,
responses were similar among all steady-state cycles, resulting
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Figure 2. Responses of Example Neurons

(A-C) Firing rates for three example M1 neurons,
one per panel. Plotting conventions as in Fig-
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ure 1C. Each panel’s label indicates the region,
monkey (C or D), and cycling direction for which
data were recorded. Cycling started from the
bottom position. All calibrations are 40 spikes/s.
Gray envelopes around each trace (typically
barely visible) give the standard error of the mean.
(D-F) Firing rates for three SMA neurons, one
per panel.
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especially when comparing cycles with
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three of seven versus three of four).
We plotted response distance for SMA
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in a central dark block of low distances. This block is square for
within-seven-cycle comparisons and rectangular for seven-
versus-four-cycle comparisons. Outer rows and columns are
lighter (higher response distances) because initial- and termi-
nal-cycle responses differed from one another and from
steady-state responses. This analysis confirms that M1 re-
sponses involve a distinct initial-cycle response, a repeating
steady-state response, and a distinct terminal-cycle response.
These results agree with the finding that M1 activity relates to
execution of the present movement (Hatsopoulos et al., 2003;
Lara et al., 2018; Yokoi et al., 2018). Motor output (muscle activ-
ity and hand kinematics) is similar across steady-state cycles.
M1 activity was correspondingly similar.

For SMA, the central block of high similarity was largely absent.
Instead, response distance grew steadily with temporal separa-
tion. For example, within a seven-cycle movement, the second-
cycle response was modestly different from the third-cycle
response, fairly different from the fifth-cycle response, and very
different from the seventh-cycle response. Average response
distance was larger for SMA versus M1, both across all compar-
isons (p < 10~ for each monkey; resampling test) and for com-
parisons among steady-state cycles (p < 1072 for each monkey).

Steady-state comparisons are particularly relevant because
motor output is essentially identical across steady-state cy-
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seven-cycle movements (circles) and
between seven- and four-cycle move-
ments (triangles). Comparisons were
made independently for each condition
(the two directions and starting posi-
tions). Results agreed with the analyses
in Figures 3C-3F (which averaged
across conditions): response distance
was always low for M1 but was often
high for SMA.

Intriguingly, when comparing seven- and four-cycle move-
ments, SMA response distance reflected whether steady-state
cycles shared the same future motor output. Response distance
was modest when comparing cycles equidistant from movement
end (red triangles) and higher (p < 0.05 for both monkeys; t test)
for cycles equidistant from the beginning (green triangles). The
task affords a further comparison of this type: seven- and four-
cycle movements share initial-cycle motor outputs but become
different in ~3 cycles (~1,500 ms). In contrast, terminal-cycle
motor output is similar and remains so as the monkey becomes
stationary. Thus, if activity tracks motor context, response dis-
tance should be greater when comparing initial versus terminal
cycles. This was indeed the case: SMA response distance was
much larger between initial cycles than between final cycles (Fig-
ures 3l and 3J). Initial-cycle responses tended to share some
structure; response distance was not as large as for some other
comparisons (e.g., cycle one versus four). Yet initial-cycle re-
sponses were much more dissimilar than final-cycle responses,
reflecting what can be seen in Figures 2D-2F. This asymmetry
was present in both areas but was larger for SMA (p < 0.05
and p < 107'°, monkeys C and D; resampling test).

Cycle-to-cycle response specificity in SMA somewhat resem-
bles contingency-specific activity during movement sequences
(e.g., a neuron that bursts only when pulling will be followed by
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Figure 3. SMA Responses Show Greater Cycle-to-Cycle Differences

(A) Histogram of the proportion of low-frequency (<1 Hz) power in the trial-averaged firing rate. Right-shifted histograms indicate more low-frequency power. For
each neuron, power was computed for each seven-cycle condition after mean centering (ensuring no power at 0 Hz). Proportion of power <1 Hz was averaged
across conditions to yield one value per neuron. Data are for monkey C.

(B) Same for monkey D.

(C) Matrices of response distances when comparing cycles within a seven-cycle movement. For each comparison (e.g., cycle two versus three) normalized
response distance was computed for each condition (two directions and starting locations) and averaged. The matrix is symmetric because the distance metric is
symmetric. The diagonal is not exactly zero due to cross-validation. Data are for monkey C.

(D) Matrices of response distances comparing seven-cycle and four-cycle movements. Data are for monkey C.

(E) Same as (C) but for monkey D.

(F) Same as (D) but for monkey D.

(G) SMA versus M1 response distance for comparisons among steady-state cycles within seven-cycle movements (circles) and between seven- and four-cycle
movements (triangles). For each of the four conditions, there are ten within-seven-cycle comparisons (square inset) and ten seven-versus-four-cycle compar-
isons (rectangular inset). Red triangles highlight comparisons between cycles equidistant from movement end, e.g., six of seven versus three of four. Green
triangles highlight comparisons between cycles equidistant from movement beginning. Data are for monkey C.

(H) Same for monkey D.

(I) Response distance when comparing initial cycles (one of seven versus one of four) and terminal cycles (seven of seven versus four of four). These are the same
values as in (D) (comparisons highlighted in inset), plotted here for direct comparison.

(J) Same for monkey D.

turning; Shima and Tanji, 2000). Yet specificity during cycling is  differences. To further explore such differences, we consider
manifested differently, by responses that evolve continuously the evolution of population trajectories.

rather than burst at a key moment. The ramping activity we

observed was more reminiscent of pre-movement responses SMA and M1 Display Different Population Trajectories

in a timing task (Cadena-Valencia et al., 2018). That said, ramp-  To gain intuition, we first visualized population trajectories in
ing activity was not the only source of cycle-to-cycle response three dimensions. Projections onto the top three principal
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Figure 4. Visualization of Population Tra-
jectories

(A) M1 population trajectory during a seven-cycle
movement (cycling forward from the bottom). Top
trajectory is the projection onto the top three PCs,
from 1,500 ms before movement onset until 500
after, shaded from tan (movement beginning) to
black (movement end). PCs were found using all
four seven-cycle conditions and data from 200 ms
before movement onset until 200 ms after move-
ment offset (narrower than the plotted range to
prioritize dimensions that capture movement-
related activity). Small plots at bottom show pro-
jections of each steady-state cycle (2-6) onto the
first two PCs found using data from that cycle
only.

(B) Same for monkey D; data are from the seven-
cycle, forward, top-start condition.

(C) SMA population trajectory for monkey C for
the same condition as in (A).

(D) SMA population trajectory for monkey D for
the same condition as in (B).

S

PCs to visualize the trajectory on
each cycle separately. Doing so re-
vealed near-circular trajectories,

PC2 0

O Ioes

05 05

components (PCs) are shown for one seven-cycle condition for
M1 (Figures 4A and 4B) and SMA (Figures 4C and 4D), shaded
light to dark to denote the passage of time. For M1, trajectories
exited a baseline state just before movement onset, entered a
periodic orbit during steady-state cycling, and remained there
until settling back to baseline as movement ended. To examine
within-cycle structure, we also applied principal component
analysis (PCA) separately for each cycle (bottom of each panel).
For M1, this revealed little new; the dominant structure on each
cycle was an ellipse, as was seen in the projection of the full
response.

In SMA, the dominant geometry was quite different and also
more difficult to summarize in three dimensions. We first
consider data for monkey C (Figure 4C). Just before movement
onset, the population trajectory moved sharply away from base-
line (from left to right in the plot). The trajectory returned to base-
line in arough spiral, with each cycle separated from the last. The
population trajectory for monkey D was different in some details
(Figure 4D), but it was again the case that a translation separated
cycle-specific features.

SMA population trajectories appear to have a “messier”
geometry than M1 trajectories; e.g., cycle-specific loops
appear non-elliptical and kinked. Yet it should be stressed
that a three-dimensional projection is necessarily a compro-
mise. The view is optimized to capture the largest features
in the data; smaller features can be missed or partially
captured and distorted. We thus employed cycle-specific
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! much as in M1. Thus, individual-cycle

orbits are present in SMA but are a
smaller feature relative to the large
translation.

In summary, M1 trajectories are domi-
nated by a repeating elliptical orbit while
SMA trajectories are better described as helical. Each cycle in-
volves an orbit, but these are separated by a translation. This
translation reflects ramp-like responses in single neurons. Yet
the translation does not account for all the cycle-to-cycle differ-
ences in SMA. Unlike an idealized helix, individual-cycle orbits in
SMA occur in somewhat different subspaces. This property is
explored below.

PC2

The SMA Population Response Occupies Different
Dimensions across Cycles
To ask whether activity on different cycles occupies the same di-
mensions, we computed subspace overlap (Elsayed et al.,
2016). For example, to compare cycle one and two, we
computed PCs from activity during cycle one, projected activity
during cycle two, and computed the variance explained. We em-
ployed six PCs, which captured most of the response variance
for a given cycle. Essentially identical results were obtained us-
ing fewer or more PCs (Figure S1). Variance was normalized so
that unity indicates that two cycles occupy the same subspace.
We employed cross-validation so that sampling error did not
bias overlap toward lower values. As in Figures 3C-3F, we
compared within seven-cycle movements (Figures 5A and 5C)
and between seven- and four-cycle movements (Figures 5B
and 5D).

For M1, subspace overlap was high among steady-state cy-
cles, producing a central block structure (Figures 5A-5D, top
row). That block was square when comparing within seven-cycle
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4 (A) Subspace overlap, comparing cycles within
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seven-cycle movements. Each matrix entry shows
subspace overlap for one comparison. Rows
indicate the cycle used to find the PCs, and col-
umns indicate the cycle for which variance
captured is computed. Overlap is not symmetric.
Data are averaged across conditions (pedaling
directions and starting positions). Diagonal entries
are not exactly unity due to cross-validation. Data
are for monkey C.
(B) Cross-validated subspace overlap comparing
seven-cycle with four-cycle movements. Data are
for monkey C.
(C) Same as (A) but for monkey D.
123 4 (D) Same as (B) but for monkey D.
(E) Subspace overlap for SMA versus M1 for
° comparisons among steady-state cycles within
seven-cycle movements (circles) and between
seven- and four-cycle movements (triangles). For
each of the four conditions, there are twenty
within-seven-cycle comparisons (square inset)
‘;Ao and ten seven-versus-four-cycle comparisons
%oa (rectangular inset). Red triangles highlight com-
“é parisons between cycles equidistant from move-
* ment end. Green triangles highlight comparisons
between cycles equidistant from movement
beginning. Data are for monkey C.

NOoO s WD =

A

0 M1 subspace overlap 1

movements (cycles 2-6 versus 2-6) and rectangular when
comparing between seven- and four-cycle movements (cycles
2-6 versus 2-3). Thus, in M1, the subspace found for any
steady-state cycle overlapped heavily with that for all other
steady-state cycles.

For SMA (bottom row), the central block was less well defined.
Comparing within seven-cycle movements, SMA subspace
overlap declined steadily as cycles became more distant from
one another. For example, for monkey D, overlap declined
from 0.97 when comparing cycle two versus three to 0.39
when comparing two versus six (monkey C: from 0.91 to 0.49).
A similar effect was present when comparing seven- and four-
cycle movements. For example, overlap was only 0.54 (monkey
C) and 0.38 (monkey D) when comparing cycle two of seven with
three of four, even though these cycles had similar motor output.
Overall, subspace overlap among steady-state cycles was lower
for SMA versus M1: p < 10~ for both monkeys for within-seven-
cycle comparisons and p < 10~ for both monkeys for seven-
versus-four-cycle comparisons (resampling test).

The analyses in Figures 5A-5D average across the four con-
ditions. Figures 5E and 5F consider each condition separately
for all comparisons among steady-state cycles, both within
seven-cycle and between seven- and four-cycle movements.
M1 subspace overlap was reasonably high for all comparisons
(always >0.71 for monkey C and >0.79 for D). SMA subspace
overlap was significantly lower overall (p < 10~'° for each mon-
key; paired t test) with minima of 0.23 and 0.29. Yet SMA sub-
space overlap was not always low. It was typically high when
comparing cycles equidistant from movement end (red trian-

0 M1 subspace overlap

(F) Same for monkey D.
See also Figure S1.

gles). In contrast, overlap was lower (p < 0.05 and p < 0.005;
monkeys C and D; paired t test) when comparing cycles equi-
distant from movement beginning (green triangles). Thus, sub-
space overlap was high when two situations shared a similar
future and low otherwise.

Population Trajectories in Artificial Networks
“Motor context”—i.e., abstract information that guides future
action—may be remembered (e.g., “l am performing a particular
sequence”; Shima and Tanji, 2000), internally estimated (“it has
been 800 ms since the last button press”; Gamez et al., 2019), or
derived from abstract cues (“this color means reach quickly”;
Lara et al., 2018). In the cycling task, salient contextual informa-
tion arrives when the target appears, specifying the number of
cycles to be produced. The current motor context (how many cy-
cles remain) can then be updated throughout the movement,
based on both visual cues and internal knowledge of the number
of cycles already produced.

Our hypothesis is that the helical SMA population trajectory is
a natural solution to the problem of internally tracking motor
context during multi-cycle rhythmic movement. Is this hypothe-
sis sufficient to explain the helical structure or are additional as-
sumptions (regarding parameters that are represented or other
computations that are performed) necessary? Conversely, are
the elliptical M1 trajectories indeed what is expected if a network
does not internally track motor context?

To address these questions, we trained artificial recurrent net-
works that did or did not need to internally track motor context.
We considered simplified inputs (pulses at specific times) and
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simplified outputs (pure sinusoids lasting four or seven cycles).
We trained two families of recurrent networks. A family of
“context-naive” networks received one input pulse indicating
that output generation should commence and a different input
pulse indicating that output should be terminated. These pulses
were separated by four or seven cycles, corresponding to the
desired output. Thus, context-naive networks had no informa-
tion regarding context until the second input. Nor did they
need to track context; the key information was provided at the
critical moment. In contrast, a family of “context-tracking” net-
works received only an initiating input pulse, which differed de-
pending on whether a four- or seven-cycle output should be pro-
duced. Context-tracking networks then had to generate a
sinusoid with the appropriate number of cycles and terminate
with no further external guidance. For each family, we trained
500 networks that differed in their initial connection weights
(STAR Methods).

The two network families learned qualitatively different solu-
tions involving population trajectories with different geometries.
Context-naive networks employed an elliptical limit cycle (Fig-
ure 6A). The initiating input caused the trajectory to enter an orbit,
and the terminating input prompted the trajectory to return to

8 Neuron 7107, 1-14, August 19, 2020

1000 0.354 '
[2)
E .
g
= g |
S) I
g
222 w
0 . 0
0 1000 -1000
Dnaive Dtracking -Dhaive

Neuron

Figure 6. Trajectory Geometry in Simulated
Networks

(A) Population trajectories for three example
context-naive networks during the four-cycle con-
dition. Left, right, and vertical axes correspond to
PC 1, 2, and 3.

(B) Population trajectories for three example
context-tracking networks.

(C) Trajectory divergence for context-tracking
versus context-naive networks. Comparison in-
volves 500 networks of each type, paired arbitrarily.
Each dot plots Diracking Versus Dpaive for one time
during one pairing. Diagonal line indicates unity.
(D) Distribution of differences in trajectory diver-
gence between context-naive and context-tracking
networks. Diracking — Dnaive Was computed for every
time and all possible pairings (every context-
tracking network with every context-naive
network).

See also Figures S2-S4.

baseline. This solution was not enforced
but emerged naturally. There was
network-to-network variation in how
quickly activity settled into the limit cycle
(Figure S2), but all networks that suc-
ceeded in performing the task employed
a version of this strategy.

Context-tracking networks utilized pop-
ulation trajectories that were more helical;
the trajectory on each cycle was sepa-
rated from the others by an overall transla-
tion (Figure 6B). Although there was
network-to-network variation (Figure S3),
all successful context-tracking networks
employed some form of helical or spiral
trajectory. This solution is intuitive: context-tracking networks
do not have the luxury of following a repeating orbit. If they
did, information regarding context would be lost and the network
would have no way of “knowing” when to terminate its output.

For context-tracking networks, trajectories could also occupy
somewhat different subspaces on different cycles. Projected
onto three dimensions, this geometry resulted in individual-cycle
trajectories of seemingly different magnitude (Figure 6B, firstand
third examples). As with the helical structure, this geometry cre-
ates separation between individual-cycle trajectories. There was
considerable variation in the degree to which this strategy was
employed. Some context-tracking networks used nearly iden-
tical subspaces for every cycle although others used quite
different subspaces. Context-naive networks never employed
this strategy.

The population geometry adopted by context-naive and
context-tracking networks bears obvious similarities to the
empirical population geometry in M1 and SMA, respectively.
That said, we stress that neither family is intended to faithfully
model the corresponding area. Furthermore, reasonable alterna-
tive modeling choices exist. For example, rather than asking
context-tracking networks to track progress using internal

1000
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dynamics alone, one can provide a ramping input. Providing an
external input respects the fact that, during cycling, tracking of
context can and presumably does benefit from visual inputs (op-
tic flow and the looming of the target). Interestingly, context-
tracking networks trained in the presence/absence of ramps em-
ployed similar population trajectories (Figure S4). The slow trans-
lation that produces helical structure is a useful computational
tool—one that networks produced on their own if needed but
were also content to inherit from upstream sources. For these
reasons, we focus not on the details of individual network trajec-
tories but rather on the geometric features that differentiate
context-tracking from context-naive trajectories and that might
similarly differentiate M1 and SMA trajectories.

Trajectory Divergence

Trajectories displayed by context-tracking networks reflect
specific solutions to a general problem: ensuring that two tra-
jectory segments never trace the same path and then diverge.
Avoiding such divergence is critical when network activity must
distinguish situations that have the same present motor output
but different future outputs. Rather than assessing the specific
paths of individual-network solutions, we developed a general
metric of trajectory divergence. We note that trajectory diver-
gence differs from trajectory tangling (Russo et al., 2018), which
was very low in both SMA and M1 (Figure S5). Trajectory
tangling assesses whether trajectories are consistent with a
locally smooth flow field. Trajectory divergence assesses
whether similar paths eventually separate, smoothly or other-
wise. A trajectory can have low tangling but high divergence
or vice versa (Figure S6).

To construct a metric of trajectory divergence, we consider
times t and t', associated population states x; and x, , and future
population states x;:,» and x, , ,. We consider all possible pair-
ings of t and t' across both times and cycling distances. Thus, t
and t might occur during different cycles of the same movement
or during different distances. We compute the ratio
IXesa —Xesa | 2/(|\x, —x¢ |2 +a), which becomes large if
X; . a differs from x; , , despite x; and x, being similar. The con-
stant « is small and proportional to the variance of x and prevents
hyperbolic growth.

Given that the difference between two random states is typi-
cally sizeable, the above ratio will be small for most values of
t . As we are interested in whether the ratio ever becomes large,
we take the maximum and define divergence for time t as

2

D(t) =max ”X”A_ixtf” (Equation 1)
v, A ||X1 —Xt/|| +a

We consider only positive values of A. Thus, D(t) is large if similar
trajectories diverge, but not if dissimilar trajectories converge.
Divergence was assessed using a twelve-dimensional neural
state. Results were similar for all reasonable choices of
dimensionality.

D(t) differentiated between context-tracking and context-
naive networks. To compare, we considered pairs of networks,
one context tracking and one context naive. For each time, we
plotted D(t) for the context-tracking network versus that for
the context-naive network. Trajectory divergence was consis-

¢ CellP’ress

tently lower for context-tracking networks (Figure 6C; p <
0.0001; rank sum test). This was further confirmed by taking
the difference in D(t) for every time and all network pairs (Fig-
ure 6D). Both context-tracking and context-naive trajectories
contained many moments when divergence was low, resulting
in a narrow peak near zero. However, context-naive trajectories
(but not context-tracking trajectories) also contained moments
when divergence was high, yielding a large set of negative
differences.

Trajectory Divergence Is Lower for SMA

The roughly helical structure of the empirical SMA population
response (Figure 4) suggests low trajectory divergence, as
does the finding that SMA responses differ across cycles (Fig-
ures 3 and 5). Yet the complex shape of the empirical trajectories
makes it impossible to ascertain, via inspection, whether diver-
gence is low. Furthermore, it is unclear whether cycle-to-cycle
response differences ensure low divergence across both time
and cycling distances. We therefore directly measured trajectory
divergence for the empirical trajectories.

Plotting SMA versus M1 trajectory divergence for each time
(Figures 7A and 7B) revealed that divergence was almost always
lower in SMA. We next computed the difference in divergence, at
matched times, between SMA and M1 (Figures 7C and 7D).
There was a narrow peak at zero (moments where divergence
was low for both) and a large set of negative values, indicating
lower divergence for SMA. Strongly positive values (lower diver-
gence for M1) were absent (monkey C) or very rare (monkey D;
0.13% of points >20). Distributions were significantly negative
(p < 0.00001 for monkeys A and B; bootstrap). The overall scale
of divergence was smaller for the empirical data than for the net-
works. Specifically, divergence reached higher values for
context-naive networks than for the empirical M1 trajectories.
This occurs because simulated trajectories can repeat almost
perfectly, yielding very small values of the denominator in Equa-
tion 1. Other than this difference in scale, trajectory divergence
for SMA and M1 differed in much the same way as for context-
tracking and context-naive networks (compare Figures 7C and
7D with Figure 6D).

The ability to consider both network and neural trajectories
(despite differences across networks and across monkeys) un-
derscores that the divergence metric describes trajectory geom-
etry at a useful level of abstraction. Multiple features can
contribute to low divergence, including ramping activity, cycle-
specific responses, and different subspaces on different cycles.
Different network instantiations may use these different “strate-
gies” to different degrees. Trajectory divergence provides a use-
ful summary of a computationally relevant property, regardless
of the specifics of how it was achieved.

Because trajectory divergence abstracts away from the details
of specific trajectories, it can be readily applied in new situations.
For example, the cycling task involved not only different cycling
distances but also different cycling directions and different start-
ing positions. The latter is particularly relevant, because move-
ments ended at the same position (cycle top or bottom) as
they started. Thus, how a movement will end depends on infor-
mation present at the beginning. Does SMA distinguish between
movements that will end in one position versus the other? One
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Figure 7. Trajectory Divergence in M1 and SMA

(A) Trajectory divergence for SMA versus M1 (monkey C). Each dot corre-
sponds to one time during one condition. Divergence was computed
considering all times for all distances that shared a direction and starting po-
sition. Data for all conditions are then plotted together. Blue and black
tick marks denote 90" percentile trajectory divergence for SMA and M1,
respectively.

(B) Same for monkey D.

(C) Distribution of the differences in trajectory divergence between SMA and
M1 (monkey C). Same data as in (A) are employed, but for each time/condition
we computed the difference in divergence.

(D) Same for monkey D.

See also Figures S5-S7.

could address this using a traditional approach, perhaps assess-
ing the presence and timing of “starting-position tuning.” How-
ever, it is simpler, and more relevant to the hypothesis being
considered, to ask whether divergence remains low when com-
parisons are made across all conditions, including starting posi-
tions. This was indeed the case (Figure S7).

Computational Implications of Trajectory Divergence

We considered trajectory divergence because of its expected
computational implications. A network with a high-divergence
trajectory can accurately and robustly generate its output on
short timescales. Yet, unless guided by external inputs at key
moments, such a network may be susceptible to errors on longer
timescales. For example, if a trajectory approximately repeats, a
likely error would be the generation of extra cycles or the skip-
ping of a cycle.

To test these intuitions, we employed a new set of simulations
using an atypical training approach that enforced an internal
network trajectory (Russo et al., 2018), as opposed to the usual
approach of training a target output. We trained networks to pre-
cisely follow the empirical M1 trajectory, recorded during a
four-cycle movement, without any input indicating when to
stop (Figure 8A). Networks were trained in the presence of addi-
tive noise. Using data from each monkey, we trained forty net-

10 Neuron 707, 1-14, August 19, 2020
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works: ten for each of the four four-cycle conditions. Networks
were able to reproduce the cyclic portion of the M1 trajectory,
but failed to consistently complete that trajectory. For example,
networks sometimes erroneously produced extra cycles (Fig-
ure 8B) or skipped cycles and stopped early (Figure 8C).

We also trained networks to follow the empirical SMA trajec-
tories. Those trajectories contained a rhythmic component and
lower frequency “ramping” signals (Figure 8D) related to the
translation seen in Figures 4C and 4D. In contrast to the high-
divergence M1 trajectories, which were never consistently fol-
lowed for the full trajectory, the majority of network initializations
resulted in good solutions where the SMA trajectory was suc-
cessfully followed from beginning to end. Thus, SMA trajectories
could be reliably produced and autonomously terminated but M1
trajectories could not.

DISCUSSION

Many studies argue that SMA contributes to the guidance of
action based on internal, abstract, or contextual factors (Ca-
dena-Valencia et al., 2018; Kornysheva and Diedrichsen,
2014; Merchant and de Lafuente, 2014; Mushiake et al.,
1991; Nakamura et al., 1998; Remington et al., 2018b; Romo
and Schultz, 1992; Shima and Tanji, 2000; Sohn and Lee,
2007; Tanji and Kurata, 1982; Tanji and Shima, 1994; Thaler
et al., 1995; Wang et al., 2018). We translated this hypothesis
into a prediction regarding the geometry of population activity.
As predicted, trajectory divergence was low in SMA and pro-
vided a cohesive explanation for diverse response features.
Slowly ramping firing rates are, at the surface level, a very
different feature from changes in the occupied subspace. Yet
both contribute to low divergence. Other features (which we
did not attempt to isolate) maintained low divergence across
cycling directions and starting positions. This raises a broader
point: the features that subserve low divergence will almost
certainly be task and situation specific. For example, during se-
quences of reaches, SMA neurons exhibit burst-like responses
with various forms of selectivity. Such selectivity presumably
produces low divergence, although this remains to be explicitly
tested. Thus, a reasonable hypothesis is that, during a given
task, SMA responses will exhibit some of the dominant
response features seen in M1 (transient responses when reach-
ing, rhythmic activity during cycling, etc.) combined with addi-
tional response features that ensure low divergence.

An essential strategy is to focus on specific features that relate
to how a network might perform a particular task (Churchland
et al., 2012; Driscoll et al., 2018; Gallego et al., 2017; Kaufman
et al., 2014; Mante et al., 2013; Remington et al., 2018b; Stopfer
and Laurent, 1999). A complementary strategy is to quantify gen-
eral properties that may be preserved across a class of compu-
tations. Our divergence metric was designed with this goal. We
recently considered a different geometric property, trajectory
tangling (Russo et al., 2018), which is necessary for a network
to robustly generate an output via internal dynamics. Low trajec-
tory tangling was observed in M1 across a range of tasks in both
monkeys and mice. As another example, studies of the visual
system have employed linear separability (a different definition
of “untangled”) to assess whether population geometry is
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Figure 8. Networks Trained to Follow
Empirical Population Trajectories

(A) Networks were trained to autonomously follow
a target trajectory defined by the top six PCs of

- the empirical population trajectory for a four-cy-

cle movement, including stopping at the end.
Dashed lines show the target trajectory for three
PCs for one example: monkey D, M1, cycling
backward starting at the bottom. The activity of
every neuron in the network was trained to follow
a random combination of the projection onto the
top six PCs. This ensured that the simulated

PC2
N\

population trajectory matched the empirical tra-
jectory.
(B) Example network (solid) and target (dashed)

PC3
b
]
)
»
~~

1 trajectories on one trial for a network trained to
produce the empirical M1 trajectory. The network
trajectory initially matches the target but con-

time (seconds)

d tinues “cycling” when it should have ended. This
resulted in an R? (variance in the target accounted
for by the network trajectory) well below unity.

(C) As in (B) but for an example trial where the

opposite error was made: the network trajectory stops early. This trajectory is produced by the same network as in (B); the only difference is the additive noise on

that particular trial.

(D) Example network (blue) and target (dashed) trajectories on one trial for a network trained to produce the empirical SMA trajectory. The level of additive noise
was the same as for the network in (B) and (C), but the network succeeds in following the trajectory to the end.

consistent with a class of computation having been performed
(DiCarlo and Cox, 2007; Pagan et al., 2013).

The advantages of this approach come with a limitation: ge-
ometry may strongly suggest a class of computations yet do little
to delineate the specific computation. For example, low trajec-
tory divergence in SMA is consistent with internal tracking of
context but does not specify the input-output relationship the
network is trying to accomplish. Indeed, we observed low-diver-
gence trajectories regardless of whether context-tracking net-
works received a ramping input or internally generated their
own ramp. Similarly, it remains unclear what signals SMA con-
veys to downstream areas. Possibilities include start/stop sig-
nals, a “keep moving” signal that remains high during move-
ment, or a rhythmic signal that entrains downstream pattern
generation (Schoner and Kelso, 1988). Deciphering the compu-
tation used to perform a particular task will typically require a
level of detail below that captured by measures of population
geometry.

A goal of assessing population geometry is to find general
properties. At the same time, exceptions may be informative.
For example, during grasping, trajectory tangling becomes
high in M1, suggesting a shift in the balance of input-driven
versus internally driven activity (Suresh et al., 2019). We expect
that, in SMA, there will be situations where divergence becomes
revealingly high. For example, there are presumably limits on the
timescales across which SMA can track context, which may be
revealed in the timescales over which divergence stays low. Tra-
jectory divergence is also likely to become high when action is
guided by sudden, unpredictable cues.

Given the benefits of low divergence, why employ separate
areas—SMA and M1—with low and high divergence? Why not
unify context tracking and pattern generation? Allowing high
divergence in M1 may be useful for two reasons. First,
dispensing with divergence-avoiding signals frees dynamic

range for other computations, such as generating fine-grained
aspects of the outgoing motor command. Second, low diver-
gence may interfere with adaptation; learning on one cycle would
have no clear way of transferring to other cycles (Sheahan
et al., 2016).

The concepts in the present study are informed by our field’s
understanding of how recurrent networks perform computations
(Mante et al., 2013; Michaels et al., 2016; Remington et al.,
2018b; Russo et al., 2018; Stringer et al., 2019). Because recur-
rent-network-based computations are commonly described via
flow fields governing a neural state (Maheswaranathan et al.,
2019; Sussillo and Barak, 2013), this perspective has been
termed a “dynamical systems view” (Shenoy et al., 2013). This
view intersects with ideas regarding how dynamical systems
can perform computations (van Gelder, 1998) or describe
behavior (Kelso, 2012). It has been argued that dynamics-based
explanations should supplant “representational” explanations
(van Gelder, 1998). This view is extreme; dynamical systems
may involve representations (Bechtel, 2012). Yet it is true that
purely representational thinking can be limiting. For example,
the question of whether M1 is more concerned with “muscles
versus movements” is poorly addressed by inquiring whether
neural activity is a function of muscle activity versus movement
kinematics (Fetz, 1992; Scott, 2008). M1 is dominated by signals
that are neither muscle-like nor kinematic-like but are readily un-
derstood as necessary for low trajectory tangling (Russo
et al., 2018).

Correspondingly, multiple aspects of the SMA population
response are readily understood as aiding low trajectory diver-
gence. It is tempting to apply representational interpretations
to some of those properties. For example, there is a dimension
in which activity is ramp-like during cycling, which might be
thought of as a representation of “time,” “distance,” or “prog-
ress within the overall movement.” Although it is conceivable
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that this dimension might consistently represent these things
during other tasks, there is presently no evidence for this.
Furthermore, low divergence is aided by additional features
that lack a straightforward representational interpretation, such
as occupancy of different subspaces across cycles. The dynam-
ical perspective helps one to see the connection between these
seemingly disjoint response features in a way that a purely repre-
sentational perspective does not.
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STARXxMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Experimental Models: Organisms/Strains

Rhesus macaque (Macaca mulatta) Davis National Primate Center N/A

Software and Algorithms

MATLAB MathWorks https://www.mathworks.com/products/
matlab.html

Simulink MathWorks https://www.mathworks.com/products/
simulink-real-time.html

Unity Engine Unity Technologies https://unity.com/

Python Python Software Foundation https://www.python.org/

Deposited Data

EMG and Neural Data Mendeley Data http://dx.doi.org/10.17632/tfcwp8bp5j.1

Other

Speedgoat Real-time Target Machine Speedgoat https://www.speedgoat.com/products-
services/real-time-target-machines/
performance

Cerebus system Blackrock Microsystems http://blackrockmicro.com/neuroscience-

research-products/neural-data-
acquisition-systems/cerebus-dag-system/

Utah array Blackrock Microsystems https://www.blackrockmicro.com/
electrode-types/utah-array/

RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Dr. Mark
M. Churchland (mc3502@columbia.edu).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
Orignial data have been deposited to Mendeley Data: http://dx.doi.org/10.17632/tfcwp8bp5j.1 https://data.mendeley.com/
datasets/tfcwp8bp5j/1 Code is provided at https://github.com/aarusso/trajectory-divergence.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Main experimental datasets
Subjects were two adult male rhesus macaques (monkeys C and D). Animal protocols were approved by the Columbia University
Institutional Animal Care and Use Committee. Experiments were controlled and data collected under computer control (Speedgoat
Real-time Target Machine). During experiments, monkeys sat in a customized chair with the head restrained via a surgical implant.
Stimuli were displayed on a monitor in front of the monkey. A tube dispensed juice rewards. The left arm was loosely restrained using
atube and a cloth sling. With their right arm, monkeys manipulated a pedal-like device. The device consisted of a cylindrical rotating
grip (the pedal), attached to a crank-arm, which rotated upon a main axel. That axel was connected to a motor and a rotary encoder
that reported angular position with 1/8000 cycle precision. In real time, information about angular position and its derivatives was
used to provide virtual mass and viscosity, with the desired forces delivered by the motor. The delay between encoder measurement
and force production was 1 ms.

Horizontal and vertical hand position were computed based on angular position and the length of the crank-arm (64 mm). To
minimize extraneous movement, the right wrist rested in a brace attached to the hand pedal. The motion of the pedal was
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thus almost entirely driven by changes in shoulder and elbow angle, with the wrist moving only slightly to maintain a comfortable
posture.

METHOD DETAILS

Task

Monkeys performed the cycling task as described previously (Russo et al., 2018). The monitor displayed a virtual landscape, gener-
ated by the Unity engine (Unity Technologies, San Francisco). Surface texture and landmarks provided visual cues regarding move-
ment through the landscape along a linear track. One rotation of the pedal produced one arbitrary unit of movement. Targets on the
track indicated where the monkey should stop for juice reward.

Each trial began with the monkey stationary on top of an initial target. After a 1000 ms hold period, the final target appeared at a
prescribed distance. Following a randomized (500-1000 ms) delay period, a go-cue (brightening of the final target) was given. The
monkey then had to cycle to acquire the final target. After remaining stationary on the final target for 1500 ms, the monkey received
a reward. The full task included 20 conditions distinguishable by final-target distance (half-, one-, two-, four-, and seven-cycles),
initial starting position (top or bottom of the cycle), and cycling direction (forward or backward). Half-cycle distances evoked quite
brief movements. Because of the absence of a full-cycle response, they are not amenable to many of the analyses we employ,
and were thus not analyzed here.

Salient visual cues (landscape color) indicated whether cycling must be ‘forward’ (the hand moved away from the body at the top of
the cycle) or ‘backward’ (the hand moved toward the body at the top of the cycle) to produce forward virtual progress. Trials were
blocked into forward and backward cycling. Other trials types were randomly interleaved within those blocks.

Neural recordings during cycling

After initial training, we performed a sterile surgery during which monkeys were implanted with a head restraint and recording cylin-
ders (Crist Instruments, Hagerstown, MD). Cylinders were located based on magnetic resonance imaging scans. For M1 recordings,
the cylinder was placed surface normal to the cortex and centered over the border between caudal PMd and primary motor cortex.
After recording in M1, we performed a second sterile surgery to move the cylinder over the SMA. SMA cylinders were angled at ~20°
degrees to avoid the superior sagittal sinus. The skull within the cylinders was left intact and covered with a thin layer of dental acrylic.
Electrodes were introduced through small (3.5 mm diameter) burr holes drilled by hand through the acrylic and skull, under ketamine /
xylazine anesthesia. Neural recordings were made using conventional single electrodes (Frederick Haer Company, Bowdoinham,
ME) driven by a hydraulic microdrive (David Kopf Instruments, Tujunga, CA). The use of conventional electrodes, as opposed to elec-
trode arrays, allowed recordings to be made from the medial bank (where most of the SMA is located) and from both surface and
sulcal M1.

Recording locations were guided via microstimulation, light touch, and muscle palpation protocols to confirm the trademark prop-
erties of each region. For motor cortex, recordings were made from primary motor cortex (both surface and sulcal) and the adjacent
(caudal) aspect of dorsal premotor cortex. These recordings are analyzed together as a single motor cortex population. All recordings
were restricted to regions where microstimulation elicited responses in shoulder and arm muscles.

Neural signals were amplified, filtered, and manually sorted using Blackrock Microsystems hardware (Digital Hub and 128-channel
Neural Signal Processor). On each trial, the spikes of the recorded neuron were filtered with a Gaussian (25 ms standard deviation;
SD) to produce an estimate of firing rate versus time. These were then temporally aligned and averaged across trials (Russo et al.,
2018;details below).

EMG recordings

Intra-muscular EMG was recorded from the major shoulder and arm muscles using percutaneous pairs of hook-wire electrodes
(80mm x 27 gauge, Natus Neurology) inserted ~1 cm into the belly of the muscle for the duration of single recording sessions. Elec-
trode voltages were amplified, bandpass filtered (10-500 Hz) and digitized at 1000 Hz. To ensure that recordings were of high quality,
signals were visualized on an oscilloscope throughout the duration of the recording session. Recordings were aborted if they con-
tained significant movement artifact or weak signal. Offline, EMG recordings were high-pass filtered at 40 Hz and rectified. Rectified
EMG voltages were smoothed with a Gaussian (25 ms SD, same as neural data) and trial averaged (see below). Recordings were
made from the following muscles: the three heads of the deltoid, the two heads of the biceps brachii, the three heads of the triceps
brachii, trapezius, latissimus dorsi, pectoralis, brachioradialis, extensor carpi ulnaris, extensor carpi radialis, flexor carpi ulnaris, flexor
carpi radialis, and pronator. Recordings were made from 1-8 muscles at a time, on separate days from neural recordings. We often
made multiple recordings for a given muscle, especially those that we previously noted could display responses that vary with
recording location (e.g., the deltoid). We made 29 (monkey C) and 35 (monkey D) total muscle recordings.

Trial alignment and averaging

To preserve response features, it was important to compute the average firing rate across trials with nearly identical behavior. This
was achieved by 1) training to a high level of stereotyped behavior, 2) discarding rare aberrant trials, and 3) adaptive alignment of
individual trials prior to averaging. Because of the temporally extended nature of cycling movements, standard alignment procedures
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(e.g., locking to movement onset) often misalign responses later in the movement. For example, a seven-cycle movement lasted
~3500 ms. By the last cycle, a trial 5% faster than normal and a trial 5% slower than normal would be misaligned by 350 ms, or
over half a cycle.

To ensure response features were not lost to misalignment, we adaptively aligned trials within a condition (Russo et al., 2018). First,
trials were aligned on movement onset. Individual trials were then scaled so that all trials had the same duration (set to be the median
duration across trials). Because monkeys usually cycled at a consistent speed (within a given condition) this brought trials largely into
alignment; e.g., the top of each cycle occurred at nearly the same time for each trial. An adaptive alignment procedure was used to
correct any remaining slight misalignments. To do so, the time-base for each trial was scaled so that the position trace on that trial
closely matched the average position of all trials. This involved a slight non-uniform stretching, and resulted in the timing of all key
moments — such as when the hand passed the top of the cycle — being nearly identical across trials. This ensured that high-frequency
temporal response features were not lost to averaging.

Neural firing rates and EMG activity were computed on each trial before adaptive alignment. Thus, the above procedure never al-
ters the magnitude of these variables, but simply aligns when those values occur across trials. The adaptive procedure was used
once to align trials within a condition on a given recording session, and again to align data across recording sessions. A similar align-
ment procedure was used within the response distance analysis to ensure all cycles were of the same duration. For all datasets, av-
erages were made across a median of ~15 trials.

Data Preprocessing

We standardly (Churchland et al., 2012; Russo et al., 2018; Seely et al., 2016) use soft normalization to balance the desire for analyses
to explain the responses of all neurons with the desire that weak responses not contribute on an equal footing with robust responses.
For example, many of our analyses employ PCA. Because PCA seeks to capture variance, it can be disproportionately influenced by
differences in firing rate range (e.g., a neuron with a range of 100 spikes/s has 25 times the variance of a similar neuron with a range of
20 spikes/s). The response of each neuron was thus normalized prior to application of PCA. Neural data were ‘soft’ normalized:
response : = response/(range(response) + 5). Soft normalization is also helpful for non-PCA-based analyses (e.g., of response
distance) to avoid results being dominated by a few high-firing-rate neurons.

QUANTIFICATION AND STATISTICAL ANALYSIS

Response distance

Response distance assesses the degree to which the population response is different on two different cycles (either within a seven-

cycle movement, or between seven-cycle and four-cycle movements of the same type). Consider r;(t), a vector containing the trial-

averaged firing rate of every neuron at time t within cycle i. The simplest definition of response distance between cycles j andj is

equivalent to Y +/A;;(t)-Aj;(t) where A;(t) =ri(t) — rj(t) and ‘-’ indicates the dot product. However, this approach allows distance
t

to be increased by sampling error in r. We therefore employed the crossnobis estimator (Diedrichsen and Kriegeskorte, 2017; Yokoi
et al., 2018), which provides an unbiased estimate of squared distance. We randomly divided trials into two non-overlapping parti-
tions, and computed two trial-averaged firing rate vectors: rf” (t) and r,.(z)(t). (Partitioning was done separately for each neuron as

most neurons were not recorded simultaneously). The crossnobis estimator was then the average, across twenty random partitions,
of ZA}P(t) -Aff.)(t). Virtually identical results were obtained if we employed a different method to combat sampling error: denoising
t

the average firing rate of each neuron by reconstructing it based on the top twelve population-level principal components.

We employed temporal alignment to ensure that response distance was not inflated if two cycles had similar responses but
different durations. This is of little concern when comparing among steady-state cycles (duration was highly stereotyped) but be-
comes a concern when comparing an initial-cycle response with a steady-state cycle response. To avoid misalignment, the response
on each cycle was scaled both to have the same duration and such that the angular position matched at all times. After alignment,
response distance is zero if two responses are the same except for their time-course.

Comparisons were made within a given seven-cycle condition and between seven-cycle and four-cycle conditions. Comparisons
were always made between conditions of the same type (i.e., the same cycling direction and starting position). Response distances
were normalized by response magnitude within a steady-state cycle of the same condition type. For simplicity, we chose the fourth
cycle of the seven-cycle movement. Response magnitude was the squared distance of the firing rate from its mean (computed in a
cross-validated fashion).

We used resampling, across neurons, to assess the statistical significance of differences between SMA and M1. For example, we
found that response distance, averaged across steady-state cycles, was higher in SMA than in M1. A key question is whether this
difference is reliable, or might simply have occurred between any two random populations of neurons. To address this, we pooled
all neurons for both areas, and created two resampled ‘areas’ by random partition. We computed the key metric (e.g., average
response distance across steady-state cycles) for both resampled areas, and took the difference. The distribution of such differ-
ences, across 100 random partitions, is an estimate of the sampling distribution of measured differences if there is no true difference
between the two populations. This distribution was approximately Gaussian, and p values were thus based on a Gaussian fit.
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Subspace overlap

Subspace overlap was used to measure the degree to which the population response occupied different neural dimensions on
different cycles (different cycles within a distance, or between distances). Subspace overlap was always computed for a pair of cy-
cles: areference cycle and a comparison cycle. The population response for the reference cycle was put in matrix form, Ry, of size t x
n where t is the number of times within that cycle and n is the number of neurons. Analogously, the population response during the
comparison cycle was Rcomp. We applied PCA to Ry, yielding Wi.t, an n x k matrix of principal components. We similarly applied PCA
to Reomp, Yielding Weomp. We define variance captured as V(R, W) = 1 — %
V(Rcomm Wref)/V(Rcomm Wcomp) .

Subspace overlap should be unity if the population response on reference and comparison cycles occupies the same dimensions
(i.e., are spanned by the same PCs). However, subspace overlap can be diluted by sampling error (i.e., two responses that are in truth
identical, but appear slightly different because average firing rates were computed for a finite number of trials). We thus computed
subspace overlap using cross validation. To do so we partitioned the data (by randomly partitioning the trials recorded for each

neuron) to produce Rgf) Rgf) R(Cl,)mp, and Ffé%)mp. Cross-validated subspace overlap was then the average (over 20 partitions) of:

. Subspace overlap was then computed as:

ref ref

1 V<H<c‘gmp, W<2>) V(Rg?mp, W“))

+
2 |V (Rémp: Wi )V (Rémo, Wity )

Cross-validation was helpful in reducing the impact of sampling error. However, similar results were obtained if we did not employ
cross-validation and simply computed the uncorrected subspace overlap as above. To test for statistical significance, we used the
resampling procedure described in the previous section.

Trajectory Divergence

Consider times t and t'. These times could occur within the same movement. E.g., t could be a time near the middle of the movement
and t’ could be a time near the end. The two times could also occur for different distances within the same condition type. E.g., if we
consider forward cycling that starts at the top, t could occur during a two-cycle movement and ' could occur during a seven-cycle
movement. Consider the associated neural states x; and x, . The squared distance between these states is \ [x¢ — Xy | \2. The squared
distance between the corresponding states, some time A in the future, is ||X¢,a — xmAHz. Divergence assesses whether this future
distance ever becomes large despite the present distance being small. We define the divergence for a given time, during a given con-
dition, as:

2

Xiia — X
D(t):maXH t+A t’2+AH
A |xy — xy||” +a

Where t indexes across all times within all movements of the same type, and A indexes from one to the largest time that can be
considered: min(T —t, T —t') where T is the duration of the condition associated with time t and T is the duration of the condition
associated with time t'. For our primary analysis, divergence was measured separately for each of the four condition types. For
example, if the condition type is forward cycling starting at the top, t indexes across times and across distances of that type. The
same effect was observed (SMA divergence lower than M1 divergence) if ¢ indexed across all conditions regardless of type
(Figure S7).

The state vectors x; were found by applying PCA to the population response across all times (starting 100 ms before movement
onset and ending 100 ms after movement offset) and across all conditions considered by the analysis. We term this full dimensional
matrix X" Every column of X"/ contains the data for one neuron. We used PCA to reduce the dimensionality of the data to twelve,
yielding a matrix X with twelve columns. The state vector x; was then the appropriate row (corresponding to the time and condition in
question) of X. Twelve PCs captured an average of 89% and 87 % of the data variance in M1 and SMA respectively. Results were not
sensitive to the choice of dimensionality; divergence was always much lower for SMA versus M1. This was also true if we did not
employ PCA, but simply used X/ That said, we still preferred to use PCA as a preprocessing step. Reducing dimensionality makes
analysis much faster, and the accompanying denoising of the data reduces concerns that sampling error might impact the denom-
inator in the divergence computation. To ensure that the denominator was well behaved (e.g., did not become too close to zero) we
also included the constant «, set to 0.01 times the variance of X. Results were essentially identical across a range of reasonable
values of «a.

We used a bootstrap procedure to assess the statistical significance of differences in trajectory divergence between SMA and
M1. For each region for each monkey, neurons were resampled with replacement before application of PCA. Trajectory
divergence was then analyzed for the resampled populations. The difference was taken between trajectory divergence in
the resampled SMA population and the resampled M1 population and we assessed whether the resulting distribution of differ-
ences had a negative mean (i.e., whether divergence tends to be lower for SMA). This bootstrap procedure was repeated for
1000 iterations.
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Recurrent Neural Networks
We trained recurrent neural networks to produce four and seven cycles of a sinusoid in response to external inputs. A network con-
sisted of N = 50 firing-rate units with dynamics:

ar

Tgf = —FO+FAr+1(t) + b)

T

Z = Wy,I

where 7 is a time-constant, r represents an N-dimensional vector of firing rates, f =tanh is a nonlinear input-output function, A is an
NxN matrix of recurrent weights, I(t) represents time-varying external input, and b is a vector of constant biases. The network output
z is a linear readout of the rates. Components of both A and w,,; were initially drawn from a normal distribution of zero mean and
variance 1/N. b was initialized to zero. Throughout training, A, wout, and b were modified.

Context-tracking networks were trained to generate a four-cycle versus seven-cycle output after receiving a short go pulse (a
square pulse lasting half a cycle prior to the start of the output) without the benefit of a stopping pulse. For context-tracking networks
only, go pulses were different depending on whether four or seven cycles should be produced. The two go pulses were temporally
identical, but entered the network through different sets of random input weights; I(t) =wy/(t) or I(t) = wyI(t), where /(t) is a square
pulse of unit amplitude.

Context-naive networks received both a go pulse and a stop pulse. Go and stop pulses were distinguished by entering the network
through different sets of random input weights; I(t) = wgo/(t) or I(t) = wsiop/(t). Go and stop pulses were separated by an appropriate
amount of time to complete the desired number of cycles. We analyzed network activity only when go and stop pulses were sepa-
rated by four or seven cycles. Yet we did not wish context-naive networks to learn overly specific solutions. Thus, during training, we
also included trials where the network had to cycle continuously in the absence of a stop-pulse. This ensured that context-naive net-
works learned a general solution; e.g., they could cycle for six cycles and stop if the go and stop pulses were separated by six cycles.

We also considered a modification of context-tracking networks that received a downward ramping input through another set of
weights, Wramp. The ramping input has a constant slope but different starting values for different numbers of desired cycles. The end
of the cycling period was indicated by the ramp signal reaching zero. Thus, such networks received explicit and continuous informa-
tion about time to the end of movement, and could inherit this information rather than constructing it through their own internal
dynamics.

Networks were trained using back-propagation-through-time (Werbos, 1988) using TensorFlow and an Adam optimizer to adjust
A, Wout, and b to minimize the squared difference between the network output z and the sinusoidal target function. Input weights, wy,
W7, Wgo, Wstop @Nd Wramp, Were drawn from a zero-mean unit-variance normal distribution and remain fixed throughout training. The
amplitude of pulses and cycles were set to a value that produced a response but avoided saturating the units. The maximum height of
the ramp signal was set to the same amplitude as the input pulses for the seven-cycle condition. For each condition, we trained 500
networks, each initialized with a different realization of A and wg;.

Trajectory-constrained Neural Networks

To test the computational implications of trajectory divergence, we trained recurrent neural networks with an atypical approach.
Rather than training networks to produce an output, we trained them to autonomously follow a target internal trajectory (DePasquale
etal., 2018; Russo et al., 2018). We then asked whether networks were able to follow those trajectories from beginning to end, without
the benefit of any inputs indicating when to stop.

Target trajectories were derived from neural recordings (M1 and SMA) during the four-cycle movements for each of the four condition
types (forward-bottom-start, forward-top-start, backward-bottom-start, backward-top-start). Target trajectories spanned the time
period from movement onset until 250 ms after movement offset. To emphasize that the network should complete the trajectory and
remain in the final state, we extended the final sample of the target trajectory for an additional 500 ms. To obtain target trajectories, neural
data were mean-centered and projected onto the top six PCs (computed for that condition). Each target trajectory was normalized by its
greatest norm (across times). We trained a total of 160 networks, each with a different weight initialization. The eighty networks for each
monkey included ten each for the two cortical areas and four condition types (two starting positions by two cycling directions).

Network dynamics were governed by:

v(t+At) =v(t)+At/7(—v(t) +Af(v(D)) +w(t))

where f(v) =tanh(v) and w ~ N (0,42/) adds noise. v can be thought of as the membrane voltage and f(v(t)) as the firing rate.
Af(v(t)) is then the vector of inputs to each unit: i.e., the firing rates weighted by the connection strengths. Network training
attempted to minimize the difference between this input vector and a target trajectory: siarg(t). Training focused on the vector of in-
puts, rather than the vector of outputs (firing rates) purely for technical purposes. The end result is much the same as inputs and out-
puts are related by a monotonic function. A was trained using recursive least-squares. The target trajectory was constructed as
Starg(t) = GYtarg()- Yiarg i8 the six-dimensional trajectory derived from the physiological data. G is an Nx6 matrix of random weights,
sampled from Y[ — .5, .5], that maps the global target trajectory onto a target input of each model unit. This construction ensures that
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the target network trajectory is isomorphic with the physiological trajectory, with each unit having random ‘tuning’ for the underlying
factors. The entries of A were initialized by draws from a centered normal distribution with variance 1/N (where N = 50, the number
of network units). Simulation employed 4 ms time steps.

To begin a given training epoch, the initial state was set with v(0) based on siag(0) and A. The network was simulated, applying
recursive least-squares (Sussillo and Abbott, 2009) with parameter =1 to modify A as time unfolds. After 1000 training epochs,
stability was assessed by simulating the network 100 times, and computing the mean squared difference between the actual and
target trajectory. That error was normalized by the variance of the target trajectory and converted to an R? value. An average (across
the 100 simulated trials) R? < 0.9 was considered a failure.

Because the empirical population trajectories never perfectly repeated, it was trivially true that networks could follow the full tra-
jectory, for both M1 and SMA, in the complete absence of noise (i.e., for ¢, = 0). For the larger value of ¢, used for our primary anal-
ysis, all networks failed to follow the M1 trajectories while most networks successfully followed the SMA trajectories (although there
were still some network initializations that never resulted in good solutions). It is of course unclear what value of g, is physiologically
relevant. We therefore also performed an analysis where we swept the value of 4, until failure. The level of noise that was tolerated
was much greater when networks followed the SMA trajectories. Indeed, some M1 trajectories (for particular conditions) could never
be consistently followed even at the lowest noise level tested.

To visualize network activity (Figures 8B-8D) we ‘decoded’ the network population. To do so, we reconstructed the first three di-
mensions of the trajectory (which should match the first three dimensions of the target trajectory) by pseudo-inverting G.
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