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Abstract—Existing chip thermal analysis and verification meth-
ods require detailed distribution of power densities or modeling
of underlying input workloads (vectors), which may not always
be feasible at early-design stage. This paper introduces the first
vectorless thermal integrity verification framework that allows
computing worst-case temperature (gradient) distributions across
the entire chip under a set of local and global workload (power
density) constraints. To address the computational challenges
introduced by the large 3D mesh-structured thermal grids, we
propose a novel spectral approach for highly-scalable vectorless
thermal verification of large chip designs. Our approach is
based on emerging spectral graph theory and graph signal
processing techniques, which consists of a thermal grid topology
sparsification phase, an edge weight scaling phase, as well as a
solution refinement procedure. The effectiveness and efficiency
of our approach have been demonstrated through extensive
experiments.

Index Terms—spectral graph sparsification, algebraic multi-
grid, vectorless verification

Aggressive VLSI technology scaling has lead to dramati-
cally increased power densities as well as significantly elevated
temperature on chip, which imposes ever-increasing challenges
in design of nowadays integrated circuit (IC) systems [11].
To achieve desired level of chip reliability and functionality,
compute-intensive full-chip thermal analysis and verification
become indispensable. Existing methods for chip thermal
analysis and verification require the underlying workloads or
power densities to be known in advance [6], [8], [13], which
may not always be practical. For example, at early chip design
phase it is usually not possible to obtain very accurate esti-
mation of underlying power densities since accurate modeling
for workloads may not be necessarily available at the early
design phase. As a result, traditional thermal analysis methods
may not always provide useful guidance for verifying and
improving the design reliability and performance that can be
significantly impacted by extreme (worst-case) chip thermal
profiles, such as worst-case temperature or thermal gradients
across the chip.

In this work, we propose the first vectorless thermal integrity
verification framework that is motivated by existing vectorless
power grid integrity verification problems [2], [5], [14]–[16].
The goal of vectorless thermal verification is to provide
a scalable solution for estimating nearly-worst-case thermal
profiles under various complex power density or workload
uncertainties and constraints. Existing vectorless verification
methods need to set up linear programs (LPs) for finding
the worst-case vectors that will lead to the extreme thermal
profiles, which requires computing thermal sensitivities with
respect to each individual power source. However, the 3D
meshes in thermal grid verification tasks are much more
challenging to tackle than the 2D meshes in power grid
verification [14], [15] due to the super-linear complexities of
existing vectorless verification methods.

To address the computational challenges in vectorless ther-

mal integrity verification, we propose to aggressively simplify
the 3D thermal grids during vectorless verification while
assuring the approximation accuracy via spectral graph spar-
sification and iterative edge weight scaling. To this end,
motivated by emerging graph signal processing research [12]
we propose a mathematically rigorous method to match full
chip temperature distributions that can be understood as the
”low-frequency” graph signals on thermal grids obtained after
applying a ”low-pass” graph filter on the original input power
sources. Our thermal grid simplification task will aim to min-
imize the number of edges in the sparsified thermal grid that
can still precisely preserve slowly-varying, ”low-frequency”
temperature distribution across the entire thermal grid. Such
simplified thermal grids will allow finding worst-case thermal
profiles in a highly efficient way without losing accuracy.
The proposed vectorless thermal integrity verification method
is highly scalable and thus can be adopted in either early
chip design phase or final chip verification phase. The main
contribution of this work has been briefly summarized as
follows:
(1) For the first time, we propose a vectorless thermal integrity
verification framework that allows estimating nearly-worst-
case thermal profiles under various kinds of complex workload
or power density uncertainties and constraints.
(2) To make the proposed method scalable to large problems,
we introduce a multilevel vectorless verification framework
that is significantly accelerated by a novel thermal grid
simplification method motivated by emerging spectral graph
sparsification and graph signal processing research.
(3) We demonstrate extensive experimental results on two chip
designs with various problem sizes and power density (work-
load) constraints, as well as the flexible tradeoffs between the
verification cost and solution quality enabled by the proposed
vectorless verification method.

I. BACKGROUND

A. Vectorless Thermal Integrity Verification

Give many workloads or power source configurations, tra-
ditional thermal analysis and verification methods usually
need to run thermal analysis for every workload to determine
the extreme thermal distributions across the chip, which can
be extremely expensive for large designs. In this work, we
introduce a vectorless thermal integrity verification framework,
where constraints are introduced to capture the uncertain
workloads or power source configurations. Given a 3D thermal
grid and a specific workload (power density) distribution, the
chip steady-state thermal analysis can be performed by solving
following equation:

T x = b, (1)



where T is the thermal conductance matrix of the 3D thermal
grid, b is the right-hand-side (RHS) vector modeling the
underlying power sources, and x is the unknown temperature
vector to be computed.

The proposed vectorless thermal integrity verification seeks
to identify the maximum temperature or temperature gradients
under various workload constraints similar to prior vectorless
power grid integrity verification problems [16]. Two types of
constraints are considered in this work: local constraints for
setting the lower and upper bounds of the power density for
each source and global constraints for setting the lower and
upper bounds for blocks of sources. The proposed vectorless
thermal integrity verification tasks compute the worse-case
temperatures across the chip by solving the following linear
program (LP) for each individual node i:

maximize : ti = e>i T
−1 b, for i = 1, . . . , n (2)

subject to the following constraints on power densities:

Local Constraints : bL ≤ b ≤ bU ,

Global Constraints : BL ≤ M b ≤ BU ,
(3)

where n is the number of nodes in the 3D thermal grid, ei is
an elementary unit vector with i− th entry to be 1 and others
being zeros. Since the thermal conductance matrix T is an M -
matrix, the T−1 only contains non-negative sensitivity values.
The bL (BL) and bU (BU ) represent the lower bounds and
upper bounds of individual power sources (blocks), while M
is an m×n matrix that only contains 0s and 1s for defining m
global (block) constraints. After getting the worst-case vector
bwst through the above optimization procedure, we can simply
compute the worst-case temperature distribution twst using
twst = T−1bwst.

B. Vectorless Thermal Verification Challenges

The adjoint temperature sensitivity with respect to each
power source will be needed for setting up the LP problems
in (2) for vectorless thermal verification. For example, the
adjoint sensitivity vector s for computing node temperature ti
considering all power sources in b can be calculated by solving
the linear system of equations T s = ei. Once the matrix
factorization for T is computed, adjoint thermal sensitivity
vectors for individual node temperatures can be efficiently
obtained by reusing the matrix factors.

However, factorization of the thermal matrix obtained
from 3D mesh-structured grids can be much more costly than
factorizing the conductance matrices for power grid vectorless
verification tasks [15], [16], due to the much faster growing
computational complexity of existing direct solution methods,
such as LU and Cholesky decomposition methods [1]. For
example, our results show that factorizing a matrix with one
million rows (columns) using the state-of-the-art Cholesky
solver [1] may take over 30 minutes and consume 18GB
memory.

Meanwhile, since the adjoint sensitivity vector is needed for
solving the following LP problem:

maximize : ti =
∑

si bi, (4)

very high computational complexity will be expected when
a large number of uncertain power sources (variables) are
involved.

C. Graph Signal Processing and Spectral Sparsification

There is an analogy between traditional signal processing
or classical Fourier analysis and graph signal processing [12]:
1) The signals at different time points in classical Fourier
analysis correspond to the signals at different nodes in an
undirected graph; 2) The more slowly oscillating functions in
time domain correspond to the graph Laplacian eigenvectors
associated with lower eigenvalues or the more slowly varying
(smoother) components across the graph. The recent spectral
graph sparsification process [3], [4] aims to maintain as few
as possible edges for preserving the slowly-varying or “low-
frequency” signals of the original graphs, which therefore can
be regarded as a “low-pass” graph filter. As a result, spectrally-
sparsified graphs will be able to preserve the eigenvectors
associated with low eigenvalues more accurately than high
eigenvalues.

To aggressively simplify the 3D thermal grids and thereby
addressing the computational challenges in vectorless integrity
verification without sacrificing the approximation accuracy,
emerging graph signal processing and spectral graph sparsi-
fication research can be leveraged [4], [12]. Since full chip
temperature distributions can be considered as the ”low-
frequency” graph signals on thermal grids obtained after
applying a ”low-pass” graph filter on the original input power
sources, the spectrally-sparsified thermal grids will very well
preserve the temperature distributions.

II. A SPECTRAL APPROACH TO VECTORLESS THERMAL
INTEGRITY VERIFICATION

A. Spectral Sparsification and Scaling of 3D Thermal Grids

To substantially reduce the cost for the matrix factoriza-
tion and LP solution phases, we exploit a perturbation-based
spectral graph sparsification engine [3], [4] to dramatically
sparsify the topology of the original 3D thermal grid during
the vectorless thermal verification. The spectral sparsification
step can effectively control the thermal grid densities while
maintaining good spectral approximation quality that is critical
for accurate vectorless verification tasks: the sparsified thermal
grids have tree-like structures that will immediately reduce
the matrix factorization time while preserving the effective
thermal resistances between nodes. It is noted that preserving
effective resistance is equivalent to preserving the adjoint
sensitivities to be applied for setting up LPs. Therefore, the
adjoint sensitivity for each LP task can be computed in a
more efficient way without sacrificing the final solution quality
(e.g. worst-case vector). Additionally, the sparsified thermal
grids will have many low-degree nodes that can be potentially
merged together to further reduce the number of variables in
LPs, which can also effectively reduce the cost for solving
LPs in vectorless verification tasks.

To further improve the approximation quality of the spar-
sified thermal grid, we introduce an iterative edge weight
scaling scheme to gradually scale up the edge weight in the
sparsified thermal grid, which has been described in Algorithm
1. This scheme will compensate for the thermal conductance
loss due to the missing edges by matching the ”low-frequency”
behaviors of the original thermal grids, which is motivated by
recent graph signal processing techniques [12].

We define 0 = λ1 ≤ λ2 ≤ · · · ≤ λn to be the n eigenvalues
of the Laplacian matrix LG for a connected graph G with the
corresponding eigenvectors denoted by u1, u2, · · · , un. The
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Algorithm 1 Algorithm for Iterative Edge Weight Scaling
Input: The error tolerance ε, the number of partitions k, the original
graph G and the initial spectrally-sparsified graph P(0).
Output: The spectrally-sparsified graph P with scaled edge weights.

1: Generate a random vector b that is orthogonal to the all-one
vector.

2: Partition the original graph G into k blocks P1,P2, · · · ,Pk
using multilevel graph partitioning method [7].

3: Construct matrices TG = LG + gminI and
TP(0) = LP(0) + gminI by adding a small value gmin

similar to the ambient thermal conductance to each diagonal
entry of LG and LP(0) for graph signal filtering purpose.

4: Solve TG x = b and TP(0) x̃ = b and compute
err = ‖x−x̃‖

‖x‖ .
5: while err > ε do
6: for partition Pi, i = 1, ...,k, do
7: calculate yi =

∑
t∈Pi

x[t] , ỹi =
∑

t∈Pi

x̃[t], and αi = ỹi
yi

for all nodes;
8: end for
9: for all edges (p,q) ∈ Es do

10: if p,q ∈ Pi, scale up wp,q by a factor of αi;
11: if p ∈ Pi and q ∈ Pj , scale up wp,q by a factor of

(αi + αj)/2;
12: end for
13: Update P̃, LP̃ and TP̃ with the latest edge weights;
14: Solve TP̃ x̃ = b and update the mismatch err = ‖x−x̃‖

‖x‖ ;
15: end while
16: Return the latest spectrally-sparsified graph P.

spectral decomposition of the Laplacian matrix of graph G
can be expressed as follows:

LG =
n∑

i=1

λi ui u
>
i . (5)

Adding a small grounded thermal conductance gmin to each
node in graph G or equivalently a small element gmin to each
diagonal element in LG leads to:

TG = LG + gminI =

n∑
i=1

(gmin + λi)ui u
>
i , (6)

where the identify matrix I =
n∑

i=1

ui u
>
i . When expressing a

random vector b using Laplacian eigenvectors, we have:

b =
n∑

i=1

βiui. (7)

Solving TGx = b is equivalent to computing x = T−1G b, which
can be further expressed as:

x = (LG + gminI)−1b =

(
n∑

i=1

(gmin + λi)ui u
>
i

)−1
b

=
n∑

i=1

ui u
>
i b

gmin + λi
=

1

gmin

n∑
i=1

βiui
1 + r λi

(8)

where r = 1/gmin. (8) indicates that when using a small
gmin, the eigenvectors associated with small eigenvalues or
only ”low-frequency” components in b will remain in x; on
the other hand, a relatively large gmin (r ≈ 0) will allow more
higher frequencies to be included in x and thus lead to x ≈ b.

Based on the above analysis, we can consider T−1G as
a ”low-pass” filter matrix for filtering graph signals b: by
properly choosing gmin values it is possible to filter out graph
signal’s ”high-frequency” (highly-oscillating) components and
only keep ”low-frequency” components in x. Since chip tem-
perature distributions mainly contain ”slowly-varying” (”low-
frequency”) components due to relative small ambient thermal
conductance values, it becomes possible to exploit emerging
spectral sparsification techniques [3], [4] to only maintain a
small number of edges in the sparsified thermal grids while
still preserving accurate thermal profiles, since spectrally-
sparsified graphs can very well preserve ”low-frequency”
graph signals. Based on the above intuition, Algorithm 1 is
proposed for scaling up edge weights in the sparsified thermal
grid by matching the ”low-frequency” responses filtered by
the original thermal grids.

B. Spectral Solution Refinement.

We define 0 = λ̃1 ≤ λ̃2 ≤ · · · ≤ λ̃n to be the eigenvalues
of LP for sparsified graph P with the corresponding eigenvec-
tors ũ1, ũ2, · · · , ũn. Assume that k smallest eigenvalues and
corresponding eigenvectors of LG can be well preserved in
LP , while the remaining higher eigenvalues and eigenvectors
are not. Then the spectral decomposition of LP can be
approximately written as:

LP ≈
k∑

i=1

λi ui u
>
i +

n∑
k+1

λ̃i ũi ũ
>
i . (9)

Based on (9) and (8), the solution error due to spectral
sparsification and scaling becomes:

∆x = x− x̃ ≈
n∑

i=k+1

(
ui u

>
i b

gmin + λi
− ũi ũ

>
i b

gmin + λ̃i

)
, (10)

indicating that the solution error using spectrally-sparsified
graphs can be expressed as a linear combination of high
eigenvectors corresponding to large Laplacian eigenvalues. In
other words, the error is a linear combination of high frequency
signals on graphs, which can be efficiently filtered out by
using ”low-pass” graph signal filters [12]. To further improve
the solution obtained on sparsified thermal grids, weighted
Jacobi iterative method is adopted in this work, which has
been described in Algorithm 2. The inputs of our algorithm
include the original thermal conductance matrix To that can
be decomposed into a diagonal matrix Do and the remainder
matrix Ro, the solution vectors x̃1,..., x̃k obtained on the
sparsified thermal conductance matrix Ts, the RHS vectors
b1,..., bk as well as the weight factor γ and iteration number
Nmax for signal filtering.

Algorithm 2 Solution Refinement Algorithm
Input: To = Do + Ro, x̃1,..., x̃k, b1,..., bk, γ,
Nmax;
1: For each of the approximate solution vectors x̃1,..., x̃k, do
2: for i = 1 to Nmax do
3: x̃

(i+1)
k = (1− γ)x̃(i)k + γD−1

o (bk −Rox̃
(i)
k )

4: end for
5: Return the smoothed solution vectors x̃1,..., x̃k.
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Fig. 1. Multilevel vectorless thermal integrity verification.

C. Multilevel Verification Framework
In this work, we propose a multilevel vectorless thermal

verification framework shown in Figure 1. Our approach is
based on the latest graph-theoretic algebraic multigrid (AMG)
research works [9], [17] for generating coarse-level (sparsified)
thermal grids according to the original thermal grid problem,
as well as the recent multilevel vectorless power grid integrity
verification framework [2], [16]. In the following, we will
describe a two-level vectorless verification approach, while
multilevel schemes can be defined in a similar way.

Two-level local and global constraints mapping. Local
power constraints can be directly mapped from fine level h to
coarse level H using AMG’s restriction operator RH

h obtained
as follows:

Upper bound : bUH = RH
h bUh ,

Lower bound : bLH = RH
h bLh ,

where bUH , bLH , bUh and bLh denote the upper bound and lower
bound of power sources for coarse and fine grids, respectively.
The global constraints mapping can be defined in a similar
manner by choosing the global constraints on the coarse grid
to be the sum of each block’s lower and upper bounds on the
fine grid.

Two-level Solution mapping and refinement. To reduce
the verification cost on the coarse level, the global critical
region Cglb will be identified based on the adjoint sensitivity
threshold [2], such that Cglb will only include the most
important power sources. Given a sensitivity threshold εth,
we will only include the power sources that have adjoint
sensitivity values greater than εth into Cglb for setting up LPs:

maximize : twst =
∑

∀ bi ∈Cglb

si bi (11)

subject to local and global constraints:

bL ≤ b ≤ bU , BL ≤ M b ≤ BU . (12)

The solution bHwst will be further mapped back to the fine
level using the AMG prolongation operator Rh

H by b̃hwst =
Rh

H bHwst. To control the error introduced during the mapping

process, a local solution refinement procedure at the fine level
will be applied to incrementally improve the solution quality
on the fine grid by setting up a new LP for a much smaller
local critical region.

Algorithm flow and complexity. The detailed multilevel
vectorless thermal integrity verification algorithm has been
described in Algorithm 3, while the key steps for each level
grid have been described as follows:
(1) Scale up the sensitivity threshold εloc = β εglb with the
scaling factor β > 1 to obtain a much smaller local critical
region Cloc.
(2) Set up a new LP problem for the local critical region Cloc

to obtain the solution vector b
h

wst.
(3) Update solution for Cloc with b

h

wst; Reuse the interpolated
solution b̃hwst for the sources that belong to Cglb but not Cloc.

The complexity for setting up multilevel problems is O(m)
where m denotes the number of thermal resistors in the chip
thermal model. The complexity for thermal grid spectral spar-
sification and edge scaling is O(m log n) with n denoting the
number of nodes in the 3D thermal grid, which is nearly linear.
The cost for solving LPs will depend on the algorithm to be
adopted as well as the sizes of critical regions for setting up the
LPs, which can be well controlled by taking advantage of the
proposed multilevel verification framework. It should be noted
that by leveraging the proposed solution refinement procedure,
only ultra-sparse (tree-like) spectral sparsifiers of the original
3D thermal grids are needed for vectorless verification, which
can significantly improve the overall algorithm scalability, as
shown in our experiment results in Section III.

Algorithm 3 Multilevel Vectorless Thermal Integrity Verifica-
tion
Input: original thermal grid, user-defined local and global power
constraints bU, bL and M, initial normalized sensitivity threshold
εth, and sensitivity scaling factor β > 1
Output: worst-case thermal profile of the original thermal grid.

1: Extract spectrally sparsified grid for the original thermal grid.
2: Update sparsified grid using iterative edge weight scaling method

(Algorithm 1).
3: Multilevel coarse grid construction:

(a) Construct all hierarchy levels from finest to coarsest level;
(b) Get local and global power constraints bU, bL and M for
each level using AMG mapping operators.

4: Factorize each coarse-level grid for adjoint sensitivity calculation.
5: Perform global verification at the coarsest level K:

(a) Find global critical region CK
glb for a given sensitivity

threshold εK, and set up LP to get worst case vector bK
wst

6: Perform solution mapping and refinement on finer to finest levels:
7: k ← K
8: while k > 1 do
9: Interpolate solution vector to finer level by:

b̃k−1
wst = Rk−1

k bk
wst

10: Set sensitivity threshold εk−1 = βεk and identify Ck−1
loc .

11: Setup a new LP for Ck−1
loc to obtain solution vector b̄k−1

wst .
12: Combine the latest LP and interpolated solutions to form

bk−1
wst .

13: k← k− 1
14: end while
15: Calculate the worst-case thermal distribution using the worst-case

power source vector.

III. EXPERIMENTAL RESULTS

In this section, we present the experiment results of the
proposed vectorless thermal verification method for two mi-
croprocessor designs [8]. The design details of the two micro-
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TABLE I
STATISTICS OF TWO MICROPROCESSOR DESIGNS

Design Processor A Processor B
Power Consumption (W ) 28 50
Die Area (mm2) 195 302
Num. of Metal Layers 4 6
Num. of Material Layers 11 15
Equivalent Heat Transfer 3.3 (heat sink) 3.3 (heat sink)
Coefficients (103W/m2K) 2.0 (package) 2.0 (package)

Fig. 2. Relative Error Distributions.

processors are shown in Table I. The heat conductance paths
are modeled using equivalent heat transfer coefficients. The
proposed multilevel vectorless thermal integrity verification
method has been implemented in MATLAB and C++. The
LP problems are solved by the state-of-the-art LP solver [10]
and all experiment results have been obtained using a single
CPU core of a computing platform running 64-bit RHEL 6.0
with 2.67GHz 12-core CPU and 48GB DRAM memory.

To demonstrate the effectiveness of the proposed edge
scaling and solution refinement schemes, four solution (tem-
perature) vectors are calculated for a 3D thermal grid and its
spectral sparsifiers: (a) the true solution vector obtained using
the original thermal grid, (b) the approximate solution vector
computed using the sparsifier without edge scaling, (c) the
approximate solution vector obtained using the sparsifier with
edge scaling, (d) as well as the refined (smoothed) solution
vector using the sparsifier with edge scaling. Meanwhile, we
plot histogram distributions of relative errors of the solution
vectors (b)-(d) by comparing them against the true solution
vector (a), as shown in Figure 2. We can see that the solution
errors between the sparsifiers and the original graph can be
significantly reduced by leveraging the proposed iterative edge
scaling scheme, and further mitigated by the proposed solution
refinement procedure.

As we mentioned in the previous sections, the spectral
graph sparsification method can well preserve the low fre-
quency components of the original thermal grid solutions,
which will allow achieving high-quality solutions for vec-
torless verification tasks. Figures 3 and 4 show the worst-
case thermal distributions of processors A and B using (a)
the direct method, (b) the multilevel vectorless verification
method w/o sparsification, and (c) the multilevel vectorless
verification method w/ spectral sparsification, respectively. As
observed, the three worst-case thermal distributions are very
close to each other, indicating that rather accurate vectorless
verification results can be obtained using spectrally-sparsified
thermal grids.

Vectorless thermal integrity verification results using dif-

ferent methods are shown in Table II, where N.# and P.#
denote the numbers of thermal grid nodes and power sources,
respectively. “Single Level”, “Multilevel w/o Sparsification”,
and “Multilevel w/ Sparsification” denote the vectorless ther-
mal verification methods using single-level (direct), multilevel
w/o and w/ spectral sparsification schemes, respectively; T ∗chol,
T ∗sol, and T ∗lp denote the Cholesky factorization time [1], the
adjoint sensitivity calculation time, and the LP solving time
[10] for each of the three verification methods, respectively.
Except for T ∗chol, all other time are computed by summing
up the runtimes for verifying 100 randomly chosen nodes.
Err denotes the average relative solution error compared to
the single-level method and σ2 denotes the relative condition
number (spectral similarity) used for similarity-aware spectral
sparsification [4] of 3D thermal grids.

It is observed that both the matrix factorization and ad-
joint sensitivity calculation procedures in the “Multilevel w/
Sparsification” method are consistently much faster than the
other two methods, especially for larger test cases. While the
“Multilevel w/o Sparsification” is the slowest method due to
the fast growing matrix densities at coarse levels. The overall
LP solution time Tlp for the “Multilevel w/ Sparsification”
method is also the smallest, indicating that the proposed
method can effectively reduce the number of decision variables
in LP and thus result in much lower computational cost in
vectorless thermal verification tasks.

Meanwhile, the proposed method scales very comfortably
with even very large 3D thermal grids, since the total verifi-
cation time increases almost linearly with the 3D thermal grid
sizes, as shown in Figure 5.

IV. CONCLUSION

We present a highly-scalable multilevel vectorless thermal
integrity verification framework for computing chip worst-
case thermal profiles without knowing exact distribution of
underlying power sources or workloads. Recent theoretical
results in spectral graph sparsification and graph signal pro-
cessing techniques enable us to develop much faster and more
scalable vectorless thermal integrity verification algorithms,
while achieving flexible tradeoffs between computing effi-
ciency and solution quality. Extensive experiment results for
two modern chip designs have been demonstrated, indicating
that the proposed scalable vectorless verification method can
always efficiently obtain highly-accurate worst-case thermal
profiles for large chip designs.
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Fig. 4. Worst-case temperature distributions of processor B

TABLE II
RESULTS OF THE PROPOSED MULTILEVEL VECTORLESS THERMAL INTEGRITY VERIFICATION METHOD (TWO-LEVEL SCHEME IS USED).

Grids Specs. (a) Single Level (b) Multilevel w/o Sparsification (c) Multilevel w/ Sparsification

CKT N.# P.# T o
chol

(
To
chol

Ts
chol

)
T o
sol

(
To
sol

Ts
sol

)
T o
lp

(
To
lp

Ts
lp

)
Tm
chol

(
Tm
chol

Ts
chol

)
Tm
sol

(
Tm
sol

Ts
sol

)
Tm
lp

(
Tm
lp

Ts
lp

)
Err(%) T s

chol T s
sol T s

lp Err(%) σ2

T1 25K 2.5K 0.94s (31X) 2.30s (18X) 2.71s (1.4X) 1.24s (41X) 3.21s (25X) 3.12s (1.6X) 1.0% 0.03s 0.13s 2.02s 5.0% 2, 073
T2 0.1M 10K 5.89s (20X) 14.79s (20X) 10.36s (1.6X) 8.12s (28X) 20.48s (28X) 5.80s (0.85X) 2.1% 0.29s 0.72s 6.81s 3.8% 2, 400
T3 0.2M 10K 24.26s (22X) 55.20s (19X) 20.08s (4.6X) 33.91s (30X) 86.07s (30X) 25.90s (6.0X) 4.0% 1.13s 2.90s 4.33s 4.0% 1, 435
T4 0.4M 40K 38.03s (9X) 99.91s (10X) 60.56s (4X) 50.91s (11X) 131.97s (13X) 24.15s (1.7X) 2.0% 4.61s 10.46s 14.48s 5.0% 2, 193
T5 0.9M 90K 110.17s (6X) 262.53s (6X) 159.83s (18X) 148.11s (8X) 335.97s (8X) 21.43s (2.3X) 1.0% 20.09s 43.50s 9.36s 2.0% 2, 469
T6 1.6M 0.16M 1.18Ks (23X) 33.60Ks (201X) 0.87Ks (6.5X) 1.25Ks (24X) 33.99Ks (204X) 0.79Ks (5.9X) 1.0% 51.70s 167.00s 133.83s 1.0% 2, 141
T7 2.0M 0.20M 1.32Ks (20X) 32.27Ks (172X) 1.76Ks (9.7X) 1.42Ks (22X) 28.91Ks (154X) 1.70Ks (9.1X) 1.0% 65.23s 187.36s 181.76s 2.0% 3, 073
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Fig. 5. Total verification time with the number of non-zeros in matrices.
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