Neuron

Excitatory and Inhibitory Subnetworks Are Equally
Selective during Decision-Making and Emerge

Simultaneously during Learning

Graphical Abstract

Training days

Two-photon imaging of excitatory and inhibitory populations in
Posterior Parietal Cortex of mice during decision making

Excitatory and inhibitory neurons have
matched choice selectivity.

100
All neurons

Inhibitory

-
//'\'/EX(itatory
et/ (subsampled)

O e

Classifier accuracy (%)

-1500 -1000 -500 o 500
Time relative to choice (ms)

Choice selectivity gradually, and similarly,
increases in both cell types during learning.

All neurons Excitatory

(subsampled)
0

Inhibitory

0 — O Ep—

-
%0
S I
10 10 10

40 40
800400 0 400

-800-400 0 400 800400 0 400

Time relative to choice (ms)

- ™™
L I
20 1 20 ‘ 20 k
- - 1 2 E
30 30 - 30 .‘
-y 30
A‘ |

Classifier accuracy (%)

Decision circuits with non-selective inhibition
are rejected by experimental results.

Non-selective

evidence for evidence for
choicel choice2

| |
e 3
)

Decision circuits with selective E-I connectivity
are supported by experimental results.
Signal-selective

evidence for
choice2

evidence for
choicel

Highlights

uuuuuuu

Excitatory and inhibitory neurons are equally selective during

decision-making

Selectivity of the two cell types increases in parallel during

learning

Models and experiments reject decision circuits with non-

selective inhibition

Selective subnetworks of neurons emerge during learning to

support decision-making

Najafi et al., 2020, Neuron 105, 165-179
January 8, 2020 © 2019 Elsevier Inc.

https://doi.org/10.1016/j.neuron.2019.09.045

Authors

Farzaneh Najafi,

Gamaleldin F. Elsayed, Robin Cao,
Eftychios Pnevmatikakis,

Peter E. Latham, John P. Cunningham,
Anne K. Churchland

Correspondence
achurchl@cshl.edu

In Brief

Najafi et al. studied selectivity of mouse
excitatory and inhibitory neurons during
decision-making. Selectivity is equally
strong in the two cell types and emerges
gradually during learning. These data,
along with theoretical models, argue that
selective subnetworks support decision-
making.
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SUMMARY

Inhibitory neurons, which play a critical role in deci-
sion-making models, are often simplified as a single
pool of non-selective neurons lacking connection
specificity. This assumption is supported by obser-
vations in the primary visual cortex: inhibitory neu-
rons are broadly tuned in vivo and show non-specific
connectivity in slice. The selectivity of excitatory and
inhibitory neurons within decision circuits and,
hence, the validity of decision-making models are
unknown. We simultaneously measured excitatory
and inhibitory neurons in the posterior parietal cortex
of mice judging multisensory stimuli. Surprisingly,
excitatory and inhibitory neurons were equally selec-
tive for the animal’s choice, both at the single-cell
and population level. Further, both cell types ex-
hibited similar changes in selectivity and temporal
dynamics during learning, paralleling behavioral im-
provements. These observations, combined with
modeling, argue against circuit architectures
assuming non-selective inhibitory neurons. Instead,
they argue for selective subnetworks of inhibitory
and excitatory neurons that are shaped by experi-
ence to support expert decision-making.

INTRODUCTION

In many decisions, noisy evidence is accumulated over time to
support a categorical choice. At the neural level, a number of
models can implement evidence accumulation (Wang, 2002;
Machens et al., 2005; Bogacz et al., 2006; Lo and Wang, 2006;
Wong and Wang, 2006; Beck et al., 2008; Lim and Goldman,
2013; Rustichini and Padoa-Schioppa, 2015; Mi et al., 2017).
Although these circuit models successfully reproduce key char-
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acteristics of behavioral and neural data during perceptual deci-
sion-making, their empirical evaluation has been elusive, mainly
because of the challenge of identifying inhibitory neurons reliably
and in large numbers in behaving animals. Inhibition, which con-
stitutes an essential component of these models, is usually pro-
vided by a single pool of inhibitory neurons receiving broad input
from all excitatory neurons (non-selective inhibition; Deneve
et al., 1999; Wang, 2002; Mi et al., 2017).

The assumption of non-selective inhibition in theoretical
models was perhaps motivated by empirical studies examining
connectivity and tuning of inhibitory neurons. Many studies of
the primary visual cortex report that inhibitory neurons have,
on average, broader tuning curves than excitatory neurons for vi-
sual stimulus features such as orientation (Sohya et al., 2007;
Niell and Stryker, 2008; Liu et al., 2009; Kerlin et al., 2010;
Bock et al., 2011; Hofer et al., 2011; Atallah et al., 2012; Chen
et al.,, 2013; Znamenskiy et al., 2018), spatial frequency (Niell
and Stryker, 2008; Kerlin et al., 2010; Znamenskiy et al., 2018),
and temporal frequency (Znamenskiy et al., 2018). Broad tuning
in inhibitory neurons has been mostly attributed to their dense
(Hofer et al., 2011; Packer and Yuste, 2011), functionally unbi-
ased inputs from surrounding excitatory neurons (Kerlin et al.,
2010; Bock et al., 2011; Hofer et al., 2011). Excitatory neurons,
in contrast, show relatively sharp selectivity to stimulus features
(Sohya et al., 2007; Niell and Stryker, 2008; Ch’ng and Reid,
2010; Kerlin et al., 2010; Hofer et al., 2011; Isaacson and Scan-
ziani, 2011; Lee et al.,, 2016), reflecting their specific, non-
random connectivity (Yoshimura et al., 2005; Ch’ng and Reid,
2010; Hoferetal., 2011; Ko et al.,2011; Cossell et al., 2015; Ring-
ach et al., 2016).

Based on relatively weak tuning of inhibition, one might as-
sume that inhibition in decision circuits is non-specific. However,
the overall picture from experimental observations is more
nuanced than the original studies suggest. First, some primary
visual cortex (V1) studies report tuning of inhibitory neurons
that is on par with excitatory neurons (Ma et al., 2010; Runyan
etal., 2010), likely supported by targeted connectivity with excit-
atory neurons (Yoshimura and Callaway, 2005). Strong tuning of
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inhibitory neurons has also been reported in the primary auditory
cortex (Moore and Wehr, 2013). Further, in the frontal and parie-
tal areas, interneurons can distinguish go versus no-go re-
sponses (Allen et al., 2017) and trial outcome (Pinto and Dan,
2015). Similarly, hippocampal interneurons have strong selec-
tivity for the stimulus (Lovett-Barron et al., 2014) and the animal’s
location (Maurer et al., 2006; Ego-Stengel and Wilson, 2007).

This selectivity of inhibitory neurons in a wealth of areas and
conditions argues that the assumption of non-selective interneu-
rons in decision-making models must be revisited. Here we
aimed to evaluate this directly. We compared the selectivity of
inhibitory and excitatory neurons in the posterior parietal cortex
(PPC) in mice during perceptual decisions. Surprisingly, we
found that excitatory and inhibitory neurons are equally choice
selective. Our modeling argued that these observations imply
selective subnetworks, a network architecture supporting
enhanced decoding in the presence of noise. Finally, during
learning, the selectivity of excitatory and inhibitory neurons
increased in parallel. These results constrain decision-making
models and argue that, in decision areas, subnetworks of selec-
tive inhibitory neurons emerge during learning and are engaged
during expert decisions.

RESULTS

To test how excitatory and inhibitory neurons coordinate during
decision-making, we measured neural activity in transgenic mice
trained to report decisions about the repetition rate of a
sequence of multisensory events by licking a left or right water-
spout (Figure 1A; Figure S1A). Trials consisted of simultaneous
clicks and flashes, generated randomly (via a Poisson process)
at rates of 5-27 Hz over 1,000 ms (Brunton et al., 2013; Odoe-
mene et al., 2018). Mice reported whether event rates were
high or low compared with a category boundary (16 Hz) learned
from experience. Decisions depended strongly on the stimulus
rate; performance was at chance when the stimulus rate was

at the category boundary and better at rates further from the
category boundary (Figure 1B). Choice depended on current
stimulus strength, previous choice outcome (Hwang et al,
2017), and time elapsed since the previous trial (Figure S1B).

We imaged excitatory and inhibitory neural activity by injecting
a viral vector containing the calcium indicator (GCaMP6f) to layer
2/3 of the mouse PPC (Harvey et al., 2012; Funamizu et al., 2016;
Goard et al., 2016; Morcos and Harvey, 2016; Hwang et al.,
2017; Song et al., 2017). Mice expressed the red fluorescent pro-
tein tdTomato transgenically in all GABAergic inhibitory neurons
(STAR Methods). We used a two-channel, two-photon micro-
scope to record the activity of all neurons, a subset of which
were identified as inhibitory (Figure 1C). This allowed us to mea-
sure the activity of excitatory and inhibitory populations in the
same animal.

To detect neurons and extract calcium signals, we leveraged
an algorithm that simultaneously identifies neurons, de-noises
the fluorescence signal, and de-mixes signals from spatially
overlapping components (Pnevmatikakis et al., 2016; Giovan-
nucci et al., 2019; Figure 1D, center). The algorithm also esti-
mates spiking activity for each neuron, yielding, for each frame,
a number that is related to the spiking activity during that frame
(Figure 1D, right). We refer to this number as “inferred spiking ac-
tivity,” acknowledging that estimating spikes from calcium sig-
nals is challenging (Chen et al., 2013). Analyses were performed
on inferred spiking activity. To identify inhibitory neurons, we
developed a method to correct for bleed-through from the green
to the red channel (STAR Methods). We identified a subset of
GCaMP6f-expressing neurons as inhibitory based on signal in-
tensity (red channel) and spatial correlation between red and
green channels (Figure 1C, right, cyan circles). Inhibitory neurons
constituted 11% of the population, within the range of previous
reports (Beaulieu, 1993; Gabbott et al., 1997; Rudy et al., 2011;
Sahara et al., 2012) but on the lower side because of our desire
to be conservative in assigning neurons to the inhibitory pool
(STAR Methods).

Figure 1. Simultaneous Imaging of Inhibitory and Excitatory Populations during Decision-Making

(A) Behavioral apparatus. Multisensory stimuli are presented via a visual display and a speaker. To initiate trials, mice lick the middle waterspout. To report
decisions about stimulus rate, mice lick left/right spouts. Objective: a 2-photon microscope used to image neural activity through an implanted window.

(B) Psychometric function showing the fraction of trials in which the mouse chose “high” as a function of stimulus rate. Dots, mean (10 mice); line, logit regression
model (gImfit.m), mean across mice; shaded area, SD of the fit across mice; dashed vertical line, category boundary (16 Hz).

(C) Average image (10,000 frames). Left: green channel, GCaMP6f. Center: red channel, tdTomato. Right: merge of left and center. Cyan circles, GCaMP6f-
expressing neurons identified as inhibitory.

(D) Example neurons identified by the constrained non-negative matrix factorization algorithm (STAR Methods). Arrow, inhibitory neuron. Left: raw AF/F traces.
Center: de-noised traces. Right: inferred spiking activity. Imaging was not performed during inter-trial intervals; traces from 13 consecutive trials are concate-
nated. Dashed lines, trial onset.

(E) Example session; 568 neurons. Rows, trial-averaged inferred spiking activity of a neuron (frame resolution, 32.4 ms). Neurons are sorted based on timing of
peak activity. To ensure peaks were not driven by noisy fluctuations, we first computed trial-averaged activity using 50% of trials for each neuron. We then
identified the peak activity time for the trial-averaged response. Finally, these peak times determined the plotting order for the trial-averaged activity for the
remaining 50% of trials. This cross-validated approach ensured that the tiling appearance of peak activities was not due to the combination of sorting and false-
color plotting. Red ticks on the right, inhibitory neurons (n = 45); red vertical lines, trial events. Duration between events varied across trials. To make trial-averaged
traces, traces were separately aligned to each trial event and then averaged across trials. Next, averaged traces (each aligned to a different trial event) were
concatenated. Vertical blue lines, border between the concatenated traces.

(F) Trial-averaged inferred spiking activity of 4 excitatory (top) and 4 inhibitory (bottom) neurons for ipsilateral (black) and contralateral (green) choices (mean +
SEM, ~250 trials per session).

(G) Inferred spiking activity for excitatory (blue) and inhibitory (red) neurons. Example mouse; mean + SEM across days (n = 46). Each point corresponds to an
average over trials and neurons. Inferred spiking activity was downsampled by averaging over three adjacent frames (STAR Methods).

(H) Distribution of inferred spiking activity 0-97 ms before choice (averaged over three frames) for all mice/sessions (41,723 excitatory and 5,142 inhibitory).

() Inferred spiking activity 0-97 ms before the choice (averaged over three frames) for individual mice (mean + SEM across days).
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Figure 2. Single-Cell and Pairwise Analyses Argue for Non-random Connections between Excitatory and Inhibitory Neurons

(A) Distribution of AUC (area under the curve) values of an ROC analysis for distinguishing choice from the activity of single neurons in an example session. Data
correspond to the 97-ms window preceding choice (285 excitatory and 29 inhibitory neurons). Values larger than 0.5 indicate a preference for ipsilateral choice;
values smaller than 0.5 indicate a preference for contralateral choice. Shaded areas, significant AUC values (compared with a shuffle distribution). Distributions
were smoothed (moving average, span = 5). 5 inhibitory and 24 excitatory neurons (17% and 8%, respectively) were significantly choice selective.

(B) ROC analysis on 97-ms non-overlapping time windows. Vertical axis, fraction of excitatory or inhibitory neurons with significant choice selectivity; example
mouse; mean + SEM across days (n = 45 days).

(C) Fraction of excitatory and inhibitory neurons that are significantly choice selective (0-97 ms before the choice) summarized for each mouse; mean + SEM
across days (n =45, 48, 7, and 35 sessions per mouse). t test, “p < 0.05; see also Figure S3D. Fraction-selective neurons at 0-97 ms before choice (median across
mice): excitatory, 13%; inhibitory, 16% (~6 inhibitory and 43 excitatory neurons with significant choice selectivity per session).

(D) ROC analysis for 97-ms non-overlapping time windows; time course of normalized choice selectivity (defined as twice the absolute deviation of the AUC from
chance, given explicitly by 2*|AUC-0.5|) for excitatory and inhibitory neurons in an example mouse; mean + SEM across days, n = 45 sessions.

(E) Average of normalized choice selectivity for excitatory and inhibitory neurons (0-97 ms before choice) summarized for each mouse; mean + SEM across days.

“Shuffled” denotes that the AUC was computed using shuffled trial labels.
Blue and red indicate excitatory and inhibitory neurons, respectively.

Confirming previous reports (Funamizu et al., 2016; Morcos
and Harvey, 2016; Runyan et al., 2017), we observed that the ac-
tivity of individual neurons peaked at time points spanning the
trial (Figures 1E and 1F). Diverse temporal dynamics were
evident in both cell types (Figures 1E and 1F) and did not appre-
ciably differ between the two (Figure S2). The magnitude of in-
ferred spiking activity was significantly different for inhibitory
versus excitatory neurons throughout the trial (Figure 1G; t
test, p < 0.001). Just before the choice (97 ms, average of 3
frames), this difference was clear (Figure 1H) and significant for
all mice (Figure 1I; t test; p < 0.001). Differences in GCaMP
expression levels and calcium buffering between excitatory
and inhibitory neurons, as well as how spiking activity is inferred
(STAR Methods), make direct estimates of the underlying firing
rates challenging (Kwan and Dan, 2012). Nevertheless, the sig-
nificant difference in the inferred spiking activity between excit-
atory and inhibitory neurons provides additional evidence that
we successfully identified two separate neural populations.

Individual Excitatory and Inhibitory Neurons Are
Similarly Choice Selective

To assess the selectivity of individual excitatory and inhibitory
neurons for decision outcome, we performed a receiver oper-
ating characteristic (ROC) analysis (Green and Swets, 1966) on
single-neuron responses. A neuron was identified as “choice se-
lective” when the area under the ROC curve (AUC) differed
significantly (p < 0.05) from a shuffled distribution (Figure S3A;
STAR Methods), indicating that the neural activity differed signif-
icantly for ipsi- versus contralateral choices (Figure 2A).

The fraction of choice-selective neurons (Figure 2B) and the
magnitude of choice selectivity (Figure 2D) gradually increased
over the trial, peaking just after the animal reported its choice.
Importantly, excitatory and inhibitory neurons were similar in
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terms of the fraction of choice-selective neurons (Figures 2B
and 2C; Figures S3B and S3C) as well as the magnitude and
time course (Figures 2D and 2E) of choice selectivity. When we
restricted the analysis to excitatory and inhibitory neurons with
similar spiking activity, the cell types remained equally selective
for the animal’s choice (Figure S3D).

To assess whether neurons reflected the animal’s choice or
the sensory stimulus, we compared choice selectivity on correct
versus error trials. For most neurons, choice selectivity on cor-
rect trials was similar to that on error trials, resulting in a positive
correlation of the two quantities across neurons (Figure S3E).
Positive correlations indicate that most neurons reflect the im-
pending choice more so than the sensory stimulus that informed
it (STAR Methods). Variability across mice in the strength of this
correlation may indicate that the balance of sensory versus
choice signals within individual neurons varied across subjects
(perhaps because of imaged subregions within the window; Fig-
ure S3E, right). Importantly, however, within each subject, this
correlation was very similar for excitatory versus inhibitory neu-
rons (Figure S3E), suggesting that the tendency for neurons to
be modulated by the choice versus the stimulus was similar in
excitatory and inhibitory neurons.

The existence of task-modulated inhibitory neurons has been
reported elsewhere (Maurer et al., 2006; Ego-Stengel and Wil-
son, 2007; Lovett-Barron et al., 2014; Pinto and Dan, 2015; Allen
et al.,, 2017; Kamigaki and Dan, 2017), but, importantly, here
choice selectivity was similarly strong in excitatory and inhibitory
neurons, both in fraction and magnitude. This was at odds with
the commonly accepted assumption of non-specific inhibition
in theoretical studies (Deneve et al., 1999; Wang, 2002; Mi
etal., 2017) and surprising given the numerous empirical findings
suggesting broad tuning and weakly specific connectivity in
inhibitory neurons (Sohya et al., 2007; Niell and Stryker, 2008;



Liu et al., 2009; Kerlin et al., 2010; Bock et al., 2011; Hofer et al.,
2011; Isaacson and Scanziani, 2011; Packer and Yuste, 2011;
Atallah et al., 2012; Chen et al., 2013). This observation was a
first hint that specific functional subnetworks, preferring either
ipsi- or contralateral choices, exist within the inhibitory popula-
tion, just like in the excitatory population (Yoshimura and Call-
away, 2005; Znamenskiy et al., 2018).

Choice Is Decoded with Equal Accuracy from Both
Excitatory and Inhibitory Populations

Although individual inhibitory neurons could distinguish the ani-
mal’s choice as well as excitatory ones, overall choice selectivity
in single neurons was small (Figure 2E). To further evaluate the
neurons’ discriminability, we trained linear classifiers (support
vector machine [SVM]; Hofmann et al., 2008) to predict the
mouse’s choice from the single-trial population activity (cross-
validated, L2 penalty; STAR Methods).

We first tested all neurons imaged simultaneously in a single
session (Figure 3A, left), training the classifier separately at
each time point (97 ms bins). Classification accuracy gradually
grew after stimulus onset and peaked at the time of the choice
(Figure 3B, black). The ability of the entire population of PPC neu-
rons to predict the choice confirms previous observations (Funa-
mizu et al., 2016; Goard et al., 2016; Morcos and Harvey, 2016;
Driscoll et al., 2017). Our overall classification accuracy was in
the same range as these studies and, as in those studies, was
high, although many individual neurons in the population were
only weakly selective (Figure 2A).

We then examined classifier accuracy for excitatory and
inhibitory populations, subsampling the excitatory population
so that the total number of neurons was matched (Figure 3A,
center). The overall classification accuracy was reduced
because of the smaller population size, but performance was
still well above chance (Figure 3B, blue trace). Finally, we
included all inhibitory neurons (Figure 3A, right). The classifica-
tion accuracy of inhibitory neurons was well above chance
and very similar to that of excitatory neurons (Figure 3B, red
and blue traces overlap; see Figure S4 for additional example
sessions). A similar classification accuracy for excitatory and
inhibitory populations was observed in all subjects (Figure 3C).
Excitatory and inhibitory populations were equally choice selec-
tive even when the analysis was performed on raw calcium
traces (Figure S5).

Our analysis may have obscured a difference between excit-
atory and inhibitory neurons because we evaluated their perfor-
mance separately rather than considering how these neurons are
leveraged collectively in a classifier with both cell types. To test
this, we examined a classifier that was trained on all neurons
(Figures 3A, left, and 3B, black), and compared classifier weights
assigned to excitatory versus inhibitory neurons. The weight
magnitudes of excitatory and inhibitory neurons were matched
for the entire trial (Figure 3D), and the distribution of weights
was very similar (Figures 3E and 3F). The comparable classifier
weights for excitatory and inhibitory neurons argues that these
cell types are similarly informative for choice.

We next tested whether excitatory and inhibitory populations
can be decoded more accurately from a mixed population.
This can occur, for example, when the excitatory-inhibitory cor-

relations are weak relative to excitatory-excitatory and inhibi-
tory-inhibitory correlations (Panzeri et al., 1999; Averbeck
et al., 2006; Moreno-Bote et al., 2014). To assess this, we trained
the classifier on a population with half excitatory and half inhibi-
tory neurons (Figure 3G, bottom) and compared its accuracy
with a classifier trained on a population of the same size that con-
sisted only of excitatory neurons (Figure 3G, top). The classifica-
tion accuracy was similar for both decoders (Figures 3H and 3l),
arguing that a mixed population offers no major advantage for
decoding.

We next trained new classifiers to evaluate whether popula-
tion activity reflected additional task features. First, the popula-
tion activity was somewhat informative regarding previous trial
choice (Figure S6A), in agreement with previous studies (Morcos
and Harvey, 2016; Hwang et al., 2017; Akrami et al., 2018; but
see also Zhong et al., 2019). Excitatory and inhibitory popula-
tions were similarly selective for previous choice (Figure S6A).
The population activity was also somewhat informative
regarding whether the stimulus was above or below the cate-
gory boundary (Figure S6B). Again, excitatory and inhibitory
populations were similarly selective (Figure S6B). Finally, the
population activity was strongly selective for trial outcome
(reward versus lack of reward; Figure S6C). Excitatory and inhib-
itory neurons showed a small but consistent difference in
classifier accuracy after reward delivery (Figure S6C). This
indicates that, when the reward is delivered, the network enters
a new regime, perhaps because of distinct reward-related in-
puts to excitatory and inhibitory neurons (Pinto and Dan, 2015;
Allen et al., 2017). This possibility is in keeping with previous
studies suggesting that neural populations explore different di-
mensions over the course of a trial (Raposo et al., 2014; Elsayed
et al., 2016).

Finally, we studied the temporal dynamics of the choice signal.
If excitatory and inhibitory neurons form connected subnetworks
with frequent cross-talk, then the two populations should not
only predict the animal’s choice with similar accuracy, as shown
above, but the weights assigned by the classifier should exhibit
similar temporal dynamics. To assess this, we quantified each
population’s stability: the extent to which a classifier trained on
choice at one time could successfully classify choice at other
times. If population activity patterns are similar over time (e.g.,
all neurons gradually increase their firing rates), then classifiers
trained at one moment will accurately classify neural activity at
different moments. Excitatory and inhibitory populations might
differ in this regard, with one population more stable than
the other.

As the gap between testing and training time increased, a
gradual drop occurred in classifier accuracy (Figures 4A and
4B). This drop in accuracy occurred at a similar rate for excitatory
and inhibitory populations (Figure 4B). To quantify this, we deter-
mined the time window over which classifier accuracy remained
within 2 SDs of the accuracy at the training time (Figure 4C). This
was indistinguishable for excitatory and inhibitory neurons (Fig-
ure 4D; Figure S7A). An alternate method for assessing stability,
computing the angle between the weights of pairs of classifiers
trained at different time windows, likewise suggested that excit-
atory and inhibitory populations are similarly stable (STAR
Methods; Figure S7C).
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Figure 4. Classifiers, Whether Trained on Excitatory or Inhibitory Neurons, Show Comparable Stability during Decision Formation

Shown is cross-temporal generalization of choice decoders.

(A) Classification accuracy of decoders for each pair of training/testing time points, for all neurons (left), subsampled excitatory neurons (center), or inhibitory
neurons (right). Diagonal, same training and testing time as in Figure 3. Example mouse, mean across 45 sessions.

(B) Example classification accuracy traces showing how classifiers trained at 0-97 ms before choice generalize across time. Same mouse as in (A), mean + SEM
across days.

(C) Decoders are stable in a short window outside of their training time. Red indicates that classification accuracy of a decoder tested at the time on the horizontal
axis is 2 SDs or less of the decoder tested at the training time. Example mouse, mean across days.

(D) Summary of stability duration for decoders trained from 0-97 ms before choice using inhibitory neurons (red) or subsampled excitatory neurons (blue). Mean +
SEM across days per mouse.

Modeling Rules Out Decision Circuits with Non-
selective Inhibition

These results seem to rule out circuitry from traditional decision-
making models in which inhibitory neurons are non-selective.
This is because, in non-selective circuits, the average input to
inhibitory neurons is the same whether the evidence favors
choice 1 or choice 2 (Figure 5A, top). However, care must be
taken when drawing this conclusion. Although the average input
is the same, there are fluctuations in connection strength; those
fluctuations will lead to some selectivity in inhibitory neurons. For

instance, because of the inherent randomness in neural circuits,
an inhibitory neuron could receive more connections from the
excitatory neurons in population E4 versus E.. If so, then the firing
rate of that inhibitory neuron would be slightly higher when evi-
dence in favor of choice 1 is present. This could be exploited
by a classifier to predict the choice. Hence, even a decision cir-
cuit with non-selective inhibition (Figure 5A, top) can lead to
similar decoding accuracy in inhibitory and excitatory neurons,
questioning whether our experimental findings (Figures 2 and
3) can be leveraged to constrain decision-making models.

Figure 3. Linear Classifiers Can Predict the Animal’s Choice with Equal Accuracy from the Activity of Excitatory or Inhibitory Populations
(A) Schematic of decoding choice from all neurons (left), only excitatory neurons (center) subsampled to the same number as inhibitory neurons, and only
inhibitory neurons (right). A linear SVM assigns weights of different magnitude (indicated by lines of different thickness) to each neuron in the population.

(B) Top: classification accuracy of decoders trained on all neurons (black), subsampled excitatory neurons (blue), and inhibitory neurons (red) (cross-validated;
decoders trained on every 97-ms time bin; example session; mean + SEM across 50 cross-validated samples). Data are aligned to the animal’s choice (black
dotted line). Unsaturated lines, performance on shuffled trials. Bottom: distribution of stimulus onset, offset, go tone, and reward occurrence for the example
session above.

(C) Classification accuracy (0-97 ms before the choice, mean + SEM across days) for real (saturated) and shuffled (unsaturated) data.

(D) Absolute value of weights for excitatory and inhibitory neurons in decoders trained on all neurons; mean + SEM across days.

(E) Distribution of classifier weights (decoder training time, 0-97 ms before the choice) for excitatory and inhibitory neurons. Neurons from all mice were pooled
(42,019 excitatory and 5,172 inhibitory neurons). Shading, SE.

(F) Absolute value of weights in the classifier (0-97 ms before choice) for excitatory versus inhibitory neurons. Mean + SEM across days. *p < 0.05, t test.

(G) Schematic of decoding choice from a population of subsampled excitatory neurons (top) versus a population with half inhibitory and half excitatory neurons
(bottom).

(H) Classifier accuracy of populations including only excitatory (blue) or half inhibitory and half excitatory neurons (magenta); example session; classifier trained at
each moment in the trial. Traces show mean + SEM (50 cross-validated samples).

(I) Summary of each mouse (mean + SEM across days) for the decoders (0-97 ms before the choice).
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(A) Top: non-selective decision-making model. E; and Ej, pools of excitatory neurons, each favoring a different choice, that excite a single pool of non-selective
inhibitory neurons (l). Bottom: classification accuracy of excitatory (blue) and inhibitory (red) neurons as a function of the relative strength of excitatory-to-
inhibitory versus inhibitory-to-excitatory connections. Arrows in this and subsequent panels: parameter value in line with experimental data.

(B) Top: signal-selective model. |1 and I, pools of inhibitory neurons connected more strongly to E1 and E,, respectively, than to E, and E;; cross-pool con-
nections are weaker than within-pool connections. Bottom: decoding accuracy of inhibitory and excitatory neurons match at the biologically plausible regime

(arrow). Cross-pool connectivity was 25% smaller than within-pool connectivity.

(C) Top: SNR-selective model. Inhibitory neurons connect more strongly to excitatory neurons with high SNRs. Bottom: decoding accuracy of inhibitory and
excitatory neurons match near the biologically plausible regime (arrow). All plots reflect 50 excitatory and 50 inhibitory neurons of a population containing 4,000

excitatory/1,000 inhibitory neurons.

To test this quantitatively, we modeled a non-selective circuit
to evaluate the selectivity of inhibitory neurons (STAR Methods).
Classification accuracy depended on the connection strengths
between excitatory and inhibitory neurons (horizontal axis in Fig-
ure 5A, bottom) because those connection strengths affect over-
all activity in the network. The most biologically plausible regime
is near 0, corresponding to equal strengths for excitatory-to-
inhibitory and inhibitory-to-excitatory connections (Thomson
and Lamy, 2007; Jouhanneau et al., 2015, 2018; Znamenskiy
et al., 2018; Figure 5A, bottom, arrow). For this value (and indeed
for all other values), inhibitory neurons had a lower classification
accuracy than excitatory neurons (Figure 5A, bottom; Figure S8,
left), inconsistent with our experimental results (Figures 3B and
3C). Therefore, in the non-selective circuit, although some inhib-
itory neurons are selective because of random biased inputs
from the excitatory pools, the classification accuracy of inhibi-
tory neurons will still be lower than that of excitatory neurons,
regardless of the model parameters. This is because even
modest amounts of noise in the system are sufficient to over-
come any informative randomness in excitatory-to-inhibitory
connections.

Next, we modeled a signal-selective circuit in which inhibitory
neurons were connected preferentially to one excitatory pool
(Figure 5B, top). In this circuit architecture, inhibitory and excit-
atory neurons had matched classification accuracy when the
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connection strength from excitatory to inhibitory neurons was
about the same as the strength from inhibitory to excitatory
ones (Figure 5B, bottom; Figure S8, center).

Interestingly, a third circuit configuration likewise gave rise to
excitatory and inhibitory neurons with matched classification ac-
curacy near the biologically plausible regime (Figure 5C, bottom;
Figure S8, right). Here, inhibitory neurons were connected to
excitatory neurons with a high signal-to-noise ratio (SNR) (Fig-
ure 5C, top).

Our modeling results raise two questions. First, how can the
inhibitory population have a higher classification accuracy than
the excitatory population (Figures 5B and 5C, bottom; for part
of the plot, red is above blue), given that all information regarding
the choice flows through the excitatory neurons? Second, why is
the relative strength of the excitatory-to-inhibitory versus inhibi-
tory-to-excitatory connections the critical parameter (Figure 5,
bottom, x axis)? The answers are related. Increasing the strength
of the excitatory-to-inhibitory connections increases the signal in
the inhibitory neurons, effectively decreasing the noise added to
the inhibitory population (see STAR Methods for details). This
decrease in noise leads to improved decoding accuracy of
both populations because they are connected. However, the
decrease in the noise added to the inhibitory neurons has a
bigger effect on the inhibitory than the excitatory population
because the noise directly affects the inhibitory neurons but



A Exc-Inh pairs Exc-Exc pairs Inh-Inh pairs B c
0.02 - Same selectivity 0015 - Same 0.04 - Same 0.1 7 Example mouse 0'0_3 }
a:' E Opposite " = Inh-Inh {
g I s S| 1
[v] ] 0.01 4 E ‘5 Exc-Exc pairs g
< I I { I I [} o 1
.© 001 [ [} T 002 A < = Exc-Exc
s 3 ) c L s
2 0.005 - 2 g £ z
= kv] Inh-Inh pairs 5 3
S o v}
0- oz & ¥ % 04 y : Y- 0-
0-r T T T r T T 1
12 3 4 12 3 4 1 2 3 4 -0.1 0 0.1 0.2 12 3 4
Mice Mice Mice Correlation coefficient Mice

Figure 6. Pairwise Noise Correlations Are Stronger between Neurons with the Same Choice Selectivity

(A) Left: noise correlations (Pearson’s coefficient) for pairs of excitatory-inhibitory neurons with the same (dark green) or opposite (light green) choice selectivity.
Center and right: same as left, but for excitatory-excitatory and inhibitory-inhibitory pairs, respectively. “Shuffled” denotes that quantities were computed using
shuffled trial labels. Mean + SEM across days; 0-97 ms before the choice. Same versus opposite is significant in all cases, except for mouse 3 in excitatory-

excitatory (EE) and inhibitory-inhibitory (Il) pairs (t test, p < 0.05).

(B) Example mouse. Distribution of noise correlations (Pearson’s correlation coefficients, 0-97 ms before the choice) for excitatory (blue, n = 11,867) and inhibitory
(red, n = 15,83) neurons. Shaded areas, significance compared with a shuffled control in which trial orders were shuffled for each neuron to remove noise

correlations.
(C) Summary of noise correlation coefficients; mean + SEM across days.

affects the excitatory neurons only indirectly through the inhibi-
tory-to-excitatory connections. Thus, in all panels of Figure 5,
classification accuracy increases faster for inhibitory neurons
than excitatory ones as the excitatory-to-inhibitory connection
strength increases. Interestingly, the classification accuracy of
both populations was overall higher for the signal-selective and
SNR-selective models because the selective targeting in those
models mitigates the noise that limits classification accuracy.
This advantage was most pronounced for the signal-selective
model; the model has a significantly higher classification accu-
racy compared with other models at all values of connectivity
strength and noise (Figure S9). This may indicate that the
signal-selective network configuration is especially advanta-
geous for accurate decoding in the presence of noise.

Overall, the modeling rules out decision circuits with non-se-
lective inhibition (Figure 5A) and instead demonstrates that
excitatory and inhibitory neurons in decision circuits must be
selectively connected, either based on the signal preference
(Figure 5B) or the informativeness (Figure 5C) of excitatory
neurons.

Correlations Are Stronger between Similarly Tuned
Neurons

If choice selectivity in inhibitory neurons emerges because of tar-
geted input from excitatory neurons, then one prediction is that
correlations will be stronger between excitatory and inhibitory
neurons with the same choice selectivity compared with those
with the opposite choice selectivity (Cossell et al., 2015; Francis
etal., 2018). To test this hypothesis, we compared pairwise noise
correlations in the activity of neurons with same versus opposite
choice selectivity (STAR Methods). Indeed, neurons with the
same choice selectivity had stronger correlations (Figure 6A), in
keeping with previous observations in mouse V1 during passive
viewing (Hofer et al., 2011; Ko et al., 2011; Cossell et al., 2015;
Znamenskiy et al., 2018), as well as the prefrontal cortex in
behaving monkeys (Constantinidis and Goldman-Rakic, 2002).

The higher noise correlations among similarly tuned excit-
atory-inhibitory neuron pairs is also consistent with the observa-
tion that, in V1, excitatory and inhibitory neurons that belong to
the same subnetwork are reciprocally connected (Yoshimura
and Callaway, 2005). An alternative explanation, that neurons
with similar tuning share common inputs, is also possible. If
that is the case, however, then the common input is not exclu-
sively stimulus driven because we observed the same correla-
tion effects in the pre-trial period, in which there is no stimulus
(Figure S10A).

We next compared the strength of pairwise noise correlations
within excitatory and inhibitory populations. Inhibitory pairs had
significantly higher noise correlations compared with excitatory
pairs (Figures 6B and 6C, noise correlations; Figure S10C,
spontaneous correlations). This was true even when we
restricted the analysis to inhibitory and excitatory neurons
with the same inferred spiking activity (Figures S10D and
S10E). Finally, similar to previous reports (Hofer et al., 2011;
Khan et al., 2018), we found intermediate correlations for pairs
consisting of one inhibitory neuron and one excitatory neuron
(Figures S10B and S10C). Our findings align with previous
studies in sensory areas reporting stronger correlations among
inhibitory neurons (Hofer et al., 2011; Khan et al., 2018). The
correlations are likely driven at least in part by local connec-
tions, as evidenced by the dense connectivity of interneurons
with each other (Galarreta and Hestrin, 1999; Packer and Yuste,
2011; Kwan and Dan, 2012). The difference we observed be-
tween excitatory and inhibitory neurons argues that this feature
of early sensory circuits is shared by decision-making areas.
Further, this clear difference between excitatory and inhibitory
neurons, like the difference in inferred spiking (Figures 1G-1l)
and outcome selectivity (Figure S6C), confirms that we suc-
cessfully measured two distinct populations. Overall, noise cor-
relation analyses suggest that selective connectivity between
excitatory and inhibitory neurons depends on their functional
properties.
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Figure 7. Noise Correlations Reduce Classification Accuracy

(A) Classification accuracy for an example session (0-97 ms before the choice)
on neural ensembles of increasingly larger size. Mean + SEM (50 cross-vali-
dated samples). Gray, classification accuracy for pseudo-populations; black,
real populations. Both cell types were included (“All neurons”™).

(B) Summary for each mouse; points show mean + SEM across days. Values
were computed for the largest neuronal ensemble (the maximum value on the
horizontal axis in A).

Noise Correlations Limit Decoding Accuracy

Our results thus far demonstrate that neural activity in both excit-
atory and inhibitory populations reflect an animal’s impending
choice (Figures 3B and 3C) and that there are significant noise
correlations among neurons in PPC (Figure 6). However, the an-
alyses so far do not demonstrate how this noise affects the ability
to decode neural activity. Examining the effect of noise is essen-
tial because correlations affect classifier performance (Panzeri
et al.,, 1999; Averbeck et al., 2006), even when correlations are
weak (Averbeck et al., 2006; Moreno-Bote et al., 2014). Fortu-
nately, our dataset with simultaneous activity from hundreds of
neurons is especially well suited to assess noise correlations.

To examine how noise correlations affect classification accu-
racy, we sorted neurons based on individual choice selectivity,
adding them one by one to the population (from highest to lowest
choice selectivity, defined as |AUC-0.5|). Classification accuracy
improved initially as more neurons were included in the decoder
but saturated quickly (Figure 7A, black).

To assess the effect of noise correlations on classification accu-
racy, we created “pseudopopulations” in which each neuron in
the population was taken from a different trial (Figure 7A, gray).
This removed noise correlations because those are shared across
neurons within a single trial. A higher classification accuracy in
pseudopopulations compared with real populations indicates
the presence of noise that overlaps with signal, limiting informa-
tion (Panzeri et al., 1999; Averbeck et al., 2006; Averbeck and
Lee, 2006; Moreno-Bote et al., 2014). This is what we observed
(Figure 7A, gray trace above black trace). In all mice, removing
noise correlations resulted in a consistent increase in classifica-
tion accuracy (Figure 7B; filled versus open circles), establishing
that noise correlations limit population accuracy in the PPC.

Selectivity Increases in Parallel in Inhibitory and
Excitatory Populations during Learning

Our observations so far argue that excitatory and inhibitory neu-
rons form selective subnetworks. To assess whether the emer-
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gence of these subnetworks is experience dependent and
whether it varies between inhibitory and excitatory populations,
we measured neural activity as animals transitioned from novice
to expert decision-makers (3 mice, 35-48 sessions; Figure S11).
We trained a linear classifier for each training session and for
each moment in the trial.

The classification accuracy of the choice decoder increased
consistently as animals became experts in decision-making (Fig-
ure 8A, left; Figure 8D, black), leading to a strong correlation be-
tween classifier accuracy and mouse performance over training
(Figure 8B, left). The choice signal also became more prompt,
emerging progressively earlier in the trial as mice became ex-
perts. Initially, classification accuracy was high only after the
choice (Figure 8A, black arrow). As the animals gained experi-
ence, high classification accuracy occurred progressively earlier
in the trial, eventually long before the choice (Figure 8A, gray ar-
row). This resulted in a negative correlation between mouse per-
formance and the onset of super-threshold decoding accuracy
(Figures 8C, left, and 8E, black).

Importantly, the choice signal emerged at the same time in
both populations, and its magnitude and timing were matched
for the two cell types throughout learning (Figures 8A-8C, center
and right, and 8D and 8E, blue and red). This was not due to the
presence of more correct trials in later sessions; an improvement
in classification accuracy was clear even when the number of
correct trials was matched for each session (Figure S13C). These
findings indicate that learning induces the simultaneous emer-
gence of choice-specific subpopulations in excitatory and inhib-
itory cells in the PPC.

Notably, the animal’s licking or running behavior could not
explain the learning-induced changes in the magnitude of clas-
sification accuracy (Figure S12). The center-spout licks preced-
ing left versus right choices were similar during the course of
learning (Figure S12A) and did not differ on early versus late
training days (Figure S12B). The similarity in lick movements
for early versus late sessions contrasts the changes in classifi-
cation accuracy for early versus late sessions (Figure 8). We
also assessed running behavior during learning (Figures S12C
and S12D). In some sessions, the running distance differed pre-
ceding left versus right choices (Figure S12C). Nonetheless,
when we restricted our analysis to days on which the running
distance was indistinguishable for the two choices (0-97 ms
before the choice, t test, p > 0.05), classifiers could still accu-
rately predict the choice (Figure S12D). These observations pro-
vide reassurance that population activity does not entirely
reflect preparation of licking and running movements and argue
instead that population activity reflects the animal’s stimulus-
informed choice.

Finally, we studied how correlations changed over training.
Pairwise correlations in neural activity were higher early in
training, when mice were novices, compared with late in training,
when mice approached expert behavior (Figure 8F, unsaturated
colors above saturated colors). This was observed for all combi-
nations of neural pairs (Figure 8F). These findings agree with
previous reports suggesting that learning results in reduced
noise correlations (Gu et al., 2011; Jeanne et al., 2013; Khan
et al., 2018; Ni et al., 2018), enhancing information in neural
populations. To test whether the learning-induced increase in
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Figure 8. Learning Leads to Improved Choice Decoding, an Increased Fraction of Choice-Selective Neurons, and Reduced Noise Correla-
tions in Both Populations

(A) Decoder accuracy for each training session for all neurons (left), subsampled excitatory neurons (center), and inhibitory neurons (right). White vertical line,
choice; rows, average across cross-validated samples, example mouse. The color bar applies to both plots.

(B) Scatterplot of classifier accuracy (0-97 ms before choice) versus behavioral performance (fraction correct on easy trials) for all training days. r, Pearson
correlation coefficient (p < 0.001 in all plots); same example mouse as in (A). Correlations for behavior versus classification accuracy for all neurons, excitatory and
inhibitory: 0.55, 0.35, and 0.32 in mouse 2; 0.57, 0.63, and 0.32 in mouse 3. Correlations for behavior versus choice-signal onset for all neurons, excitatory and
inhibitory: —0.60, —0.34, and —0.38 in mouse 2; —0.60, —0.27, and —0.28 in mouse 3. All values, p < 0.05.

(C) Same as (B) but showing the onset of choice signal (the first moment in the trial that classifier accuracy was above chance, relative to choice onset) versus
behavioral performance.

(D) Summary of classification accuracy averaged across early (dim colors) versus late (dark colors) training days.

(E) Same as (D) but showing choice signal onset (milliseconds).

(F) Same as (D) but showing pairwise noise correlation coefficients. El, excitatory-inhibitory.

(G) The fraction of choice-selective neurons increases over training; average across early (dim colors) and late (dark colors) training days (0-97 ms before the
choice). Early days, first few training days on which the animal’s performance was lower than the 20™ percentile of performance across all days; late days, training
days on which performance was above the 80™ percentile of performance across all days.

classification accuracy (Figures 8A, 8B, and 8D) was entirely a
consequence of the reduction in noise correlations (Figure 8F),
we studied how the classification accuracy of pseudopopula-
tions, which lack noise correlations, changed with training. Inter-
estingly, a significant increase in the classification accuracy of
pseudopopulations was present (Figures S13A and S13B).
Therefore, the reduction in noise correlations cannot alone ac-
count for the improved classification accuracy during learning,
suggesting that increased choice selectivity of individual neu-
rons also contributes. Indeed, the fraction of choice-selective

neurons increased 3-fold during training in both excitatory and
inhibitory neurons (Figure 8G).

DISCUSSION

Despite a wealth of studies assessing the selectivity of inhibitory
neurons for sensory features, little is known about the selectivity
of inhibitory neurons in decision-making. This is a critical gap and
has left untested key features of decision-making models relying
on inhibitory neurons. To close this gap, we simultaneously
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measured excitatory and inhibitory populations during percep-
tual decisions about multisensory stimuli.

We found that excitatory and inhibitory neurons predict the an-
imal’s impending choice with equal fidelity (Figures 2 and 3). This
result, along with our modeling (Figure 5), constrains circuit
models of decision-making, ruling out models in which inhibitory
neurons receive completely nonspecific input from excitatory
populations (Figure 5A). Instead, our findings suggest that spe-
cific functional subnetworks exist within inhibitory populations,
just like in excitatory populations (Figure 5B). This implies tar-
geted connectivity between excitatory and inhibitory neurons
(Yoshimura and Callaway, 2005; Znamenskiy et al., 2018) and
supports circuit architectures with functionally specific, recipro-
cally connected subnetworks.

A documented advantage of signal-selective architectures is
that they can offer improved stability (Znamenskiy et al., 2018)
and robustness to perturbations (Lim and Goldman, 2013). How-
ever, in our circuit, selectivity did not improve stability but instead
improved performance; the classification accuracy for the
signal-selective model was the highest of the three we tested
(Figure 5B, bottom row; Figure S9). These observations raise
the possibility that, among possible circuit architectures that
could have been leveraged by the brain to support decision-
making, the highest-performing one was chosen.

The equal selectivity for choice we observed in excitatory and
inhibitory populations is perhaps, at first, surprising, given the
broad stimulus tuning curves observed in most V1 inhibitory neu-
rons (Sohya et al., 2007; Niell and Stryker, 2008; Kerlin et al.,
2010; Bock et al., 2011; Hofer et al., 2011; Znamenskiy et al.,
2018; but see Runyan et al., 2010) and the dense connectivity
for inhibitory neurons (Hofer et al., 2011; Packer and Yuste,
2011; Znamenskiy et al., 2018). Two differences between our
study and previous ones may explain why we saw equal selec-
tivity in excitatory and inhibitory populations.

First, we measured neural activity in the PPC where the pro-
portion of interneuron subtypes differs from V1; V1 is enriched
for parvalbumin (PV) interneurons relative to somatostatin
(SOM) and vasoactive intestinal polypeptide (VIP) neurons,
whereas the opposite is true in association areas (Kim et al.,
2017; Wang and Yang, 2018). Moreover, interneuron subtypes
vary in their specificity of connections (Pfeffer et al., 2013); for
instance, PV interneurons have broader tuning than SOM and
VIP cells (Wang et al., 2004; Ma et al., 2010). Therefore, the
strong selectivity we found in all GABAergic interneurons in the
PPC may not contradict the broad selectivity observed in studies
largely performed on PV interneurons in V1. Future studies that
measure the selectivity of distinct interneuron populations during
decision-making in V1 versus the PPC will be helpful. Here we
measured all GABAergic interneurons instead of individual inter-
neuron subtypes because of the technical challenge of reliably
identifying more than two cell types in a single mouse and
because of the importance of simultaneously measuring the ac-
tivity of excitatory and inhibitory neurons within the same sub-
ject. Had we lacked within-mouse measurements, our ability to
compare excitatory versus inhibitory neurons would have been
compromised by mouse-to-mouse variability (note the matched
selectivity of excitatory and inhibitory neurons within mice in Fig-
ure 3C despite overall variability across mice).
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Second, analyzing neural activity in the context of decision-
making naturally led us to make different comparisons than
those carried out previously. For example, we measured selec-
tivity for a binary choice, whereas sensory tuning curves are
measured in response to continuously varying stimuli (e.g.,
orientation). Further, we measured activity in response to ab-
stract stimuli, the meaning of which was learned gradually by
the animal. This may recruit circuits that differ from those sup-
porting sensory processing in passively viewing mice. Finally,
we used stochastically fluctuating multisensory stimuli, which
have not been evaluated in mouse V1. Future studies that
examine the tuning of V1 neurons to the sensory stimulus used
here will determine whether V1 inhibitory neurons will be as
sharply tuned as excitatory neurons to the stimulus. This is a
possibility; the tuning strength of interneurons can vary substan-
tially for different stimulus features. For instance, PV neurons in
V1 have particularly poor tuning to orientation, but their tempo-
ral-frequency tuning is considerably stronger (Znamenskiy
et al., 2018).

We not only studied expert animals but also evaluated how
acquiring expertise modulates activity. We observed that
learning increased the number of choice-selective neurons
and decreased noise correlations, indicating plasticity and
reorganization of connections. Population responses preced-
ing the two choices thus became progressively more distinct
with training. Importantly, these changes occur in parallel in
excitatory and inhibitory cells. Our findings are partially in
agreement with those in V1, in which learning improves tuning
to sensory stimuli in excitatory (Schoups et al., 2001; Poort
et al.,, 2015; Khan et al., 2018) and some inhibitory (Khan
et al., 2018) neurons. However, V1 excitatory neurons have
stronger tuning to sensory stimuli early in training (Khan et al.,
2018); in contrast, in our study, the magnitude of choice selec-
tivity in the PPC was the same for both cell types throughout
training (Figure 8). Primate studies have likewise observed
that perceptual learning changes the selectivity of neurons
(Freedman and Assad, 2006; Law and Gold, 2008; Viswanathan
and Nieder, 2015) and reduces noise correlations (Gu et al.,
2011; Ni et al., 2018).

Finally, we demonstrated that learning-induced changes in
selectivity were closely associated with changes in animal per-
formance, in keeping with primate studies of decision-making
(Law and Gold, 2008). This, together with our finding that
changes in population activity do not purely reflect movements
(Figure S12), corroborates the suggested role of the PPC in map-
ping sensation to action (Law and Gold, 2008; Raposo et al.,
2014; Pho et al., 2018). Future experiments using causal manip-
ulations will reveal whether the increased choice selectivity we
observed in the PPC originates there or is inherited from else-
where in the brain.

By measuring cell-type-specific activity in the parietal cortex
during decision-making, we observed that excitatory and inhib-
itory populations are equally choice selective and that these
ensembles emerge in parallel as mice become skilled decision-
makers. These results argue against models with non-specific
connectivity between excitatory and inhibitory neurons, at least
in decision circuits. Future modeling efforts can incorporate sub-
networks and evaluate their effect on key model outputs, such as



reaction time distributions and firing rates. Such studies will shed
light on how microcircuits of inhibitory and excitatory neurons
vary across areas in their selectivity and specificity of connec-
tions and will reveal the circuit architectures that allow equally
selective inhibitory and excitatory neurons.
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CalmAn: computational toolbox for large scale Calcium Imaging Analysis https://github.com/flatironinstitute/CalmAn N/A

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Anne K. Churchland
(churchland@cshl.edu). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Gad2-IRES-CRE (Taniguchi et al., 2011) mice were crossed with Rosa-CAG-LSL-tdTomato-WPRE (aka Ai14; Madisen et al., 2010) to
create mice in which all GABAergic inhibitory neurons were labeled. Adult mice (~2-month old; female and male) were used in the
experiments.

METHOD DETAILS

Surgical procedure

Meloxicam (analgesic), dexamethasone (anti-inflammatory) and Baytril (enrofloxacin; anti-biotic) were injected 30min before surgery.
Using a biopsy punch, a circular craniotomy (diameter: 3mm) was made over the left PPC (stereotaxic coordinates: 2 mm posterior,
1.7 mm lateral of bregma (Harvey et al., 2012) under isoflurane (~5%) anesthesia. Pipettes (10-20 um in diameter, cut at an angle to
provide a beveled tip) were front-filled with AAV9-Synapsin-GCaMP6f (U Penn, Vector Core Facility) diluted 2X in PBS (Phosphae-
buffered saline). The pipette was slowly advanced into the brain (Narishige MO-8 hydraulic micro-manipulator) to make ~3 injections
of 50nL, slowly over an interval of ~5-10 min, by applying air pressure using a syringe. Injections were made near the center of crani-
otomy at a depth of 250-350 um below the dura. A glass plug consisting of a 5mm coverslip attached to a 3mm coverslip (using
IR-curable optical bond, Norland) was used to cover the craniotomy window. Vetbond, followed by metabond, was used to seal
the window. All surgical and behavioral procedures conformed to the guidelines established by the National Institutes of Health
and were approved by the Institutional Animal Care and Use Committee of Cold Spring Harbor Laboratory.

Imaging

We used a 2-photon Moveable Objective Microscope with resonant scanning at approximately 30 frames per second (Sutter Instru-
ments, San Francisco, CA). A 16X, 0.8 NA Nikon objective lens was used to focus light on fields of view of size 512x512 pixels
(~575 um x ~575 pum). A Ti:sapphire laser (Coherent) delivered excitation light at 930nm (average power: 20-70 mW). Red
(ET670/50 m) and green (ET 525/50 m) filters (Chroma Technologies) were used to collect red and green emission light. The micro-
scope was controlled by Mscan (Sutter). In mice in which chronic imaging was performed during learning, the same plane was iden-
tified on consecutive days using both coarse alignment, based on superficial blood vessels, as well as fine alignment, using reference
images of the red channel (tdTomato expression channel) at multiple magnification levels. For each trial, imaging was started 500ms
before the trial-initiation tone, and continued 500ms after reward or time-out. We aimed to image in the center of the window for all
mice, but in one animal (Mouse 4), some tissue regrowth obscured the signal in this region and so imaging was performed slightly
further back.

Decision-making behavior

Mice were gradually water restricted over the course of a week, and were weighed daily. Mice harvested at least 1 mL of water per
behavioral/imaging session, and completed 100-500 trials per session. After approximately one week of habituation to the behavioral
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setup, 15-30 training days were required to achieve 75% correct choice. Animal training took place in a sound isolation chamber. The
stimulus in all trials was multisensory, consisting of a series of simultaneous auditory clicks and visual flashes, occurring with Poisson
statistics (Brunton et al., 2013; Odoemene et al., 2018). Multisensory stimuli were selected because they increased the learning rate
of the mice, a critical consideration since GCaMP6f expression can be unreliable over a long period of time. Stimulus duration was
1000 ms. Each pulse was 5 ms; minimum interval between pulses was 32 ms, and maximum interval was 250 ms. The pulse rate
ranged from 5 to 27 Hz. The category boundary for marking high-rate and low-rate stimuli was 16 Hz, at which animals were rewarded
randomly on either side. The highest stimulus rates used here are known to elicit reliable, steady state flicker responses in retinal ERG
in mice (Krishna et al., 2002; Tanimoto et al., 2015).

Mice were on top of a cylindrical wheel and a rotary encoder was used to measure their running speed. Trials started with a 50 ms
initiation tone (Figure S1A). Mice had 5 s to initiate a trial by licking the center waterspout (Marbach and Zador, 2017), after which the
multisensory stimulus was played for 1 s. If mice again licked the center waterspout, they received 0.5 pL water on the center spout,
and a 50ms go cue was immediately played. Animals had to report a choice by licking to the left or right waterspout within 2 s. Mice
were required to confirm their choice by licking the same waterspout one more time within 300 ms after the initial lick (Marbach and
Zador, 2017). The “confirmation lick” helped dissociate the choice time (i.e., the time of first lick to the side waterspout), from the
reward time (i.e., the time of second lick to the side waterspout); it also helped with reducing impulsive choices. If the choice was
correct, mice received 2-4 pL water on the corresponding waterspout. An incorrect choice was punished with a 2 s time-out. The
experimenter-imposed inter-trial intervals (ITls) were drawn from a truncated exponential distribution, with minimum, maximum,
and lambda equal to 1 s, 5's, and 0.3 s, respectively. However, the actual ITls could be much longer depending on when the animal
initiates the next trial. Bcontrol (Raposo et al., 2014) with a MATLAB interface was used to deliver trial events (stimulus, reward, etc)
and collect data.

Logistic regression model of behavior

A modified version of a logistic regression model in (Busse et al., 2011) was used to assess the extent to which the animal’s choice
depends on the strength of sensory evidence (how far the stimulus rate is from the category boundary at 16Hz), the previous choice
outcome (success or failure) and ITl, (the time interval between the previous choice and the current stimulus onset) (Figure S1B). The
model has the form

1

- 1
1+e2 eq

p

Z=Bo+(81R1 + Br2R2 + B3Rs + B4R4 + BisRs + BreRe) + (B1S1 + Bs2S2) + (BrF1 + BroF2)

where p is the probability of choosing left. Stimulus strength (R) was divided into 6 bins (R4 to Rg). Previous success (S) was divided
into 2 bins (S to S»), with S referring to success after along ITI (> 7sec) and S, to success after a short ITl (< 7sec). Previous failure (F)
was divided into 2 bins (F4 to F»), with F; referring to failure after a long ITl and F; to failure after a short ITl. For example, if a trial had
stimulus strength 3 Hz, and was preceded by a success choice with ITI 5 s, then R, and S; would be set to 1 and all other R, Sand F
parameters to 0 (Figure S1B).

For each session the scalar coefficients Bo, 8,1 t0 816, Bs1, Bs2, Brr, @and Br were fit using MATLAB glmfit.m. Figure S1B left shows £,4
to B,6. Figure S1B middle shows fs; and 8., and Figure S1B right shows §;; and Br.

ROI (region of interest) extraction and deconvolution

The recorded movies from all trials were concatenated and corrected for motion artifacts by cross-correlation using Discrete Fourier
Transform (DFT) registration (Guizar-Sicairos et al., 2008). Subsequently, active ROIs (sources) were extracted using the Constrained
Nonnegative Matrix Factorization (CNMF) algorithm (Pnevmatikakis et al., 2016) as implemented in the CalmAn package (Giovan-
nucci et al., 2019) in MATLAB. The traces of the identified neurons were AF/F normalized and then deconvolved by adapting the
FOOPSI deconvolution algorithm (Vogelstein et al., 2010; Pnevmatikakis et al., 2016) to a multi-trial setup. This was necessary
because simply concatenating individual trials would lead to discontinuities in the traces, which could distort estimates of the
time constants. Each value of Foopsi deconvolution represents spiking activity at each frame for a given neuron. We have referred
to the deconvolved values as “inferred spiking activity” throughout the paper. The deconvolved values do not represent absolute
firing rates, so they cannot be compared across neurons. However, for a particular neuron, higher inferred spiking activity means
higher firing rate. We elected to base our analyses on inferred spiking activity rather than fluorescence activity because peak ampli-
tudes and time constants of the fluorescence responses vary across neurons, affecting subsequent analyses (Machado et al., 2015;
Helmchen and Tank, 2019).

We adapted the FOOPSI for multi-trial setup as follows. For each component, the activity trace over all the trials was used to deter-
mine the time constants of the calcium indicator dynamics as in (Pnevmatikakis et al., 2016). Then the neural activity during each trial
was deconvolved separately using the estimated time constant and a zero baseline (since the traces were AF/F normalized). A dif-
ference of exponentials was used to simulate the rise and decay of the indicator.
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Neuropil Contamination removal

The CNMF algorithm demixes the activity of overlapping neurons. It takes into account background neuropil activity by modeling it as
a low rank spatiotemporal matrix (Pnevmatikakis et al., 2016). In this study a rank two matrix was used to capture the neuropil activity.
To evaluate its efficacy, we compared the traces obtained from CNMF to the traces from a “manual” method similar to (Chen et al.,
2013; Figure S14): the set of spatial footprints (shapes) extracted from CNMF were binarized by thresholding each component at 20%
of its maximum. The binary masks were then used to average the raw data and obtain an activity trace that also included neuropil
effects. To estimate the background signal, an annulus around the binary mask was constructed with minimum distance 3 pixels
from the binary mask and width 7 pixels (Figure S14A). The average of the raw data over the annulus defined the background trace,
which was subtracted from the activity trace. The resulting trace was then compared with the CNMF estimated temporal trace for this
activity. The comparison showed a very high degree of similarity between the two traces (Figure S14; example component; r = 0.96),
with the differences between the components being attributed to noise and not neuropil related events. Note that this “manual”
approach is only applicable in the case when the annulus does not overlap with any other detected sources. These results demon-
strate the ability of the CNMF framework to properly capture neuropil contamination and remove it from the calcium traces.

ROI inclusion criteria

We excluded poor-quality ROls identified by the CNMF algorithm based on a combination of criteria: 1) size of the spatial component,
2) decay time constant, 3) correlation of the spatial component with the raw ROI image built by averaging spiking frames, 4) corre-
lation of the temporal component with the raw activity trace, and 5) the probability of fluorescence traces maintaining values above an
estimated signal-to-noise level for the expected duration of a calcium transient(Giovannucci et al., 2019) (GCaMP6f, frame rate:
30Hz2). A final manual inspection was performed on the selected ROls to validate their shape and trace quality.

Identification of inhibitory neurons
We used a two-step method to identify inhibitory neurons. First, we corrected for bleed-through from green to red channel by consid-
ering the following regression model,

ri(t) = 81, +sg;(t) + € (Equation 2)

where, r;(t) and g;(t)are vectors, indicating pixel intensity in red and green channel, respectively, with each component of the vector
corresponding to one pixel in the ROI, i labels ROI (presumably each ROl is a neuron), §;is the offset, 1, is a vector whose components
are all 1, and s is the parameter that tells us how much of the green channel bleeds through to the red one.

It is the parameter s that we are interested in. To find s, we define a cost function, C,

C= / dtZ|ri(t) — B1p+sgi(t) | (Equation 3)

and minimize it with respect to s and all the ;. The value of s at the minimum reflects the fraction of bleed-through from the green to
the red channel. That value, denoted s*, is then used to compute the bleedthrough-corrected image of the red-channel, denoted / via
the expression

I=R-sG (Equation 4)

where R and G are the time-averaged images of the red and green channels, respectively.
Once the bleedthrough-corrected image, /, was computed, we used it to identify inhibitory neurons using two measures,

1) A measure of local contrast, by computing, on the red channel (/, Equation 4), the average pixel intensity inside each ROI
mask relative to its immediate surrounding mask (width = 3 pixels). Given the distribution of contrast levels, we used two
threshold levels, T and T, defined, respectively, as the 80" and 90t percentiles of the local contrast measures of all ROls.
ROIs whose contrast measure fell above T; were identified as inhibitory neurons. ROls whose contrast measure fell below
Tewere identified as excitatory neurons, and ROls with the contrast measure in between Tg and T; were not classified as either
group (“unsure” class).

In addition to a measure of local contrast, we computed for each ROI the correlation between the spatial component (ROl im-
age on the green channel) and the corresponding area on the red channel. High correlation values indicate that the ROl on the
green channel has a high signal on the red channel too; hence the ROl is an inhibitory neuron. We used this correlation measure
to further refine the neuron classes computed from the local contrast measure (i.e., measure 1 above). ROls that were identified
as inhibitory based on their local contrast (measure 1) but had low red-green channel correlation (measure 2), were reset as
“unsure” neurons. Similarly, ROls that were classified as excitatory (based on their local contrast) but had high red-green chan-
nel correlation were reclassified as unsure. Unsure ROIs were included in the analysis of all-neuron populations (Figure 3A left);
but were excluded from the analysis of excitatory only or inhibitory only populations (Figure 3A middle, right). Finally, we manu-
ally inspected the ROls identified as inhibitory to confirm their validity. This method resulted in 11% inhibitory neurons, which is
within the range of previous studies (10%-20%: Rudy et al., 2011); (15%: Beaulieu, 1993); (16%: Gabbott et al., 1997); (< 5%:
de Lima and Voigt, 1997); (10%-25%: de Lima et al., 2009).

N
-
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ROC analysis

The area under the ROC curve (AUC) was used to measure the choice preference of single neurons. Choice selectivity was defined as
the absolute deviation of AUC from chance level: choice selectivity = 2*|AUC-0.5|. To identify significantly choice-selective neurons,
for each neuron we performed ROC on shuffled trial labels (i.e., left and right choices were randomly assigned to each trial). This pro-
cedure was repeated 50 times to create a distribution of shuffled AUC values for each neuron (Figure S3A, “shuffled”). A neuron’s
choice selectivity was considered to be significant if the probability of the actual AUC (Figure S3A, “real”) being drawn from the shuf-
fled AUC distribution was less than 0.05. Time points from 0-97 ms before the decision were used to compute the fraction of choice-
selective neurons (Figures 2B and 8G).

Decoding population activity

Alinear SVM (Python sklearn package) was trained on each bin of the population activity in each session (non-overlapping 97ms time
bins). To break any dependencies on the sequence of trials, we shuffled the order of trials for the entire population. To avoid bias in
favor of one choice over the other, we matched the number of left- and right-choice trials used for classifier training. L2 regularization
was used to avoid over-fitting. 10-fold cross validation was performed by leaving out a random 10% subset of trials to test the
classifier performance, and using the remaining trials for training the classifier. This procedure was repeated 50 times. A range of
regularization values was tested, and the one that gave the smallest error on the validation dataset was chosen as the optimal reg-
ularization parameter. Classifier accuracy was computed as the percentage of testing trials in which the animal’s choice was accu-
rately predicted by the classifier, and summarized as the average across the 50 repetitions of trial subsampling. A minimum of 10
correct trials per choice was required in order to run the SVM on a session. Inferred spiking activity of each neuron was z-scored
before running the SVM.

When comparing classification accuracy for excitatory versus inhibitory neurons, the excitatory population was randomly sub-
sampled to match the population size of inhibitory neurons to enable a fair comparison (Figure 3, blue versus red). To compare
the distribution of weights in the all-neuron classifier (Figure 3 black), the weight vector for each session was normalized to unity
length (Figures 3D-3F).

When decoding the stimulus category (Figure S6B), we used stimulus-aligned trials, and avoided any contamination by the choice
signal by sub-selecting equal number of left and right choice trials for each stimulus category. When decoding trial outcome (Fig-
ure S6C), we used outcome-aligned trials, and avoided contamination by the choice or stimulus signal by subselecting equal number
of trials from left and right choice trials for each trial outcome.

Stability
To test the stability of the population code, decoders were trained and tested at different time bins (Kimmel et al., 2016; Figure 4). To
avoid the potential effects of auto-correlation, we performed cross validation not only across time bins, but also across trials. In other
words, even though the procedure was cross validated by testing the classifier at a time different from the training time, we added
another level of cross-validation by testing on a subset of trials that were not used for training. This strict method allowed our measure
of stability duration to be free of auto-correlation effects.

As an alternative measure of stability, the angle between pairs of classifiers that were trained at different moments in the trial was
computed (Figure S7C). Small angles indicate alignment, hence stability, of the classifiers. Large angles indicate misalignment, i.e.,
instability of the classifiers.

Noise correlations

To estimate noise correlations, the order of trials was shuffled for each neuron independently. Shuffling was done within the trials of
each choice, hence retaining the choice signal, while de-correlating the population activity to remove noise correlations. Then we
classified population activity in advance of left versus right choice (at time bin 0-97 ms before the choice) using the de-correlated
population activity. This procedure was performed on neural ensembles of increasingly larger size, with the most selective neurons
(the ones with the largest value of |AUC-0.5|) added first (Figure 7A). To summarize how noise correlations affected classification
accuracy in the population (Figure 7B), we computed, for the largest neural ensemble (Figure 7A, max value on the horizontal
axis), the change in classifier accuracy in the de-correlated data (“pseudo populations™) versus the original data. This analysis
was only performed for the entire population; the small number of inhibitory neurons in each session prevented a meaningful com-
parison of classification accuracy on real versus pseudo populations.

To measure pairwise noise correlations, we subtracted the trial-averaged response to a particular choice from the response of
single trials of that choice. This allowed removing the effect of choice on neural responses. The remaining variability in trial-by-trial
responses can be attributed to noise correlations, measured as the Pearson correlation coefficient for neuron pairs. We also
measured noise correlations using the spontaneous activity defined as the neural responses in 0-97 ms preceding the trial initiation
tone (Figures S10A and S10C). We computed the pairwise correlation coefficient (Pearson) for a given neuron with each other neuron
within an ensemble (e.g., excitatory neurons). The resulting coefficients were then averaged to generate a single correlation value for
that neuron. This was repeated for all neurons within the ensemble (Figure 6).

To compute pairwise correlations on excitatory and inhibitory neurons with the same inferred spiking activity (Figures S10D and
S10E), we computed the median inferred spiking activity across trials for individual excitatory and inhibitory neurons in a session.
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The medians were then divided into 50 bins. The firing-rate bin that included the maximum number of inhibitory neurons was iden-
tified (“max bin”); inhibitory and excitatory neurons whose firing rate was within this “max bin” were used for the analysis. The firing
rates were matched for these neurons because their median firing rate was within the same small bin of firing rates. Pairwise corre-
lations were then computed as above.

Learning analysis

In 3 of the mice, the same field of view was imaged each session during learning. This was achieved in two ways. First, the vasculature
allowed a coarse alignment of the imaging location from day to day. Second, the image from the red channel was used for a finer
alignment. Overall, most neurons were stably present across sessions (Figure S11). This suggests that we likely measured activity
from a very similar population each day. Importantly, however, our conclusions do not rely on this assumption: our measures and
findings focus on learning-related changes in the PPC population overall, as opposed to tracking changes in single neurons. To
assess how population activity changed over learning, we evaluated classification accuracy each day, training a new decoder for
each session. This approach allowed us to compute the best decoding accuracy for each session.

“Early days” (Figure 8; Figures S12 and S13) included the initial training days in which the animal’s performance, defined as the
fraction of correct choices on easy trials, was lower than the 20th percentile of performance across all days. “Late days” (Figure 8;
Figures S12 and S13) included the last training days in which the animal’s behavioral performance was above the 80™ percentile of
performance across all days.

To measure the timing of decision-related activity (Figures 8C and 8E), we identified all sessions in which classifier accuracy was
significantly different than the shuffle (t test, p < 0.05) over a window of significance that was at least 500 ms long. We defined the
“choice signal onset” (Figures 8C and 8E) as the trial time corresponding to the first moment of that window. Sessions in which the
500 ms window of significance was present are included in Figure 8C. The number of points (and hence the relationship between
session number and color in Figure 8C) differs slightly across the three groups. This is because on some sessions, the window of
significance was present in one group but not another. For example, in a session the population including all neurons might have
a 500 ms window of significance, hence it will contribute a point to Figure 7C left, while the population with only inhibitory neurons
might be only transiently significant for < 500ms, hence it will be absent from Figure 8C right.

Modeling decision circuits
We considered a linearized rate network of the form

av
d—tE: — VE+Weeve —Wgevi+hs + &
dV/ _
dt ~
where E and / refer to the excitatory and inhibitory populations, respectively, ve and v are vectors of firing rates (ve = vg1, veo, ..., and
similarly for v), Weg, Wg;, Wie and Wy, are the connectivity matrices (Wg; indicates connection from inhibitory to excitatory neuron), hs
is the input, with s either 1 or 2 (corresponding to left and right licks), and & is trial to trial noise, taken to be zero mean and Gaussian,
with covariance matrices

—Vi+Wigeve — Wyev +§

(Ecke) =Zee
(E&) =Zy.

For the input we’ll assume that about half the elements of hg are hy for the rightward choice and — hpfor the leftward choice, and the
rest are —hg for the rightward choice and hg for the leftward choice. We used hg = 0.1. The noise covariance is diagonal but non-
identity, with diagonal elements distributed as

\/ EEEJ/ ~ Unlf(a — g, U+g>

0

. 0
\/2//,/7 ~ Unlf(a'7§70’+§>.
The goal is to determine the value of s (that is, determine whether hy or h, was present) given the activity of a subset of the neurons
from either the excitatory or inhibitory populations. We’ll work in steady state, for which

VE=Wee+ve — Wgv,+hs + &
vi=Wigeve — Wy v, +§.

Solving for ve and v, yields
vE=dJg* <hs +& — WE/'E:)
vi=dJpe <E/ +Wie(hs + &)
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where

1

Je= (l — Wee +WEI'WIE> )

J= (l +W, + WIE ’WEI> a

~WEIEWEI(I +W//)71
Wie=Wie(l - Wee) ',

and I is the identity matrix. We are interested in the decoding accuracy of a sub-population of neurons. For that we’ll use a matrix D,
that picks out n components of whatever it’s operating on. So, for instance, D, - v is an n-dimensional vector with components equal
to n of the components of vg.

For a linear and Gaussian model such as ours, in which the covariance is independent of s, we need two quantities to compute the
performance of an optimal decoder: the difference in the means of the subsampled populations when h4 versus h, are present, and
covariance matrix of the subsampled populations. The difference in means are given by

A<Dn'VE> = Dn'JE'Ah
A<Dn'\//> = Dn'J/'W/E'Ah

where Ah is the difference between the two inputs,
Ah= h1 — h2.
The covariances are given by
~ ~T
Cov[D,*ve] =D, Je- [EEE +We - Zy 'WEI] “Jg+D,
~ ~ T
COV[Dn ’V/} =D,J;* [2// +WieZee .WIE} 'JIT . DZ
where T denotes transpose. Combining the mean and covariance gives us the signal to noise ratio,
T.T X ST 7 T
(S/N).=Ah-JL-D’ - (Dn-JE- [EEE +wE,-2,,-wE,] -JE-Dn) -D,*Je+Ah
T - T -1 N
(S/N),=Ah-W,.-J]-D] - <D,,-J,- [2,, +w,E-zEE-w,E] -J,T-D;) -DyJ;*Wie+Ah .

The performance of an optimal decoder is then given by

fraction correct = @[ -~ SIN
V2

where @ is the cumulative normal function. All of our analysis is based on this expression. Differences in fraction correct depend only
on differences in the connectivity matrices, which we describe next.

Connectivity matrices

We consider three connectivity structures: completely non-selective, signal-selective, and signal-to-noise selective (corresponding
to Figures 5A-5C, respectively). In all cases the connectivity is sparse (the connection probability between any two neurons is 0.1).
What differs is the connection strength when neurons are connected. We describe below how the connection strength is chosen for
our three connectivity structures.

Non-selective

The connectivity matrices have the especially simple form

WazB . o
with probability ¢
W, =4 VN P ’
afij =
0 otherwise

where «, Be {E,I}, N(=Ng +N,) is the total number of neurons, and w,; are parameters.

Signal-selective

We divide the neurons into two sets of excitatory and inhibitory sub-populations, as in Figure 5B. The connection strengths are still
given by the above expression, but now « and 8 acquire subscripts that specify which population they are in: «, € {E1,E>,l1,l2}, with
E4 and /1 referring to population 1 and E» and I, to population 2. The within-population connection strengths are the same as for the
non-selective population (w,g = Wag, i = 1,2), but the across-population connection strengths are smaller by a factor of p,

Wy g, _

Wy 5

Neuron 705, 165-179.e1-e8, January 8, 2020 e6

CellPress




CellPress

fori=1 and j=2 or vice-versa. The value of p determines how selective the sub-populations are: p =0 corresponds to completely
selective sub-populations while p =1 corresponds to the completely non-selective case.

SNR- selective

We choose the connectivity as in the non-selective case, and then change synaptic strength so that the inhibitory neurons receive
stronger connections from the excitatory neurons with high signal to noise ratios. To do that, we first rank excitatory units in order of
ascending signal to noise ratio (by using D+ in the expression for (S/N). in the previous section).

4
r,
W/E,ij - WIE,ij (Nilg)

where r; is the rank of excitatory j in the order of ascending signal to noise ratio and, recall, Ng is the number of excitatory neurons. This
downweights projections from low signal to noise ratio excitatory neurons and upweights connections from high signal to noise ratio
neurons. Finally, all elements are scaled to ensure that the average connection strength from the excitatory to the inhibitory network is
the same as before the substitution.

Simulation details
o Noise level () =1.25
@ Breadth of noise level distribution (6) = 0.75
e Excitatory — excitatory coupling (wge) = 0.25
o Inhibitory — inhibitory coupling (wy) = —2
@ Excitatory — inhibitory coupling (reference) (W;g)) =0.87
® Inhibitory — excitatory coupling (reference) (wg)) =-0.87
o Connection probability (c) = 0.1
o Number of excitatory neurons (Ng) = 4000
o Number of inhibitory neurons (N;) = 1000
o Number of readout neurons (n) = 50
e Input strength (hg) = 0.1
@ Selectivity index (p) = 0.75

The simulation parameters are indicated above. In addition, there are a number of relevant details, the most important of which is
related to the input, hs. As mentioned in the previous section, about half the elements of hs are hq for the rightward choice and — hg for
the leftward choice, and the rest are hg for the leftward choice —hg for the rightward choice. This is strictly true for the completely non-
selective and signal to noise selective connectivity; for the signal selective connectivity, we use hg; = hq for the rightward choice and —
ho for the leftward choice when excitatory neuron i is in population 1, and hg; = hg for the leftward choice and —hq for the rightward
choice when excitatory neuron i is in population 2. In either case, however, this introduces a stochastic element: for the completely
non-selective and signal to noise selective connectivities, there is randomness in both the input and the circuit; for the signal selective
connectivity, there is randomness in the circuit. In the former case, we can eliminate the randomness in the connectivity by averaging
over the input, as follows.

Because the components of Ah are independent, we have

(Ah;Ahg;) = ;( AR, )
where §; is the Kronecker delta (6; =1 if i =j and zero otherwise). Because Ahg; is either +hg or — hg, we have
(AhAh) = 4hZl
where | is the identity matrix. Thus, when we average the signal to noise ratios over Ah, the expressions simplify slightly,

N - . -1
M:trace{ (D,,-JE- [EEE+WE,-2,,-W;,] -JL-D;) -Dn-JE-JE-D;}
4z

~ ~ -1 ~ ~

<(S4/7l_%l)’>:trace{ (D,,-J,- [2,, +w,E-zEE-w,TE] -J,T-D,f) -D,,-J,-W,E-W,TE-J,T-D,T,} .
To avoid having to numerically average over input, we used these expressions when computing decoding accuracy for the
completely non-selective and signal to noise selective connectivity. That left us with some randomness associated with the networks
(as connectivity is chosen randomly), but that turned out to produce only small fluctuations, so each data point in Figures 5A and 5C
was from a single network. For the signal selective connectivity (Figure 5B), the network realization turned out to matter, so we aver-
aged over 25 networks, and for each of them we did a further averaging over 100 random picks of the 50 neurons from which we
decoded.
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In Figure 5, the x axis is the ratio of the average connection strength from excitatory to inhibitory neurons to the average connection
strength from inhibitory to excitatory neurons. This was chosen because it turned out to be the connectivity parameter with the largest
effect on decoding accuracy. That in turn is because it turns out to be equivalent to the input noise to the inhibitory population. To see
why, make the substitution

Wie —yWe
Wg— 7 "Wg,.

By letting v — vv;, we see that this is formally equivalent to letting & — y~'&;, which in turn corresponds to letting £ — y~2%,. Thus the
x axis in Figure 5 can be thought of as the axis of decreasing input noise to the inhibitory neurons.

We produced a range of values for y by changing the coupling strengths between excitatory and inhibitory populations, while keep-
ing their product constant at a reference value

0),,,(0)
WigWg = W,(,_: W;(:-/

Immunofluorescence staining for TdTomato and GABA

To determine the fraction of inhibitory neurons that were labeled in our experiments, we performed double Immunofluorescence (IF)
staining using antibodies against tdTomato (anti-RFP(tdTomato) Rockland 600-401-379) and GABA (anti-GAD67(GABA) MAB5406,
EMD Millipore). Also, we used DAPI to stain the nuclei (Figure S15; GABA: green; tdTomato: red; DAPI: blue). 5 coronal sections which
included the area PPC (Allen Brain Atlas) were used to quantify the fraction of overlap between GABA and tdTomato. We found GABA
and tdTomato highly colocalized (Figures S15B-S15D; red and green are co-expressed in the vast majority of cells): 98.2% of
tdTomato neurons expressed GABA, and all of the GABAergic neurons expressed tdTomato. These results indicate a very high level
of selectivity and specificity for the labeling of inhibitory neurons in GAD-Cre;Ai14 mice, confirming original reports for these trans-
genic lines (Taniguchi et al., 2011).

QUANTIFICATION AND STATISTICAL ANALYSIS

Our simultaneous imaging and decision-making dataset includes 135 sessions from 4 mice (45, 48, 7, and 35 sessions per mouse).
Median number of trials per session is 213, 253, 264, and 222, for each mouse. On average, 480 neurons were imaged per session,
out of which ~40 neurons were inhibitory and ~330 were excitatory. Approximately 100 neurons per session were not classified as
either excitatory or inhibitory since they did not meet our strict cell-type classification criteria (see below). In 3 of the mice, the same
group of neurons was imaged throughout learning (35-48 training days).

All analyses were performed on inferred spiking activity. Traces were down-sampled, so each bin was the non-overlapping moving
average of 3 frames (97.1 ms, which we refer to as 97 ms). Inferred spiking activity for each neuron was normalized so the max spiking
activity for each neuron equaled 1. The trace of each trial was aligned to the time of the choice (i.e., the time of the 15! lick to either of
the side waterspouts after the go tone). Two-tailed t test was performed for testing statistical significance. Summary figures including
all mice were performed on the time bin preceding the choice, i.e., 0-97 ms before choice onset. All reported correlations are Pear-
son’s coefficients. Analyses were performed in Python and MATLAB.

DATA AND CODE AVAILABILITY

All the data used in the paper are publicly available on CSHL repository: http://repository.cshl.edu/36980/. Further, all the data is
converted into the NWB format (Neurodata Without Boarders; Teeters et al., 2015; Rubel et al., 2019), and is available on CSHL re-
pository: http://repository.cshl.edu/id/eprint/37693
Code for data processing and analysis is publicly available on github: https://github.com/farznaj/imaging_decisionMaking_exc_inh
Code for converting data to NWB format is also available on github: https://github.com/vathes/najafi-2018-nwb
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