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Abstract

The construction of biologically plausible models of neural circuits is crucial for understand-
ing the computational properties of the nervous system. Constructing functional networks
composed of separate excitatory and inhibitory neurons obeying Dale’s law presents a num-
ber of challenges. We show how a target-based approach, when combined with a fast online
constrained optimization technique, is capable of building functional models of rate and spik-
ing recurrent neural networks in which excitation and inhibition are balanced. Balanced net-
works can be trained to produce complicated temporal patterns and to solve input-output
tasks while retaining biologically desirable features such as Dale’s law and response
variability.

Introduction

Cortical neurons typically require only a small fraction of their thousands of excitatory inputs
to reach firing threshold. This suggests an overabundance of excitation that must be balanced
by inhibition to keep neurons within their functional operating ranges. An interesting sugges-
tion is that this balance does not require fine-tuning of synaptic strengths, what we will call
parametric balance, but rather occurs dynamically [1-8].

Dynamically balanced neural network models were originally introduced to account for the
high variability of neural activity. Various forms of excitatory-inhibitory balance have been
proposed for recurrent network models [9]. Because our aim is to construct networks that
operate autonomously, we need to be in a strong-coupling regime, which means that the bal-
ance we discuss is of the ‘tight’ variety as defined by Hennequin et al. [9]. We subdivide tight
balance into two classes, parametric and dynamic, depending on whether or not fine tuning of
parameters is involved in maintaining the tight balance. This is important within the context
of our study because, although parametrically balanced networks can be constructed and func-
tion as models, it is unclear whether the required fine tuning could be accomplished in a bio-
logical network. For this reason, we place emphasis on ways of training networks that result in
a dynamically balanced configuration.

Variants of balanced networks have been used to model response selectivity [10, 11] and
associative memory [12], but a general approach to task learning in these models has not
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previously been developed. The challenge is that learning can push a network that is initially in
a dynamic balance into the parametrically balanced regime. We present approaches for train-
ing networks while retaining dynamic balance.

In addition to the issues with balancing outlined above, training networks with sign-con-
strained weights presents some technical challenges. Batch approaches to learning can handle
sign constraints quite efficiently, but batch training of recurrent networks often leads to insta-
bilities during testing, even when the training error is small [13, 14]. The use of an online strat-
egy is critical to quench spontaneous chaotic fluctuations during training and to assure
stability of the trained dynamics. These requirements demand fast learning algorithms capable
of adjusting weights as the network is running. In previous work [13, 15, 16], this was achieved
by using a recursive least squares (RLS) algorithm that has the favorable feature of constraining
network dynamics while permitting fluctuations during training that are critical for post-train-
ing stability. Unfortunately, when sign-constraints are imposed, standard online training pro-
cedures, including RLS, are no longer viable. Here, we developed a fast sign-constrained
online method that proves effective at training both rate and spiking balanced network
models.

Results
Dynamically and parametrically balanced networks

The networks we consider are composed of either spiking neurons interacting via synaptic
currents or so-called rate units. A task is generally specified by a set of desired output signals
F''(¢), for k=1, 2, .. Koy that are read out through channels z;. These signals can either be
autonomously generated by the network or arise in response to K;, external inputs F}"(¢)
entering the network through input weight vectors wi". The input weights are generally chosen
randomly and not subject to learning, whereas the readout weights, which are not sign-con-
strained, are trained using RLS. Recurrent weights are modified by an algorithm we discuss
below. In rate models, z, = W' - ¢(x), where ¢(x) is the rate activity for a unit with total input
x. The equations of the N units of the network, fori=1,2, ..., N, are

K;

in

N
=t =1

where I € {Ig, I1} is a vector of constant and uniform external currents into the E and I popula-
tions, and w'} are the weight vectors for each of the K;, input channels. To verify that our
approach is general, we employ a variety of activation functions, e.g. halftanh (¢(x) = 6(x) tanh
(x)), sigmoid (¢(x) = 1/(1 + exp(—x))) or ReLU (¢(x) = 0(x)x), where 0 is the Heaviside step
function (6(x) = 1 when x > 0 and 0 otherwise).

For the spiking networks, we use leaky integrate-and-fire (LIF) dynamics (although good
performances can be achieved with other neuronal models) of the form

dv. N Jn,
WG = Vet Y D @
j=1 k=1
ds, f
Ty = _Si+st(5(t_ti) (3)
t.<t

where 7,, is the membrane time constant (7,,, = 20 ms in all simulations) and # is a list of the
times when neuron i fired. When V(f) reaches the spiking threshold Vy, (usually set to 1) a
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spike is emitted and the voltage V; is reset to V.., and kept constant for a period of time equal
to the refractory period 7,.s. We typically take either 7,.f= 2 ms or no refractoriness (7..f = 0),
and 7, = 50 ms or 7, = 100 ms. The readouts for spiking networks are given by z, = w{™ - s.

For networks with distinct excitatory and inhibitory neurons, the connection matrix J in
Eqs (1) and (2), with elements Jj, is divided into 4 blocks, Jgg, Jer, Jir and Jii, where the sub-
scripts denote the type of post- and pre-synaptic neurons, respectively. For Ng excitatory and
N; inhibitory neurons, the dimensions of these submatrices are Ng x Ng, Ng x Ny, N X Ny and
N x N, respectively. To encompass both Eqs 1 and 2, we introduce the symbol  to signify
either ¢(x) or s and define the vectors ri and r; for excitatory and inhibitory neurons. Finally,
we write each connection submatrix as the sum of its mean over elements and fluctuations
around this mean: J, = J,/+/Ny + 0]y, where xand v = E or 1and ] is a scalar. We are
interested in properties of the middle two terms in Eqs (1) and (2) and, for later analysis, we
average these over both units (denoted by a square bracket) and time (denoted by an angle
bracket). Thus, we define

Ile :jEEmE\/NI;J'_iEImI\/N;—’_IE and ;11 :lemE\/N;+jIImI\/N;+Ilﬂ (4)
where mx = [(rx)], and
g = [5Ihh<rh> + 5IEI<TI>} and = [5IIE<rE> + 5lu<r1>] : (5)

The existence and type of balance exhibited by a network can be characterized by the sizes
of h and c. We focus on cases with equal numbers of E and I neurons, so we refer to both N
and Nj as being of order N, where N = Ng + Nj is the total number of units. For a network to
function properly, the sum of h and c in both the excitatory and inhibitory cases should be of
order 1 despite the presence of the factors \/N;, and /N in the expressions for k. In a standard
dynamically balanced model, with random connectivity, this is assured by making I of order
/N; and I of order /N;,. If appropriate balance stability conditions are met, my and m; will
dynamically adjust themselves to make both /’s of order 1, not of order v/N. The condition
determining these average rates is

my/Ny Iy 7EE 71-:1
Je + ~0, where Jf={( |, (6)
ml\/ﬁl II ]IE ]H

and the symbol ~ implies equality to within a discrepancy of order 1 between terms of order
V/N. Our study is designed to find a learning procedure that assures that a similar cancelation
occurs when the connection matrix is modified to make the network perform a task. The chal-
lenge is that, when learning adjusts the connection strengths, parametric rather than dynamic
balance can arise.

One form of parametric balance occurs when I = I; = 0 (or of order 1). In this case, if the
trained recurrent weights scale like 1/4/N and the network requires appreciable firing rates to
do the task, Eq 6 must be evaded, because this would imply small rates if satisfied. A learning
rule can achieve this by setting the determinate of /% to 0. This keeps & of order 1, despite the
lack of a balancing external current. Parametric balance can also occur when I and I; are of
order v/N. Again, this is signaled by the learning rule setting det/" = 0 but, in this case, &
remains of order v/N, that is, it does not balance. Instead, the overly large term / is canceled,
in this case, by terms of similar magnitude in c. The fine tuning required for the learning pro-
cedure to make the appropriate adjustments is why we call this parametrically balanced.
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In our experience, many learning schemes result in connection matrices that realize a
parametric rather than dynamic balance [12]. This comes about even if the initial connectivity
J has a J*T with determinant of order 1. One common way for this to occur is if learning sets
the excitatory and inhibitory mean weight values so they are proportional to each other. We
now show that an online learning scheme, combined with the appropriate regularization, can
construct dynamically balanced models that solve a variety of tasks.

Full-FORCE in E/I networks

We build upon a previously developed target-based approach for training rate and spiking net-
works [17-19] (Fig 1). A basic problem in network learning is that it is not clear what different
units should do to help support the desired output. To solve this problem, we use a target-
based approach [20]. If we knew the total synaptic input, Jr that each unit needed to function
properly, finding the desired connection matrix J would be a simple least-squares problem.
The trick is knowing what the targets are for these inputs. Full-FORCE is a scheme in which
the target inputs are obtained from a second ‘teacher’ network [17-19].

In the full-.FORCE scheme, the teacher network (T), which in the cases we consider is an E/

I rate model, is driven by the desired output signals F{*'(¢). This is done by adding a term
K

out

2wl F to Eq (1) with random weights w) (we use superscript T to denote quantities asso-
ciated with the teacher network). We then extract a set of target currents,

K,

out

hi(t) = ZL]T- Sl (1) + D_wiF (1) (7)

k=1

from the teacher network. The full recurrent synaptic matrix J of the network we are training
(called the student network; variables without superscripts T are associated with the student
network) is then trained to generate these target currents autonomously without any driving
input. Specifically, for each neuron the training goal is to minimize the cost function, for a run
of duration t,,,, E = ¥, E; with

N

E - ti / () 3 J,005(6)) + o, (8)

j=1

R; is a regularization term to be discussed below. In our case, the expression in Eq (8) is mini-
mized subject to sign constraints on the elements of the matrix J. The teacher networks we use
are usually in a dynamically balanced configuration, but this is not essential.

In the original full-FORCE scheme [17, 18], the cost (8) is minimized using RLS but, as dis-
cussed above, this is not a viable procedure when sign constraints are imposed. Instead, we use
bounded constrained coordinate descent (BCD) [21], which proves to be a fast and reliable
strategy for training both rate and spiking models with sign constrained weights (Methods).
The resulting learning algorithm is fast enough to effectively clamp the network dynamics
close to the desired trajectory during training, suppressing chaos and assuring stability.

Training dynamically balanced networks

For a given task, the distribution of synaptic weights after training depends on a variety of fac-
tors including the initial value of the ] matrix, which we call J°, the choice of regularizer, and
whether the network is tonically driven by large constant external current (I in Eqs (1) and
(2)). We begin by considering a task in which the network must autonomously (meaning with
time-independent input) generate the periodic output shown in Fig 2A. When no constant
external current is present (I = 0), Eq (6) requires a parametric balance for any appreciable
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readout z(t)
2

_—
Time

Fig 1. Schematic of the target-based method. Target currents 4! (¢) are produced by a balanced teacher network (T,
Left) driven by the desired output. The student network (Right) is trained to reproduce the target currents
autonomously. We train the recurrent weights of both the excitatory (E) and inhibitory (I) populations, together with

the connections between them. A linear decoder w°" is trained with a standard online method (RLS) to reproduce the

prescribed output target from a readout of the neurons in the network.

https://doi.org/10.1371/journal.pone.0220547.9001

(larger than order 1/+/N) activity to exist in the network. The resulting parametrically bal-
anced network can perform the task. We find that an extensive fraction of synaptic weights are
set to zero by the training algorithm, so that the resulting networks display a connection prob-
ability ~ 0.5 and a symmetric weight distribution (Fig 2Bi).

In the presence of constant external currents of order v/N, the network has the potential to
be dynamically balanced, but we find that, with a commonly used L2 weight regularization
(R, = >_,J}), the network also goes into a parametrically balanced configuration, though of a
different form. This occurs regardless of the structure of the teacher network or the value of
det J* for the initial weights J°. In this case, the weight distribution typically shows an exten-
sive number of zero weights and a distribution of excitatory synapses that is approximately
Gaussian but cut-off at zero (Fig 2Bii). The determinant of J*is small but, unlike the case with
zero external current, it is not of order 1/v/N (Fig 2C).

To determine the nature of the balance exhibited by the network trained with the L2 regu-
larizer, we determined the scaling with N of various input terms, focusing on input to excit-
atory units. Both h, and ¢ (Eqs 4 and 5) are of order v/N, but they cancel to produce a total
current h, = h, + ¢, of order 1 (Fig 2D). This is indicative of parametric balance.

These results illustrate that dynamically balanced networks do not arise naturally from
learning, even if the teacher network and the initial weight matrix of the student network are
configured to be dynamically balanced and I is of order v/N. The learning algorithm with L2
regularization tends to push the weight matrix to a parametrically balanced regime. We found
a simple way to prevent this: choose J° to satisfy the dynamically balanced condition (stable
solution to Eq (6) with order 1 rates) and use regularization to keep J from straying too far
from J°. The regularization that does this still uses an L2 norm, but on the difference between J
and J° rather than on the magnitude of J. Specifically, we define what we call the JO regularizer
by R, =>.(J; — ]8)2. With this regularizer, the weights after training display a Gaussian-like
distribution (Fig 2Biii), block-wise average weights scaling as 1/ V/N and a J*f determinant of
order 1 (Fig 2E). Furthermore, the total current sy and the two components we have intro-

duced, h, and cg, are all of order 1 (Fig 2F). Thus, dynamically balanced networks trained by
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Fig 2. Trained balanced networks. A: Target output F*** (in black) for all the networks in this figure. Red curve is an example readout z(f) from a trained spiking
network of N = 200 units. B: Histogram of recurrent weights in three prototypical trained rate networks (N = 300, ¢ = halftanh): i, Zero external current (I = I; = 0) and
L2 regularization; ii, I, I;] = (0.31/N, 0.4,/N;) and L2 regularization; iii, balanced initialization and JO regularization, external currents as in ii. Regularization
parameter a = 1.0 in all three cases. C: Time course of the determinant of the effective matrix J*" during training of spiking networks of size N = 200 for I of order v/N
(grey dashed lines) and I of order 1 (black line on horizontal axis). Both cases use L2 regularization. D: The full excitatory current and its two defined components (Eqs 4
& 5) as a function of N for a parametrically balanced network performing the task in panel A. E: Time course of the determinant of the effective matrix Jt during training
of spiking networks of size N = 200 for I of order /N and JO regularization. F: The full excitatory current and its two defined components (Eqs 4 & 5) as a function of N
for a dynamically balanced network performing the task in panel A. Results in C-F are from ten different initializations of J° or J*. G: The total average current onto E
neurons (hg) and its excitatory (hgg) and inhibitory (hg;) components as a function of network size N for balanced networks (balanced initialization and JO regularization,
full lines) and networks trained with zero external currents (I = 0 and L2 regularization, dashed lines). H: Eigenvalue spectrum of the weight matrices J of two networks

trained to perform the task in panel A (N = 200, ¢ = halftanh). Blue: Zero external current (I = I; = 0) and L2 regularization; red: balanced initialization and JO
regularization.

Im())

https://doi.org/10.1371/journal.pone.0220547.9002

means of JO regularization, even when they are fairly small, have average activities and currents
in agreement with what is expected from a dynamically balanced regime.
To further examine the different forms of balance in these networks, we divide the total cur-

rent h, = h, + ¢, into a component arising from excitatory input (including I;), which we call
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hgg, and a component from inhibitory input, hg;. In the I = 0 parametrically balanced case,
both these components and the total current are of order 1 (Fig 2G). In contrast, in the case of
the dynamically balanced network generated using JO regularization (Fig 2G), the total current
is of order 1, while both its excitatory and inhibitory components scale like v/N. Another dif-
ference between the parametrically balanced I = 0 (PB) and the dynamically balanced (DB) is
seen in the spectrum of their connectivity matrices (Fig 2H): dynamically balanced networks
show large negative eigenvalues [9].

We can use BCD and J0 regularization to train dynamically balanced spiking networks as
well (Fig 3). One common consequence of employing long synaptic time-scales is that a bursty
spiking behavior emerges. The level of burstiness in trained networks can be varied by means
of the w), parameter, that scales the intensity of the learned currents, generated by the slow syn-
apses, with respect to the contribution provided by the random synapses with a fast time-con-
stant (Methods). The irregularity of spiking in trained networks depends on the amplitude of
the current fluctuations. To generate irregular spiking (Fig 3B-3D), we included random
untrained fast-synapses (with synaptic time constant 2 ms; see [18]) and an average excess of
inhibition. The level of spiking irregularity can be quantified by computing the distribution of
coefficient of variations (CV) of interspike intervals across the neurons of the network (Fig
3D). The average CV~1.

Perturbations in trained balanced networks. Balanced networks trained on autonomous
oscillation tasks can suppress homogeneous perturbations in a way similar to the decorrelation
effect mediated by the strong inhibitory feedback in such networks [3, 22]. As an example, we
consider spiking networks trained to reproduce autonomously the periodic signal shown in
Fig 2A. We constructed both dynamically and parametrically balanced examples of these net-
works and perturbed them at random times with 10 ms duration current pulses. These pulses
come in two types, either identical for all neurons, or identical in magnitude but opposite in
sign for excitatory and inhibitory neurons, with positive input to the excitatory neurons. We
call these E+I and E-I perturbations, respectively. Balanced networks generally exhibit a strong
resilience to E+I perturbations (Fig 4A, top) compared to external pulses in the E-I direction
(Fig 4A, bottom). The latter produce a longer lasting transient and a subsequent larger phase
shift in the network output. This response to temporary imbalance in the collective activity of
the E and I populations is reminiscent of balance-amplified transients, previously described by
a linear theory [23].

The role of inhibitory feedback is also apparent when a rate network is trained to produce
the same rhythmic behavior. In this case, we perturbed the network with ongoing noise rather
than with a transient. Homogeneous E+I input disturbances are cancelled by strong inhibitory
recurrence in dynamically (Fig 4B, top) but not in parametrically (Fig 4B, bottom) balanced
networks. E-I perturbations produce the strongest effect, and random heterogeneous perturba-
tions produce similar effects in both networks, which are intermediate between E+I and E-I
perturbations in the dynamically balanced case. E-I perturbations are somewhat amplified for
the parametrically balanced case (Fig 4B, bottom). For these studies, we examined the effect
not merely on the output, as in Fig 4A, but rather on the full network activity, defining

A = fdtzz'(xi(t) — )?i(t))z
) Sy (x(1))?

, ©)

where x(f) is the noiseless activity of the rate network and ¥(t) the perturbed activity. We
expect similar results to hold for spiking networks [5].

Autonomous activity in trained networks. We found that the generation of oscillatory
activity in trained network (such as that shown in Fig 5A) could be described by a simple
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Fig 3. Dynamics in dynamically balanced trained spiking networks. A: Input currents onto a neuron in a spiking
network trained to produce a superposition of 4 sine waves as in Fig 2A. Red curve: total excitatory current hg + Ig;
Blue curve: inhibitory synaptic current hy; black curve: total current h. B: Voltage traces of 5 sample units the network
with random fast synaptic currents (time constant 2 ms). C: Spike raster of 200 neurons for the network in B. D:
Histogram of the coefficient of variation of interspike intervals across neurons for the network in B.

https://doi.org/10.1371/journal.pone.0220547.g003

mechanism, at least when a single frequency dominates that output pattern. After training, the
spectrum of the synaptic matrix J usually shows a complex conjugate pair of eigenvalues with
largest real part. This is not limited to target-based learning methods: we trained networks of
different sizes with a variety of activation functions using back propagation through time
(either employing stochastic gradient descent or ADAM [24]), and we consistently observed
this phenomenon for different target readout signals of various frequencies. For differentiable
activation functions, the oscillatory frequency is approximately predicted to be f=Im(1,)/
2n1Re(A;), where A is one of the two complex eigenvalues with largest real part of the matrix
J¢'| 0 (Fig 5B), with entries J;; ¢/ (xo), and ¢'| o is the derivative of the activation function com-
puted at the (not necessarily zero) fixed point x, from which the oscillations arise by means of
a supercritical Hopf transition.

This analysis can be verified after training is completed by artificially lowering the effective
gain of the obtained connectivity matrix J using a fictitious gain parameter g in the testing
phase, such that Jiest = giest/. Nonlinear oscillations arise at the critical value g where the pre-
viously stable fixed point loses its stability as the two dominant conjugate eigenvalues cross the
imaginary axis (Fig 5C). At the bifurcation, the frequency is controlled by the imaginary part
of the dominant eigenvalues and the network dynamics is essentially two-dimensional. AS g
is increased, there is a small change of frequency of the readout signal as nonlinear effects start
to grow and other frequencies and harmonics kick in (Fig 5B). This picture is consistent with
previous work in random E/I separated rate models [25] as well as a recent study of low-rank
perturbations to random connectivity matrices [26].
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(black curve, legend: het) or by a single common white noise input in the E+I (red curve, legend E+1I) or E-I (yellow
curve, legend E-I) direction. Top: dynamically balanced network; bottom: parametrically balanced network with zero
external input. Halftanh activation function, see Eq (9) for the definition of A,.

https://doi.org/10.1371/journal.pone.0220547.g004
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Fig 5. Nonlinear oscillations. A: Top: Balanced E/I spiking network of size N = 300 producing a sawtooth wave of frequency 1 Hz. Bottom: E/I rate
network producing a frequency-modulated oscillation obtained by F**/(#) = sin (w(#)t) with w(#) linearly increasing from 27 to 67 Hz for the first half of the
oscillation period, then reflected in time around the midpoint of the period. Parameters: N = 500, ¢ = halftanh, trained using feedback (Methods, At; = 1's).
B: Top: Eigenvalue spectrum of J,eq¢'| 10 for a dynamically balanced rate network with sigmoid activation function trained to produce a square wave

(N =200, output frequency f= 0.04, 7 = 1), for g5 = 0.8. The two red dots indicate the two conjugate eigenvalues A, , with largest real value. Bottom:
Oscillation frequency as a function of g, comparing simulation results (solid curve) with approximate prediction (dashed lines). C: Readout signal with

Zrest = 0.8 (top) and giese = 1.0 (bottom).

https://doi.org/10.1371/journal.pone.0220547.g005
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Balanced networks can also be trained to produce prescribed chaotic dynamics (like the
Lorenz attractor in Fig 6A) or multiple complex quasi-periodic trajectories. In another task,
inspired by the work of Laje, and Buonomano [15] in rate networks, and similar to recent
extensions to the QIF spiking case in [27], we trained a spiking network to reproduce a desired
transient dynamics in response to an external stimulus. To do so, we recorded innate current
trajectories h (t) generated by a randomly initialized LIF balanced network for a short period
of time (2 sec) during its spontaneous activity. We then trained the same network to reproduce
its innate current trajectories whenever a strong external input was applied (dark blue line in
Fig 6B). The brief external pulse (50 ms) is able to elicit the target trajectory, after which the
network naturally resumes its irregular activity. Finally, the example in Fig 6C shows an E/I
spiking network instructed to generate the quasi-periodic dynamics of human walking behav-
ior shortly after a 50 ms unitary pulse. We trained 56 linear decoders on the network activity
to reproduce the time-course of each joint-angle from a human Motion-Capture dataset, as in
[13, 28]. The average firing rate of the network is 20 Hz. A brief input pulse can trigger the
motion generation from asynchronous spontaneous activity or reset the phase of a previously
stable quasi-periodic dynamics.

Input-output tasks. Our learning procedure can also be employed to train dynamically
balanced E/I networks capable of performing complex temporal categorization tasks. As our
first example, a spiking network implements an exclusive OR function [18] anytime an appro-
priate sequence of inputs is presented, despite disturbance induced by its spontaneous asyn-
chronous activity (Fig 7A). In each trial, the network is presented with two pulses of durations
that are chosen randomly to be either short (100 ms) or long (300 ms), coding for the truth val-
ues 0 (False) or 1 (True). The network computes the XOR function of the two inputs and
responds with an appropriate positive or negative readout signal (duration: 500 ms) after a
delay period (300 ms). We used online BCD to train a balanced network of N = 1000 LIF neu-
rons and measured the number of correct responses. The trained network responds promptly
when the two impulses are presented at any random time over the course of its spontaneous
activity and reaches a test accuracy of 96%.

As a second example, we construct an E/I spiking network to solve a more complex interval
time-matching task, inspired by the “ready-set-go” task employed in [29]. This task has been
solved previously using networks with unconstrained synaptic weights [19]. In this task, the
network receives two brief input pulses separated by a random delay AT, and it is trained to
generate a response after exactly the same delay, following the second pulse. As in the temporal
XOR task described above, it is crucial here that the network retains information about the
first pulse during the whole delay period in the absence of any external input. Especially for
long delays AT, this task proves hard to solve. We therefore employ the heuristic technique of
“hints” previously introduced in [19]: in each training epoch, the teacher network is provided
with both a ramping up and decreasing input (dashed yellow line in Fig 7B, left) during the
two relevant delay periods. An E/I network of N = 1000 spiking neurons produces accurate
responses to random delays between 400 ms and 2 s (Fig 7B, right).

Discussion

We have introduced a fast alternative to RLS that is capable of training sign-constrained rate-
based and spiking network models and, in addition, has the promising features of good mem-
ory and computational requirements when dealing with E/I (and also sparse) models. We have
shown that this fast target-based learning scheme can be used to train balanced networks of
rate and spiking neurons for a wide variety of tasks. We described the conditions under which
dynamically balanced networks can be obtained with the training procedure. We found that,
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Fig 6. Learning chaotic trajectories and complex transient activity. A: Output of a rate network (N = 1000, halftanh
activation function) trained to produce the time course of the first coordinate of a Lorenz attractor (¢ = 10, p = 28, f = 2.67). B:
Input currents onto three representative neurons in a balanced spiking network trained to reproduce innate current
trajectories of duration 2 s after a brief stimulus (50 ms) at time 0.5 s. Network size N = 500, synaptic time constant 7, = 50 ms.
C: Balanced E/I spiking network producing walking behavior in response to a strong input pulse of duration 100 ms. Top: a
pictorial representation of the network with 56 distinct readouts (network size N = 300; synaptic time constant 7, = 50 ms).
Middle: activity of three random readout units over the course of ~ 6 s. Bottom: spike raster plot of 200 neurons in the
network.

https://doi.org/10.1371/journal.pone.0220547.9006

in the absence of proper initialization and regularization, learning dynamics is attracted to
regions of weight space with parametrically tuned connectivity, and we showed the impact of
specific weight regularizations on the weight structure of trained networks, as well as their
resilience to various external perturbations.

The regime in which we trained balanced networks to operate is an interesting one in
which the computations relevant for a particular task are performed by dynamical modes
orthogonal to the uniform modes that are constrained by the balance condition. We
motivated our interest in training networks in the dynamically balanced regime by arguing
that the order 1/v/N fine tuning required for parametrically balanced networks might be
hard for biological systems to maintain. We have looked for evidence of a higher sensitivity to
weight perturbation in the parametrically balanced networks we constructed by a variety of
methods. Unfortunately, trained recurrent networks of all types are sensitive to weight pertur-
bations and, for the N values we used, we could not detect a strong difference in the robustness
of these two network regimes. Thus, the motivation we introduced remains, at this point,
speculative.
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Fig 7. Input-output tasks. A: Example of output responses (red curves) of a balanced E/I spiking network trained on the
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curves) from a spiking E/I network trained on the Interval Matching Task to two pairs of input pulses. Right: output delay vs
target delay AT to randomly interleaved test input pulses.

https://doi.org/10.1371/journal.pone.0220547.9007

Relation to other work

We have tackled the problem of training spiking neural networks to display prescribed stable
dynamics or to solve cognitively relevant input-output tasks. A number of top-down
approaches have been proposed to train functional models of spiking networks, e.g. the neural
engineering framework [30], spike-coding [31] and nonlinear optimal control [28, 32]. These
methods are elegantly formulated and effective. Interestingly, they solve a different task than
what our procedure solves. These methods train the network to reproduce a prescribed
dynamics, whereas our method trains a network to produce a particular trajectory generated
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by those dynamics. The resulting two networks look identical as long as the prescribed trajec-
tory is being followed, but they generalize differently if the network deviates from this
trajectory.

Some variations of RLS-based training have been introduced previously to construct func-
tional models of E/I separated spiking networks. In [33], the authors employed a clipping pro-
cedure on top of a FORCE training method, which entails rank-1 updates to the original
randomly connected recurrent network, while in [18] the authors used an off-line two step
Full-FORCE procedure to train a large network performing an oscillation task. In a slightly dif-
ferent setting, the authors of [27] used Full-FORCE to train networks of quadratic integrate
and fire neurons to reproduce prescribed synaptic drive, as well as spiking rate patterns in
response to a brief strong stimulus. They provide an example of an E/I network with paramet-
rically tuned effective connectivity and no external currents that tracks its own innate trajecto-
ries, recorded over the course of spontaneous activity. Sign constraints were imposed by
eliminating updates of synapses that would pass out of the allowed ranges in a given epoch,
and those synapses were then deleted in subsequent epochs. Backpropagation has been used
successfully to train networks with separate excitatory and inhibitory units [34], and such net-
works have also been trained focusing on inhibitory plasticity [35].

Conclusions

Credit-assignment is a major problem in training spiking networks, where differentiability
issues limit the use of gradient-based optimization (but see [36-38]), which has proven very
powerful in deep feed-forward architectures. Whereas in some approaches the credit assign-
ment problem is tackled by relying on coding assumptions variably linked to optimality crite-
ria, target-based approaches, both in the context of feed-forward [20] and recurrent models,
provide a straightforward solution. As shown above as well as in a recent work [27], it is not
essential for the teacher network to be a rate model, as long as it effectively acts as a dynamic
reservoir that expands task dimensionality via its recurrency, therefore proving rich targets.

Materials and methods
Rate and spiking networks models

The weight matrix J is initialized by setting J, = Ji{//Ny + A, where X and Y are the appro-
priate E and I labels corresponding to neurons i and j. A; is a random matrix with entries that
are zero-mean Gaussian distributed with each column j having variance g*/Ny (if any synapses
violate constraints they get clipped at the first training iteration, otherwise we do not enforce
any sparseness.). To construct a balanced teacher network, we use a non-negative activation
function and appropriately choose block averages and external constant currents i oc /N for
which the balance equation yields a solution with appreciable positive rates. In those cases
where we seek to train spiking networks displaying irregular spontaneous activity with low
rates, we further adjusted the random part A;; so that ¥; A;; = 0 for each row i. By reducing
quenched fluctuations in time-averaged activities for each neuron, this method ensures that
spiking neurons trained on the teacher currents do not have abnormally low or large average
activity.

Integration of ODEs is performed by the forward Euler method using an integration time-
step not larger than At = 7/20 for rate models and At = 0.5 ms for spiking networks. We further
scale down the integration time-step in all those case where large J& and strong external cur-
rents are employed.

PLOS ONE | https://doi.org/10.1371/journal.pone.0220547  August 8, 2019 13/18


https://doi.org/10.1371/journal.pone.0220547

@ PLOS|ONE

Training dynamically balanced excitatory-inhibitory networks

Learning algorithm

Bounded coordinate descent. When training a rate or a spiking network, we seek to
match the incoming currents in the driven teacher hi(t) = 3 Ji¢(x/ (t)) + >, wi F" (t) +
I; with those in the student: hi(t) = ¥; J;j ¢(x;(t)) + I; (for a rate student) or h(t) = 3, J;; si(t) + I;
(for a spiking student). In training spiking networks, performance is virtually unchanged if
one were to choose to match the activity x(£) in the teacher rate network with the synaptic
currents h(t) = Js(t) + I in the spiking network. We sometimes allow for an additional scaling
and/or offset of the currents provided by the teacher network, so that the actual target currents
are defined as w,h! (t) + b,

The teacher and spiking network are initialized with x;(0) or v(0) i.i.d normal random vari-
ables. For input-output tasks, the two networks are initialized randomly at the beginning of
each trial. For periodic tasks, we use a single trial encompassing multiple periods of the target
signal.

Each neuron is trained independently and in parallel every At; (usually 1 ms), after a tran-
sient T,; = 20 7 to wash out the initial condition (we found this washout to facilitate learning
especially for periodic tasks). We optimize the loss-function with an online strategy by means
of Bounded Coordinate Descent (BCD). In our case, the method consists in updating, in paral-
lel for each postsynaptic neuron i, each synapse J;; one at a time by computing the optimal
solution to the one-dimensional optimization problem where all other synapses J; for k # j
are kept fixed:

[ ],.jC,.i + octW,j + Dij
/ C,+ ot

(10)

where a is the regularization parameter in Eq 8, and C is proportional to the sample-covari-
t

ance matrix of the activities C;(t) = > _ 5,(7)s;(), which gets updated at each time-step by
Cij — Cj; + s;s; (these equations are for the spiking case; for rate models s; is replaced by ¢(x;)).
The residual matrix Dj; is defined as D;(t) = S, s;(t)(h{(v) — h,(7)). After each update with

change AJj;, the ith row D;. of the residual matrix D gets updated according to

Di: _>Di: _AL]C] (11)

where C;. stands for the jth row of C. Setting W;; = Ji, where J? is the initial weight matrix, we

implement the JO regularizer. Alternatively, W;; = 0 corresponds to a simple L2 weight regular-
ization. The amount of regularization is controlled by the parameter a (see Eq (8)).

The updating schedule of weight indexes j € {1, 2, . . .N} can be either fixed or random at
every step. For easier tasks, updating a random subset of incoming synapses at each time-step
is enough to obtain good training performance (Fig 8A and 8B) at the price of slower conver-
gence. We do not update the weights when this would violate the imposed sign constraints.

One of the benefits of BCD, compared to local optimization approaches (e.g. stochastic gra-
dient decent), is its ability to keep the neural trajectory close to the target during training and
prevent the network from shutting-down.

We note that coordinate descent proves a versatile method even beyond the sign-con-
strained case. For example, in updating incoming synapses to neuron i, it is easy to account for
specific network topologies of the ] matrix by selecting a relevant subset of rows/columns of
the (symmetric) matrix Cin the update Eq (10). Recursive Least Square with skipped updates
for synapses out of the feasible region (we call this strategy Clipped-RLS) has a performance
comparable to BCD (Fig 8A), but this strategy is memory-demanding for large network sizes,
especially when dealing with dense topologies (where in-degree is O(N)). Clipped-RLS entails
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Fig 8. Some comparisons with RLS. A: Test error during training as a function of testing epoch for balanced networks of N = 200 LIF units trained on the
oscillatory task in Fig 2A with BCD (e = 0.05). Each curve shows the results obtained when only a random subset of the incoming synapses onto each
neuron gets updated. Networks were trained with feedback stabilization. Recurrent synaptic weights were updated every 20 time steps. The network was
tested each 5 periods of the oscillations (1 sec). Each point is the median over 20 random initialization of both student and teacher networks. Bars represent
90% and 10% percentile. B: Test error as a function of training epoch for networks of N = 1000 Quadratic Integrate and Fire (QIF) neurons (for details see
[27]) trained to reproduce their innate currents (task in Fig 6B) using Recursive Least Square or BCD. For both algorithms, recurrent synaptic weights were
trained once each 25 time-steps (50 ms). Output weights were trained at each time-step via RLS. No feedback stabilization was employed in conjunction with
BCD. For comparison with RLS, we employed a large value of & in BCD and did not normalize the first term of Eq (8) by f,,,,, both in panel B and C.
Parameters for QIF neurons: 7,,, = 10 ms, 7, = 100 ms, (similar to [27]), Tef = 2 ms, df = 2 ms. C: Test error during training as a function of testing epoch for
balanced networks of N = 200 LIF units trained on the oscillatory task in panel A, employing RLS with different values of the regularization parameter o.
Results for BCD are shown for reference. The network was tested each 5 periods of the oscillations (1 sec). Each point is the median over 20 random
initialization of both student and teacher networks. Bars represent 75% and 25% percentile.

https://doi.org/10.1371/journal.pone.0220547.9008

using N independent covariance matrices P;, one for each unit in the trained network, thus
amounting to storing N x (pN)* floating-point numbers (FPs). For comparison, BCD requires
2N?. Although we did not carry out systematic comparisons between Clipped-RLS and BCD,
we found, for simple oscillatory tasks in balanced networks, that Clipped-RLS works best with
bigger values of the regularization parameter o (Fig 8C), which penalizes strong deviation
from the initial condition J°, and thus acts similarly to the JO regularizer.

Regularization. In addition to the regularizations discussed in the text, we also experi-
mented with a regularization of the form

Xe{E,I},jeX

which controls the variance of the outgoing synaptic weights in each sub-population. For sim-
ple tasks, this typically produces inhibitory dominated networks with a non-singular J°,
Feedback stabilization. We experimented with a feedback mechanism that can yield sig-
nificant speed-up during training via a drastic reduction of the frequency of weight update 1/
At;. We found this method to be particularly effective in training periodic tasks. Specifically,

during training we drive the student network with a modified current b, = h, + w(t)(hT — h,).
We use x(t) = | — h|/(|h| + |I"]), with |} the Euclidian norm of the vector & (although good
training performance can be achieved with different metrics). The choice of an adaptive-gain
feedback procedure frees from hyper-parameter optimization of the time-course of x(t), which
is usually taken to be a decreasing function of time. It is also instrumental in providing a mini-
mal supervisory signal, thus allowing the student network to progressively exploit its own fluc-
tuations over the course of training to build stability around the target trajectory.

When the feedback mechanism is in place, the minimization of the cost function Eq (8)
can be carried out by quadratic programming once every At;, using the matrices C and

D (1) = S, s;(t)h{ (7). In preliminary experiments with simple periodic tasks, we found the
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interior-point method (quadprog.m in MATLAB) to work well. Results shown in the main
text were obtained with BCD, which tends to be faster.
Testing. Test error is computed over a testing period T as

_ Y m() — )’
DB SO

For input-output tasks, we randomly initialize the network state at the beginning of a test
trial. For periodic targets F°“'(#), testing is interleaved with training, so that the spiking (rate)
network state s (x) is usually close to the target trajectory. In this case, a sufficiently low test
error usually implies the presence of a stable limit cycle, and the periodic output is reproduced,
up to a phase shift, starting from any initial condition.

For the XOR task, during testing we defined a correct response when the normalized dot
product of the readout z and F° " with ¢ in the window of non-zero target, satisfied

2z (B)F ()
> 20\ X (F (1)’

(13)

> 0.5. (14)
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