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SUMMARY

Cognitive capacities afford contingent associations
between sensory information and behavioral
responses. We studied this problem using an
olfactory delayed match to sample task whereby a
sample odor specifies the association between a
subsequent test odor and rewarding action. Multi-
neuron recordings revealed representations of the
sample and test odors in olfactory sensory and
association cortex, which were sufficient to identify
the test odor as match or non-match. Yet, inactiva-
tion of a downstream premotor area (ALM), but not
orbitofrontal cortex, confined to the epoch preceding
the test odor led to gross impairment. Olfactory deci-
sions that were not context-dependent were unim-
paired. Therefore, ALM does not receive the outcome
of a match/non-match decision from upstream
areas. It receives contextual information—the iden-
tity of the sample—to establish the mapping be-
tween test odor and action. A novel population of py-
ramidal neurons in ALM layer 2 may mediate this
process.

INTRODUCTION

Brain functions deemed cognitive exhibit complexities that
extend an organism’s behavioral repertoire beyond simple
sensory-response associations, motor programs, and instructed
actions. Cognitive functions exploit contingent, hierarchical pro-
cesses of decision-making and executive control. For example,
instead of choosing an action, a decision might lead an organism
to choose a strategy, switch tasks, or make yet another decision.
Cognitive functions may also transpire over flexible timescales
without precipitating an immediate behavior, as when a decision
is based on information acquired at some moment and
combined with information acquired later.

Neural mechanisms of decision-making and executive control
have been studied primarily in the parietal and prefrontal cortex
of nonhuman primates. These studies focused mainly on
neurons that exhibit responses over long timescales and impli-
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cated processes such as working memory (Funahashi et al.,
1989; Fuster and Alexander, 1971), planned action (Cisek and
Kalaska, 2005; Evarts and Tanji, 1976; Snyder et al., 1997),
behavioral state (Harvey et al., 2012; Kadohisa et al., 2013),
representation of stimulus qualities (Freedman and Assad,
2006; Romo et al., 1999), and reasoning (Gold and Shadlen,
2007; Yang and Shadlen, 2007). The study of the neural mecha-
nisms of perceptual decision-making may therefore provide an
initial logic for higher-order cognition. This will require an under-
standing of neural circuits at a level that is not yet possible to
achieve in nonhuman primates. Thus, there has been growing
interest in the pursuit of elementary cognitive functions in the
mouse, for which genetic and viral tools for circuit manipulation
abound (Carandini and Churchland, 2013; Luo et al., 2018). The
challenge is to find simple behaviors within the mouse repertoire
that have the potential to elucidate more complex cognitive
functions.

We developed a simple task that allows us to study rudiments
of executive control and decision-making in a mouse. The task is
a variant of the logical exclusive or (XOR) problem, realized as an
olfactory delayed match to sample task (DMS; Figure 1) (Liu
et al., 2014). The mouse is exposed to a sample odor, either S
or Sg, and, after a short delay, receives a test odor, Tp or Tg.
To receive a reward, the mouse must lick to the left if the sample
and test odors are the same and to the right if they are different.
The XOR problem interests computational neuroscientists
because it cannot be solved by a simple linear classifier. Our in-
terest was in the possibility that it could be solved by a hierarchy
of decisions. For example, the mouse might use the sample odor
to decide on the appropriate association between the test odor
and the correct behavioral response—a left or right lick.

We hypothesized that this hierarchical control might be solved
by changing the configuration of cortical circuitry in the premotor
cortex, in the area anterolateral motor cortex (ALM). Studies from
Svoboda and colleagues have shown that ALM plays an essen-
tial role in behaviors in which a sensory cue serves as an instruc-
tion to lick to the left or right (Guo et al., 2014a; Li et al., 2015;
Svoboda and Li, 2018). They showed that many neurons in
ALM can hold such an instruction—or the plan to lick to the left
or right—in persistent activity through a delay period. In the
DMS task we study, the sample odor cannot provide an instruc-
tion to lick left or right, only a context to interpret the test odor.
Thus, the mouse cannot plan a lick until the arrival of the test
odor after the delay. We investigated three hypotheses for the
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Figure 1. Lick-Left Lick-Right Olfactory Delayed Match to
Sample Task

(A) Task structure. Mice are presented with two odorants (A, pinene; B,
hexenol) separated by a delay and must decide whether they are the same
(match) or different (non-match). The two odors create four unique pairs or trial
types. Match trials are rewarded on the left port and non-match on the right
(see STAR Methods).

(B) An example behavior session from a well-trained animal. The four trial types
are randomly presented in the session but grouped here for plotting. Each row
is atrial. The green, red, and gray markers on the left side of each trial denote,
respectively, the outcome of correct, error, and no choice. The A and B odors
are indicated by the light blue and light red shadings. The magenta and yellow
tick marks are the left and right licks, respectively. Mice were trained to
suppress their premature licks during the sample and delay epochs. The
sample and test epochs are 0.5 s each and the delay is 1.5 s.

(C) The proportion of correct trials in well-trained animals. Each colored line
represents data from one animal and the black line is the mean of all animals
(n=41).

(D) The DMS task is a variant of the logical XOR problem. The logical outcome
and the lick response depend on whether two bits of information are the same
or not (Tas, test odor A or B; Sps, sample odor A or B).

See also Figure S1.

involvement of ALM in this task. First, areas upstream to ALM
could solve the match/non-match discrimination and project
this solution to ALM, which organizes an appropriate lick

response. Second, ALM could decode upstream representa-
tions that combine sample and test odors to select the appro-
priate response. Third, ALM could receive information about
the identity of the sample odor to instantiate the appropriate
response to the test odor. We provide experimental evidence
for this third possibility. We show that the sample odor is repre-
sented in ALM itself, and that this representation allows ALM to
associate the test odor with the appropriate lick response.

RESULTS

Mice were trained to compare a sample and test odor, separated
by a delay, and to report their decisions of match or
non-match by licking to the left or to the right, respectively (Fig-
ures 1A, S1A, and S1B). The lick-left, lick-right design requires
distinct actions to report both match and non-match. Impor-
tantly, animals cannot solve the task until they smell the test
odor. For most experiments, we used the same two odors,
(+)-a-pinene and cis-3-hexen-1-ol (odors A and B, respectively)
on all trials. Animals were trained to suppress their premature
licks before test onset (Figure 1B) and do not appear to use licks
to represent and remember the sample odors (Figures
S1C-S1E).

Mice performed the task with a median accuracy of 90% (Fig-
ure 1C). When challenged with a novel pair of odorants after
training with pinene and hexenol, mice performed at chance level
with a high no-choice rate (Figure S1F). This suggests that the
mice failed to generalize the match/non-match rule. Rather, they
learned that test odor T, instructs lick left if preceded by sample
odor S, (AAtrial), whereas it instructs lick right if preceded by sam-
ple odor Sg (BA trial). The complementary logic holds for the test
odor Tg (Figure 1D). This flexible association between test odor
and licking response is contingent on the sample odor identity,
which must be represented through the delay in order to affect
the match/non-match decision.

We first characterize the neural representation of the sample
and test odors by surveying neural responses in the Piriform
cortex (Pir), the orbitofrontal cortex (OFC), and the ALM while
the mouse performed the DMS task. We wished to determine
whether each of these areas contain a persistent representation
of the sample odor and whether they encode the test odor in a
way that might inform the match/non-match decision. As
detailed in the next section, the findings support the possibility
that the match/non-match decision can be established within
Pir and OFC and then transmitted to the ALM to render the lick
response. We then test this model by inactivating ALM during
the sample and delay epochs of the task. We find evidence
against this model and instead establish a necessary role
of ALM during the sample and delay epochs. Finally, using
2-photon Ca imaging, we expose a class of neurons in superficial
ALM that could mediate the circuit changes required to allow
ALM to associate the test odor with an appropriate lick response.

Representations of Sensory and Motor Signals in Pir,
OFC, and ALM

We performed electrophysiological recordings in brain areas
likely to be involved in the DMS task: Pir, OFC, and ALM. Pir is
a primary olfactory sensory area (Giessel and Datta, 2014;
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Sosulski et al., 2011) that encodes odor identity. Pir projects to
OFC, a higher-order associative area that is thought to encode
value, expectation, and working memory (Bechara et al., 2000;
Mainen and Kepecs, 2009; Padoa-Schioppa and Assad, 2006;
Ramus and Eichenbaum, 2000). Figures 2A-2C provide exam-
ples of neurons that respond selectively to (1) one or the other
sample odor during the sample and delay periods (15t and 2"
columns); (2) one or the other test odor (3" column); and (3)
one or the other choice (4" column). They also show the strength
of the selectivity across all the neurons recorded. The selectivity
index quantifies the degree to which the distributions of firing
rates to the two conditions (e.g., odor A or B) are non-overlap-
ping (see STAR Methods). In what follows we refer to a neuron
as selective if the difference in the mean responses is statistically
reliable (indicated by shading in Figures 2D-2G).

More than a third of neurons (37 %) in Pir responded selectively
to either odor A or odor B during the sample epoch (Figures 2A
and 2D). Of these, 71% exhibited the same odor preference dur-
ing the sample and test epochs (Figure S2A), suggesting that
these neurons represent sensory information and encode odor
identity. Most of the sample-selective neurons responded tran-
siently (e.g., Figure 2A, left most panel), but 28% exhibited
persistent selectivity through the delay (e.g., Figure 2A, 2" panel
from left; Figure S2B). These neurons can therefore inform down-
stream neurons of the identity of the sample odor at the time of
test. A subset of Pir neurons responded to the test odor in a
way that depended on the identity of the sample odor (Fig-
ure S2C; STAR Methods). These neurons are characterized as
trial-type-selective (6.2% of all Pir neurons). Finally, 4.5% of Pir
neurons exhibited selective responses during the test epoch
that reflect either a match or non-match between sample and
test odors (Figures 2A and 2G). The information represented by
these last two classes of neurons, trial type and match/non-
match, would appear to be sufficient to guide motor output in
downstream brain areas.

In OFC, 24.5% of the neurons were odor-selective during the
sample epoch (Figures 2B and 2D) and 60% of these exhibited
the same odor preference at test (Figure S2D), suggesting that
they encode odor identity. Compared to Pir, fewer of the
sample-selective neurons in OFC exhibited persistent spiking
through the delay epoch (Figure S2E; 13% in OFC versus 28%
in Pir). Only 3.7% of the neurons were selective to trial type (Fig-
ure S2F), but a greater fraction (11%) responded selectively to
match/non-match trials (Figure 2G). Therefore, the OFC also ap-
pears to have integrated sensory inputs in a way that could guide
appropriate motor output.

Unlike Pir and OFC, which largely represent odor identity, the
dominant task-related activity in ALM was correlated with the
lick response—the outcome of the match/non-match decision;
28% of ALM neurons distinguished match from non-match trials
during the test epoch (Figures 2C and 2G). Analyses of error trials
and premature licks show that the neural activity reflects lick
direction rather than the identities of the sample and test odors
or the true match/non-match condition, consistent with the role
of ALM in motor planning (Figures S2J and S2K) (Guo et al.,
2014a; Lietal., 2015; Svoboda and Li, 2018). A largely non-over-
lapping population in ALM (12%) exhibited weak odor selectivity
during the sample epoch, and among these, 12% (less than
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1.5% overall) maintained this selectivity through the end of the
delay epoch (Figures 2D and S2H). Very few neurons exhibited
a selective response to the test odor, and only 1.4% of ALM
neurons were trial-type-selective (Figure S2I). Together, these
recordings are consistent with the known role for ALM in the
preparation of an appropriate motor response (Svoboda and
Li, 2018) following the match/non-match decision.

This survey of a sensory, association, and premotor cortex
reveals neurons in each area that exhibit one or more of the prop-
erties required to solve the DMS task: (1) a representation of the
sample odor during the delay epoch, (2) a response to the test
odor that is possibly modulated by the identity of the sample
odor, and (3) the conversion of these sensory signals to
choice-related activity (Figure 2H). Figure 3A shows the
averaged difference in firing rate to each neuron’s preferred
versus nonpreferred odor during the trial. The assignment of
preferred odor was derived from five randomly selected trials
to each odor, which are excluded from the averages. The pro-
cedure ensured an unbiased estimate of the difference (see
STAR Methods). The average difference is strongest in Pir and
weakest in ALM. In the left panel, the magnitude of the difference
reflects a combination of greater selectivity and the fraction
of neurons that are selective, as nonselective neurons drive
the average toward zero. In the right panel, the averages
comprise only the selective cases from each area (filled histo-
grams in Figure 2). All three areas contain signals that could
convey the representation of the sample odor (Pir > OFC >
ALM). However, this conclusion is based on averaged activity
across trials.

To determine whether such task relevant information is avail-
able on single trials, we trained linear classifiers to decode these
variables from simultaneously recorded neurons (from 14 to
120 simultaneously recorded neurons; see STAR Methods).
As shown in Figure 3B, all three areas contain signals that sup-
port classification of the sample odor above chance levels
throughout the sample and delay epochs. The performance of
the classifier is lower for ALM recordings compared to Pir re-
cordings, for which the sample odor identity can be decoded
throughout the delay period and into the test epoch. This
extended sample-selective response could potentially be used
to perform a comparison between sample and test odors.
Consistent with this, classification of all four trial types is possible
using the Pir recordings (Figure 3C). In this same epoch (test
odor onset to the first lick response), it is possible to decode
the binary choice from all three areas, with ALM exhibiting the
highest performance (Figure 3D).

The neural recordings and decoding analyses would appear to
support a traditional hierarchical view of the mechanism respon-
sible for resolving the match/non-match decision. That is, the
expression of the decision by the left- and right-lick neurons in
ALM could arise by reading out activity in OFC or Pir, perhaps
via another intermediate area between Pir and ALM. On this
view, ALM is only essential once the test odor arrives, when it
must either convert the match/non-match decision to a lick
response or perform a computation, similar to our decoder,
that converts the population response from upstream areas to
a lick response. Both mechanisms lead to the prediction that
inactivation of ALM during the sample and delay epochs should
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Figure 2. Neural Recordings of Pir, OFC, and ALM

(A-C) Firing rates of example neurons from Pir (A), OFC (B), and ALM (C) recordings. The rasters (top) show the times of action potentials in individual trials (rows).
Traces are mean firing rates (100 ms bins) across trials. The dotted lines delineate the sample and test epochs.

(D-G) Selectivity indices of Pir, OFC, and ALM neurons for sample odor during the sample epoch (D), sample odor during the last 0.5 s of the delay epoch (E), test
odor during the test epoch (F), and choice during the test epoch (G). n = 647, 380, and 1,086 neurons for Pir, OFC, and ALM, respectively. Shading indicates
neurons that are selective for an odor (D)-(F) or behavioral choice (G) determined by Mann-Whitney U test, p < 0.01, not corrected for multiple comparisons.
(H) Summary of the feature-selective neurons in Pir, OFC, and ALM. Left to right: proportion of neurons selective for sample odor in the sample epoch, sample
odor in the late delay, test odor in the test epoch, choice in the test epoch, and trial type in the test epoch.

See also Figures S2 and S7.
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Figure 3. Odor Selectivity and Decoding Task-Relevant Features Using the Neural Responses

(A) Population sample odor selectivity of Pir, OFC, and ALM neurons. The ordinate is the difference in firing rate to the preferred and the nonpreferred odor
(STAR Methods). The lines represent the means across neurons and the shading represents the SEM. Left graph, all recorded neurons from each area contribute
to the averages. Right graph, only neurons that are selective for sample odor in the sample and delay epochs contribute to the averages (n = 319, 105 and 147
neurons for Pir, OFC, and ALM, respectively).

(B) Performance of a support vector machine trained to classify the sample odor identity using simultaneously recorded neurons from each of the three areas.
Each thin line represents the probability of correct classifications of the held out trials using data from one session (see STAR Methods). Thick lines represent the
mean of all sessions from an area (color).

(C) Performance of a classifier of trial type using all simultaneously recorded Pir neurons from each session. Same conventions as in (A).

(D) Performance of a classifier of match/non-match trials using the neural responses after test odor onset and before the animal’s first lick. Each point represents
the performance using N randomly selected neurons as input to the classifier, calculated using sessions in which at least N neurons were recorded simulta-
neously. The traces are fits to the classifier performance (logistic regression). For each area, the performance improves as more neurons are included.

not impair performance on the task. As we next show, this tion; Figure 4C). Photostimulation of ALM in animals that did not
seemingly obvious prediction is incorrect. express ChR2 did not diminish performance (Figure 4D). Inacti-
vation of ALM caused less impairment when it was restricted
ALM Is Required for the Match/Non-match Computation to only a portion of the sample plus delay epochs (Figure 4E).
We inactivated ALM bilaterally on a fraction of the trials by Inactivation during the late delay reduced the proportion of
photostimulation of GABAergic interneurons expressing chan-  correct trials from 0.86 to 0.79, whereas inactivation during the
nelrhodopsin-2 (ChR2) (Figures 4A and S3; STAR Methods) sample and early delay reduced the proportion to 0.83. These
(Guo et al.,, 2014a; Zhao et al., 2011). Inactivation was more modest effects suggest that the impairment can be amelio-
confined to the sample and delay epochs and was tapered rated when there is a time window in which ALM can receive task
gradually at the end of the delay (see STAR Methods) such related information.
that by the onset of the test odor, ALM should have been The behavioral impairment induced by ALM inactivation is a
capable of receiving information from upstream sensory and consequence of altered activity within ALM itself during the
association areas. We reasoned that if ALM reads out the sample and delay. Photoinactivation of ALM did not affect
match/non-match decision computed in upstream areas, odor or match/non-match selectivity in upstream areas, Pir
then inactivation of ALM before the arrival of the test odor and OFC. During inactivation, the population odor selectivity in
should not impair performance. Pir or OFC did not change appreciably (Figures 41, 4J, 4L, and
Contrary to this prediction, bilateral inactivation of ALM mark-  4M), and our ability to decode match versus non-match from
edly impaired performance on the DMS task (Figure 4B). The activity was similarly unchanged (Figures 40 and 4P). Neural
proportion of correct trials decreased from 0.86 on the controltri-  recordings from ALM during silencing demonstrated that opto-
als to 0.68 (0.5 reflects chance performance). In contrast, bilat-  genetic suppression eliminated the representation of the sample
eral inactivation of OFC induced no impairment on the same odor, but neural activity returned after the laser was ramped
task (proportion correct: 0.82 and 0.84 with and without inactiva- down (Figures 4K, 4N, 4Q, and 4R). Despite their diminished
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Figure 4. Optogenetic Inactivation Experiments

(A) Schematic of the DMS and control tasks employed in the inhibition experiments (time not drawn to scale). A/B x A/B design is the same DMS task as in the
recording experiments. On inactivation trials, unless otherwise indicated, the laser was on for 2 s including a 0.25 s power ramp-down at the end (tapered
blue bar). In the interleaved A/B x A/B and C x C/D task, the delay epoch is 4 s (STAR Methods).

(legend continued on next page)
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performance, animals invariably licked to one of the two ports in
inactivation trials, and there was no consistent change in the re-
action time (Figures S4A and S4B). From these observations, we
conclude that the impairment was not explained by a loss of pro-
cessing capacity in Pir or OFC or from physiological sequelae of
photoinactivation of ALM that might affect its function during the
test epoch. This last conclusion deserves further scrutiny.

Apossible concern is that the inactivation of ALM during sample
and delay epochs disrupts the ALM circuitry such that it is unable
to process information about the test odor or receive information
about the decision from an upstream area. We evaluated this pos-
sibility with two control experiments that required the mice to lick
to the left or right based on the identity of a test odor but did not
require a comparison of the test odor to the sample odor. In the
first control, an uninformative sample odor A was presented on
all trials, but the mouse was rewarded for licking left or right for
test odor A or B, respectively (AA and AB trials; Figure 4A).
Inactivation during the sample and delay epochs produced
minimal impairment (0.91 to 0.88 correct; Figure 4F).

In the second control, we incorporated two additional trial
types into the AB x AB design using two new odors (C and D).
In these CC and CD trials, as in the previous control, the correct
lick behavior was determined only by the test odor. The six trial
types were randomly interleaved (Figure 4A). Inactivation of
ALM during the sample and delay epochs led to minimal impair-
ment in CC and CD trials (0.94 to 0.91 correct), whereas signifi-
cant impairment was replicated in the interleaved DMS trials
(0.82 to 0.68 correct; Figure 4G). The degree of impairment on
each type of experiment is captured by a simple statistic: the
log probability ratio of correct choices with and without inactiva-
tion (Equation 4). We used Monte Carlo methods to estimate the
magnitude and uncertainty of this statistic for each of the exper-
imental and control experiments. As is clear from Figure 4H,
inactivation impaired performance selectively when it was tar-
geted to ALM and when the sample odor was informative (Fig-
ure 4H, sample informative tasks versus sample uninformative
tasks, p < 0.0001; STAR Methods). Further, the laser introduced
no side bias in the CC/CD control (8, = —0.46, SEM = 0.40,
p = 0.25, Equation 8; see STAR Methods), demonstrating that

the bias observed in some of the DMS trials is not due to unbal-
anced inactivation of the two hemispheres (see also Figure S4C).

These control experiments demonstrate that after recovery
from inactivation, ALM is capable of processing information
that instructs a licking response via a simple association
between two odors and two actions. The impairment on the
DMS task must therefore arise by interfering with the process
that allows the sample odor to establish, on each ftrial, the
appropriate association between test odor and lick response.
Moreover, it implies that this process occurs in ALM.

Enrichment of Sample-Selective Neurons in ALM

Layer 2

Based on the neural recordings, the necessity of ALM during the
sample and delay seems highly perplexing. At the end of the
delay period, less than 1.5% of neurons in ALM had activity
that was informative about the identity of the sample. We consid-
ered that we might have missed neurons, especially from super-
ficial cortical layers (Figure S2L; see also Figure 3D in Guo et al.,
2017). We therefore examined neural responses in ALM with
2-photon calcium imaging while mice performed the DMS task.
Imaging was performed in mice expressing the calcium indicator
GCaMP6f in pyramidal cells (Chen et al., 2013; Madisen et al.,
2015) (STAR Methods). Consistent with our electrical recordings,
calcium imaging revealed that ~37% of the neurons were
choice-selective across all cortical depths examined (Figures
S5A and S5B).

However, we also observed a large subset of neurons with
striking odor selectivity during the sample and delay epochs (Fig-
ures 5A, S5C, and S5D). Interestingly, the odor-selective calcium
activity was heterogeneous in its timing, showing a variety of
latencies and timescales (Figures 5B-5E). Some of the signals
spanned the sample and part of the delay period, peaking at
consistent times across trials (long duration, low scatter; e.g.,
Figure 5C). Other neurons exhibited more transient responses
that occurred at different times across trials (short duration,
high scatter; e.g., Figure 5D). Although they are ordered on
the graph for visualization, these brief, scattered activations
appeared random. For example, their timing is uncorrelated in

(B) Proportion of correct trials in the A/B x A/B task with and without bilateral ALM inactivation. Each thin line represents data from one animal. The thick line is
the combined performance from 4,092 trials (14 animals). Statistical reliability of effects in panels (B)-(G) is based on permutation tests (STAR Methods) (¥, **, and

*** denote P < 0.01, 0.001, and 0.0001).

(C) Proportion of correct trials in the A/B x A/B task with and without bilateral OFC inactivation (7 animals, 2,278 trials).

(D) Proportion of correct trials in the A/B x A/B task by ChR2 non-carriers with and without sham ALM inactivation (2 animals, 437 trials).

(E) Effect of inactivation during portions of the sample and delay epochs (5 animals, 3,732 trials). Same conventions as in (B)—(D). Ctrl, no inactivation; S+D1,
sample and first 1.5 s of the delay; D2, last 1.0 s of the delay; S+D, sample and delay.

(F) Proportion of correct trials in the A x A/B control task with and without bilateral ALM bilateral inactivation (9 animals, 2,198 trials).

(G) Proportion of correct trials in the interleaved A/B x A/B and C x C/D task with and without bilateral ALM inactivation (9 animals, 2,728 trials).

(H) ALM inactivation caused greater impairment on the A/B x A/B task than on the control tasks and OFC inactivation on the same A/B x A/B task. The effect of
inactivation is expressed as the difference in log probability of a correct choice with and without inactivation (STAR Methods; Equation 4). Distributions were
estimated by a bootstrap procedure. The largest effects were evident when ALM was inactivated and the sample was informative (t test, d.f. determined by size of
dataset). Table S1 provides additional identifying information about the experiments displayed in this panel.

(I-K) Population sample odor selectivity of Pir (I), OFC (J), and ALM (K) with and without ALM inactivation. The ordinate is the difference in firing rate to the
preferred and the nonpreferred odor across neurons (see STAR Methods). Note the different ordinate scales. Shading is SEM. n = 188, 104, and 470 neurons for
Pir, OFC, and ALM, respectively. The same neurons are used in the analyses below.

(L-N) Population test odor selectivity of Pir (L), OFC (M), and ALM (N) with and without ALM inactivation.

(O-R) Performance of the SVM decoder to classify match/non-match using Pir response (O), match/non-match using OFC responses (P), sample odor identity
using ALM responses (Q), and test odor identity using ALM responses (R) with and without ALM inactivation.

See also Figures S3 and S4.
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Figure 5. Two-Photon Calcium Imaging of
ALM

(A) Sample odor selectivity of ALM neurons in an
example animal. The columns show all task-
related neurons at five cortical depths. Each row is
a neuron, sorted by the mean standardized
selectivity during the sample and delay epochs.
The standardized odor selectivity is the difference
between the AF/F to odor A and B, normalized by
the standard deviation (STAR Methods).

(B-D) AF/F traces of example sample-selective
neurons. Each row is a trial, grouped by sample
odor identity and sorted by peak response time to
sample odor. The three examples illustrate varia-
tion in response duration (B, D, brief; C, long) and
consistency in timing (B, C, consistent across tri-
als; D, scattered across trials).

(E) Time course of sample-selective responses.
Each point shows the duration of the calcium tran-
sient (abscissa) against the scatter of the peak
response (ordinate). Response duration is the me-
dian duration of each neuron’s response. Scatter is
defined as the interquartile range of the peak
response times across trials (STAR Methods). The
three colored points correspond to the neurons
shown in panels (B)-(D).

(F-H) Selectivity indices of neurons across five
cortical depths for sample odor, test odor, and
choice, respectively. n = 614, 514, 608, 512, and
379 neurons for the five cortical depths, respec-
tively, from superficial to deep layers. Shading
denotes statistical significance (p < 0.01, Mann-
Whitney U test, two-tailed). (F) Selecivity for sample

odor during the sample and delay epochs; (G)
Selectivity for test odor; (H) Selectivity for choice.

See also Figures S5 and S6.

100-200 pm
200-300 pm
c
S
300-400 ym S
Q.
o
400-500 pm &
500-600 ym 01
0

-1 05 0 05 1
Selectivity index

simultaneously recorded neurons (Figures S6A and S6B). These
characterizations also hold for the estimated spike rates,
achieved through deconvolution of the raw Ca signals (Figures
S6C-S6F), despite a revision of the estimates of signal duration.
From the imaging data, we educe that a subpopulation of ALM
neurons represents the identity of the sample odor through the
sample and delay period.

These sample selective neurons appear to constitute a distinct
cell type. They were concentrated in the superficial layer 2 (L2;
100-200 um from the pial surface), where 18% responded selec-
tively to one or the other sample odor (Figures 5A and 5F). They
were only rarely encountered between 200 um and 600 um below
the pial surface (p < 0.05, Kruskal-Wallis test with Tukey-Kramer
multiple comparison). This layer specificity is not explained by an
inability to measure calcium signals in deeper layers, as compara-
ble fractions of choice-selective cells were found at all depths
examined (p = 0.49, Kruskal-Wallis test; Figures 5H and S5A).
Indeed, a decoder, trained to classify the sample odor, performs
much better using L2 neurons than using neurons from the other

layers we sampled (Figure 6A). In contrast,
the capacity to decode choice is similar
across all layers (Figure 6B). Most of these
sample-selective neurons did not respond
tothe test odor (87 of 108, 81%; Figure 6C),
and only a few were choice-selective or active during licking
(Figure 6D). Their time course distinguishes them from the rare
odor-selective responses encountered in our electrical recordings,
and the absence of lick and choice activity distinguishes them from
the dominant cell type in ALM.

The L2 neurons might resolve the perplexing inactivation
result. ALM contains a representation of the sample odor
throughout the delay period. It is therefore possible that the
match/non-match decision is made within ALM, based on two
external inputs that convey (1) the identity of the sample odor
during the sample or delay period and (2) the identity of the
test odor after the delay. Indeed, the activity of the L2 neurons
during the sample and delay is informative about whether the
mouse will ultimately succeed in the trial by making the correct
choice. This assertion is supported by the logistic regression
analysis summarized in Figure 6E. The concentration of errors
in the upper left corner of the graph demonstrates that errors
were more likely to occur when neurons selective for sample
odor A, say, responded relatively weakly to sample odor A or
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Figure 6. Sample-Selective Cells in ALM L2

(A and B) Performance of a support vector machine trained to classify the
sample odor identity (A) or choice (B) using a subset of simultaneously imaged
neurons from each of the five cortical depths. Each thin line represents the
probability of correct classifications of the held out trials using data from one
session (see STAR Methods). Thick lines represent the mean of all sessions
from a depth.

(C) Selectivity indices of ALM L2 neurons for sample and test odors. Red, blue,
or purple denotes neurons selective for the sample odor, test odor, or both,
respectively. Non-selective neurons are shown in gray.

(D) Selectivity indices of ALM L2 neurons for sample odor and choice. Red,
blue, or purple denotes neurons selective for the sample odor, choice, or both,
respectively. Non-selective neurons are shown in gray.

(E) Trial-by-trial association between neural response and choice accuracy.
The heatmap shows the fraction of errors when L2 neurons responded weakly
to the preferred odor (pref) or strongly to the nonpreferred odor (non). The
criteria for weak and strong are varied parametrically up to the median for pref
(abscissa) and above the median for non (ordinate). The graph shows an
increased probability of an error when the pref response is in the lower 20th
percentile or the non response is in the upper 30th percentile. Logistic
regression demonstrates that the effect is reliable across the dataset
(p < 0.001; STAR Methods).

respond more strongly than usual to sample odor B. Such single
trial correlations between neural response and choice, termed
choice probability, have been exploited in perceptual decisions
to support the proposal that a neuron’s response contributes
to the decision process, either directly or via correlation with
other neurons with similar response selectivity (Britten et al.,
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1996). In the present case, the contribution is not to the match/
non-match or lick-left lick-right decision. Rather, it is a decision
about which mapping—from test odors to lick responses—to
apply on each trial (Figure 1D).

Potential Mechanisms

We do not yet know the mechanism by which a representation of
the sample odor in ALM affects the match/non-match decision,
but it appears that some process requiring ALM in the sample
and delay period must establish a state at the time of test that
can implement the correct mapping between externally derived
signals about the identity of the test odor and activation of the
appropriate lick neurons. Several possible mechanisms could
underlie the formation of such a state. One possibility is that
the state is defined by the persistent firing of sample-selective
neurons, as in standard attractor models of working memory
(Figure 7A) (Amit and Brunel, 1997; Goldman-Rakic, 1995). In
this model, the requirement of ALM during the sample and delay
epochs (Figure 4) demands that ALM itself maintain a persistent
representation of the sample odor.

We determined whether ALM and/or earlier stages form
persistent representations by controlling whether or not recur-
rent connections at each stage are modified during network
training (Figure 7, curved arrows; see STAR Methods). If the
persistent sample representation is maintained in upstream
areas, but not ALM, the network model predicts that inactivating
ALM would cause little behavioral impairment (Figure 7B, top
trace). This is inconsistent with our experimental observation. If
the persistent sample representation is only maintained in
ALM, the network model predicts that inactivation during the
sample and early delay epochs should produce gross impair-
ment (Figure 7B, bottom trace). This too is inconsistent with
the data (Figure 4E). The weaker effects of inactivation when it
was restricted to portions of the sample and delay epochs
suggest that ALM’s representation of the sample odor can be
partially recovered by activity in upstream areas. Thus, our
experimental results argue for models in which multiple brain
regions, including both ALM and additional upstream areas,
each maintain a persistent representation of the sample odor
(Figure 7B, middle trace).

The attractor models posit that a representation of the sample
odor is maintained through the persistent firing of neuronal
assemblies. However, this memory might be maintained in other
ways. We observed that impairment was more profound when
ALM was silenced during the entire sample and delay epochs,
compared with inhibition only late in the delay (Figure 4E). This
suggests that a trace of the sample odor identity can persist in
ALM during silencing. This trace may be maintained by facilita-
tion or depression of synapses formed by axons of odor-selec-
tive neurons onto lick-left or lick-right neurons (Mongillo et al.,
2008) (Figure 7C). It could also be achieved through dendritic
gating mechanisms that selectively route test odor information
depending on the sample odor identity (Yang et al., 2016) (Fig-
ure 7D). In this model, neurons selective for a particular sample
odor enhance or suppress dendritic branches of lick-selective
neurons where either A or B inputs concentrate. This synaptic
modulation could be controlled by sample-selective neurons
in ALM layer 2. Indeed, the observation of sample-selective
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Figure 7. Neural Models of the DMS Task

(A) Three variants of the recurrent neural network
model. Each variant comprises three stages,
corresponding roughly to primary olfactory sensory
areas, intermediate association areas, and ALM.
The stages are connected by fixed, random, feed-
forward projections (horizontal straight arrows).
Top: all recurrent connections within each stage are
trained. Middle: recurrent connections within Pir
and OFC, but not ALM, are trained. Bottom: only
recurrent connections within ALM are trained. Note
that only those recurrent connections that are
trained are able to support persistent activity that is
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responses that occur throughout the sample and delay (Fig-
ure 5E) could explain why impairment is reduced when inactiva-
tion is limited to only a part of the sample and delay periods. If
instead of participating in a dynamical computation to sustain
the representation of the sample odor, these neurons alter the
state of the neurons that will ultimately process the test odor,
then full impairment could be ameliorated by an interruption to
the inactivation at any time (cf. Kopec et al., 2015).

DISCUSSION

Decisions that engage cognitive capacities entail at least three
elemental processes: (1) the maintenance of information over
timescales that can extend for seconds prior to a response; (2)
the association of the same information with different responses;
and (3) the association of the same response with different
information. The first process requires planning and working
memory (Fuster, 1973; Goldman-Rakic, 1995; Romo et al.,
1999), whereas the latter two involve flexible, context-dependent
routing of information to appropriate outputs.

Our findings suggest an unexpected role of ALM in processing
perceptual information. Neurons in ALM are known to play an
essential role in the planning of licking (Svoboda and Li, 2018).
In primates, and more recently in rodents, preparatory activity
in premotor and parietal circuits has been shown to play a role
in perceptual decisions, in which attributes of sensory stimuli
instruct the selection of a movement (Hanks et al., 2015; Kopec
et al., 2015; Shadlen and Newsome, 2001). In some cases, this

S+D1

not inherited from an upstream area.
D2 S+D

(B) Simulated effects of inactivating ALM during
portions of the sample and delay epochs. Same
conventions for the behavioral epochs as in
Figure 4E.

(C) Synaptic facilitation and depression model.
Facilitation leads to enhanced response to repeated
presentation of the same stimulus in match-selective
neurons, whereas depression results in suppression
in non-match-selective neurons. We assume that
the soma is inhibited during the sample epoch so
that action potentials only occur after the test odor.
(D) Dendritic gating model. Top: circuit supporting
match (M). The sample odor suppresses excitatory
inputs that convey the identity of the opposite test
odor. Bottom: circuit supporting non-match (NM).
A similar result could be achieved with presynaptic
gating. This circuit also requires a mechanism to
suppress spiking before the test epoch and a
mechanism to reset the gate.

o
o

NM
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o

preparatory activity evolves gradually as evidence accrues,
thereby reflecting the deliberation process leading to a decision
(Cisek, 2011; Gold and Shadlen, 2003; Schall and Hanes, 1993;
Selen et al.,, 2012; Spivey et al., 2005; Yang and Shadlen,
2007). These observations might lead one to anticipate a
role for premotor area ALM in an olfactory decision that is re-
ported by licking to the left or right. But there is an essential
difference.

In the DMS task, a plan to lick left or right cannot be prepared
until the test odor arrives. Before this moment, all that can be
prepared is the sensory-response mapping between the
possible test odors and the appropriate lick direction. Therefore,
the impairment in performance arising from the inactivation of
ALM does not reflect a disruption of movement preparation,
but rather a disruption of the state of the circuit that readies it
to process information about the test odor to select the appro-
priate lick response. This is a high-level decision about how to
make a subordinate decision, that is, the type of control process
associated with higher prefrontal circuits in primates (Wallis and
Miller, 2003; cf. Ebbesen et al., 2018). In our DMS task, this
control process appears to require a normally functioning ALM
during at least some stretch of the sample plus delay periods.
The requirement was only demonstrable when the sample odor
established the sensory-response mapping between test odor
and lick direction. Inactivation of ALM during the sample and
delay did not impair performance on the A x A/B and C x C/D
control tasks. These controls require only simple, learned
associations between the test odor and a lick response.
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The absence of impairment on these control tasks also
demonstrates that ALM can receive information from upstream
neurons about the identity of the test odor or its associated lick
direction. In contrast, upstream areas do not supply ALM with
information about match versus non-match. This assertion holds
for any upstream area—not just Pir and OFC, but the many areas
that connect the main olfactory bulb to ALM. We did not record
from the entire network of areas; hence, we cannot be certain
that they do not contain critical information that helps the
mouse solve the DMS task. However, they do not supply the
match/non-match (or lick-left lick-right) solution to ALM or its
downstream targets. We cannot rule out the possibility that
inactivation of ALM during the sample and delay periods induce
a disruption in whatever essential computation such upstream
areas might contribute. However, this seems unlikely because
task-relevant information in OFC and Pir was unaffected by
ALM inactivation (Figures 41, 4J, 4L, 4M, 40, and 4P).

It is nonetheless remarkable that match versus non-match can
be decoded from small populations of neurons in Pir and OFC. It
serves as a reminder that information that can be decoded by the
experimenter is not necessarily decoded by the brain. We assume
that Pir and OFC supply information, directly or indirectly, to ALM
during the test epoch as well as the sample and delay epochs.
The absence of impairment associated with bilateral OFC inacti-
vation does not imply otherwise, as it could be explained by the
multiplicity of pathways that connect Pir to ALM. Also, although
the OFC is thought to play an essential role in reversal learning
(Schoenbaum et al., 2002), our mice had already learned the sam-
ple-instructed mappings—effectively trial-by-trial reversals—by
the time of the inactivation experiments.

Previous studies have demonstrated persistent activity in ALM
in association with perceptual decision making. For example,
elevated activity was reported in direction-selective lick neurons
when mice associated different haptic stimuli (applied to a
whisker) with a lick to the left or right (Chen et al., 2017; Guo
et al., 2014a; Li et al., 2015; Svoboda and Li, 2018). This persis-
tent activity is involved in planning and driving movement based
on a sensory-response association. In our study, on the other
hand, persistent activity in sample-selective neurons represents
a sensory category rather than a plan of action, because the
action cannot be selected until after the delay period upon
receipt of the test odor. Hence, unlike in a sensory-instructed de-
layed response task (Guo et al., 2014a; Li et al., 2015) in which
persistent activity represents decision outcome, the activity of
our L2 neurons is not the outcome of the match/non-match de-
cision because this decision has yet to be made. This activity
could be viewed as representing an intermediate decision about
which mapping from test odor to lick response to deploy (Fig-
ure 1D). It is possible that our sample-selective neurons overlap
those reported previously, but we suspect the overlap is minimal.
The persistent activity we observed was concentrated primarily
in superficial L2 neurons that did not exhibit lick responses,
whereas the persistent activity reported in the somatosensory in-
structed delay task was found in all cortical layers and in many
neurons that responded to error responses in a way that agrees
with their role in motor planning.

We reason that the sample-selective neurons play a critical
role in the DMS task. First, to perform the task, it is essential

326 Neuron 7106, 316-328, April 22, 2020

that neural activity in ALM is normal during the delay period.
Second, the only task-relevant activity in ALM that spans the
delay period is a representation of the sample odor by these
neurons concentrated in L2. Third, the activity of these
sample-selective neurons is predictive of performance on a
trial-by-trial basis (Figure 6E). We conclude that these neurons
are likely to affect the local circuitry so that the two test odors
are associated with the appropriate lick response. More defini-
tive evidence for this interpretation would require selective
inactivation of this population of neurons. This is not possible
presently, but if these neurons represent a distinct subtype, as
we suspect (e.g., Luo et al., 2017), it may be possible in the
near future. We also do not know if the sample-selective neurons
affect the lick cells directly or influence the local circuit.

We considered several alternative explanations of the impair-
ment produced by ALM inactivation. The control experiments
rule out a simple motor impairment or motor bias, allowing us
to focus on the delay period activity. Our interpretation is that
the representation of the sample odor in ALM establishes a state
of the ALM circuit such that it can perform a simple sensory-
response association at the time of test. An alternative is that
ALM must prepare both potential motor plans during the delay
period (Cisek and Kalaska, 2005) in order for one to be selected
by an instruction from another brain area, and it is solely the
disruption of this preparatory activity that explains the impair-
ment. This account predicts incorrectly that inactivation would
also impair performance on the A x A/B and C x C/D tasks. It
is also inconsistent with the neural recordings, which failed to
reveal simultaneous preparation of the two lick directions during
the delay period.

Another alternative explanation is that inactivation before the
test period disrupts a general state of readiness in ALM to
respond to any signal instructing an action to be performed.
We find this unlikely, because to account for our behavioral
observations, this state would need to be specific to the DMS
task and not control tasks with identical temporal structures
and actions. Finally, we note that DMS is a more difficult task
than the controls. Therefore, it may be argued that DMS is
more susceptible to perturbations. However, it is not the motor
action that makes DMS more difficult than the controls, because
all the tasks require the identical motor responses. If the only role
of ALM is motor preparation, then inactivating ALM should not
result in differential impairment of the DMS and control tasks
(Figure 4H). More importantly, our perturbation affected ALM
before a decision could be prepared, because the decision
cannot be made before the test odor arrives. Previous studies
of decisions to lick to the left or right examined only the prepara-
tory phase after the decision was instructed (Guo et al., 2014a;
Li et al., 2015).

Neurons in superficial layers of the neocortex receive input
from controlling structures such as intralaminar and accessory
thalamic nuclei (Jones, 1998) as well as long range feedback,
e.g., perirhinal cortex to ALM (Zingg et al., 2014). These layers
contain the distal dendrites of projection neurons in deeper
layers, and activation or suppression of these dendrites can alter
the functional properties of the projection neurons (Bittner et al.,
2017; Larkum et al., 1999, 2009; Polsky et al., 2004). Thus, it is
possible that the selectivity to the sample odor that we observed



in L2 neurons might reflect a general mechanism that alters the
state of ALM circuitry to flexibly implement different sensori-
motor mappings.

It may seem counterintuitive that a premotor area would play a
critical role in a decision about the relationship between two
sensory stimuli. However, the ultimate goal of both sensory
and motor systems is not to identify stimulus features or cate-
gories, but to determine whether to act one way or another. A
potential action might require support from different sources of
sensory input. Thus, decisions to act—even if only provision-
ally—rest on a capacity of the motor system to establish func-
tional connections that allow it to integrate different sources
of sensory information, and this information infiltrates the re-
sponses of neurons in cortical areas that are appropriately desig-
nated premotor or associative (Cisek, 2011; Shadlen and Kiani,
2013). These functional connections must be rapidly modifiable
as the demands of an organism and its context change. This ca-
pacity for dynamic circuit configuration is likely to support a wide
range of cognitive phenomena involving flexible routing, decision
making, and perceptual inference (Shadlen and Shohamy, 2016).
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STARXMETHODS

KEY RESOURCES TABLE

REAGENT OR RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Mouse: wild type C57BL/6J Jackson Laboratory 000664

Mouse: VGAT-ChR2-EYFP Jackson Laboratory 014548

Mouse: Ai93(TITL-GCaMP6f)-D;CaMK2a-tTA Jackson Laboratory 024108

Mouse: Emx1-IRES-cre+/+ Jackson Laboratory 005628

Electrophysiology

32 channel, acute Buzsaki32 probe Neuronexus Buzsaki32-A32

32 channel, chronic Buzsaki32 probe Neuronexus Buzsaki32-H32_21mm

32 channel, acute Poly3 probe Neuronexus A1x32-Poly3-5mm-25 s-177-A32

64 channel, acute 1x64 H3 probe Tim Harris https://www.cambridgeneurotech.com/
neural-probes

Software

MATLAB Mathworks https://www.mathworks.com

LabVIEW National Instrument https://www.ni.com/en-us/shop/labview/
labview-details.html

SIMA Kaifosh et al., 2014 https://www.losonczylab.org/software

CNMF Pnevmatikakis et al., 2016 https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC4881387/

Python Python https://www.python.org

Tensorflow Tensorflow https://www.tensorflow.org

LEAD CONTACT AND MATERIALS AVAILABILITY

This study did not generate new unique reagents. Further information and requests for resources and reagents should be directed to
and will be fulfilled by the Lead Contact, Michael Shadlen (shadlen@columbia.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals were maintained on 12 h: 12 h light/dark cycle with food and water available ad libitum. Mice were water-restricted during the
training and testing phases. Experimental sessions were 1-2 h, during which mice received 0.5-1.5 mL of water. Animals received
supplemental water as necessary to maintain their body weights. Aseptic surgeries were carried out under ketamine (100 mg/kg)/
xylazine (10 mg/kg) or 1%-3% isoflurane anesthesia. Buprenorphine (0.05-0.1 mg/kg) and carprofen (5 mg/kg) were administered
for postoperative analgesia. Animal care and experiments were carried out in accordance with the NIH guidelines and approved
by the Columbia University Institutional Animal Care and Use Committee (IACUC).

This study is based on data from 41 mice (both males and females, 2-8 months old). Five C57BL/6J and 6 VGAT-ChR2-EYFP
(Jackson Laboratory, JAX 014548) mice were used for electrophysiology recording. Two untrained VGAT-ChR2-EYFP mice were
used to characterize the inhibition at different laser powers. Twenty-nine VGAT-ChR2-EYFP mice were used for inhibition
experiments, 6 of which were also used for simultaneous recording during inhibition. Two-photon imaging data were collected
from 5 Emx1-cre+/—;TITL-GCaMP6f+/—;CaMK2a-tTA+ mice. These mice were created by crossing Ai93(TITL-GCaMP6f)-
D;CaMK2a-tTA (JAX 024108) to Emx1-IRES-cre+/+ (JAX 005628) line.

METHOD DETAILS
Behavior training
Before training, mice were implanted with a custom-made titanium head post (Guo et al., 2014b). The scalp and periosteum over the

dorsal surface of the skull were removed, and a head post was placed on the skull, aligned with the lambda suture and cemented in
place with C&B metabond (Parkwell, S380). After at least 2-3 days of recovery, animals were water-restricted and accustomed to
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head-fixation following procedures described in Guo et al., 2014 (Guo et al., 2014b) and then trained on a custom-assembled
apparatus.

Odorants were delivered with a custom-made olfactometer and custom-written LabVIEW programs (National Instruments).
(+)-a-pinene (odor A, Sigma-Aldrich, 268070), cis-3-hexen-1-ol (odor B, Sigma-Aldrich, W256307), (R)-(+)-limonene (odor C,
Sigma-Aldrich, 183164), and methyl butyrate (odor D, Sigma-Aldrich, 246093) were chosen for their lack of innate valence to mice
(Root et al., 2014) and their low adhesion to the surface of the olfactometer. The odorants were diluted 100-fold in mineral oil
(Fisher Scientific, 0121-1) and then loaded on syringe filters (GE healthcare, 6888-2527 or 6823-1327). The air flow was maintained
at 1.0 L/min. We confirmed the rapid kinetics (Figure S1G) of these odorants with photo-ionization detector (Aurora Scientific, 200B).
Over the course of a behavioral session, the odorants on the syringe filters gradually deplete. Thus animals were unlikely to rely on the
absolute concentration of the odorants which changed constantly, but rather the identity of the odors, as evidenced by the stable
sensory responses in Pir over a session (Figure 2A).

During training, mice were presented with a sample odor (1.0 s duration) and a test odor (1.0 s) separated by a delay epoch (1.0 s).
After hearing an auditory “go” cue (0.1 s, 5 KHz pure tone), they were free to report their decision by licking to one of the two syringe
ports positioned in front of their mouth, and collect a water reward at the same port if they were correct. Many animals started licking
in the test epoch, which was permitted, but only the licks during the 2 s “response window” following the “go” cue were considered
their choice. To prevent mice from “probing” for the correct port by rapidly switching between the two ports, we required mice to
commit to their choices. A choice is scored as correct only when the first two licks were on the correct port. If they first licked on
the incorrect port, that trial was scored as an error. If they licked once on the correct port and then on the incorrect port, that trial
was also scored as an “error.” If they did not lick during the “response window” or only licked once on the correct port, that trial
was scored as “no choice.”

The two odorants give rise to four unique pairs of sample and test odors (AA, AB, BB, and BA), or trial types, and were randomly
presented in each session. The match trials (AA, BB) were rewarded on the left port and non-match trials (AB, BA) on the right. Mice
were punished by a brief timeout (3-8 s) when they made an error. “No choice” trials were rare and typically occurred in the very early
training stage or at the end of a session when the mice were sated. Animals completed this training stage when they achieved a
criterion of at least 80% correct for each trial type in a single session. They then underwent additional training to suppress
“premature” licking before the test epoch. Such early licks were punished by an immediate 0.1-0.2 s siren (RadioShack, 273-
079), followed by a 0.5-1.0 s pause in that trial, and a longer inter-trial interval. We required the proportion of trials with premature
licking to be less than ~20%. After achieving these milestones (median 25 days; IQR 21-31 days) the sample and test durations
were reduced from 1.0 s to 0.5 s, and the delay was increased from 1.0 s to 1.5-4.0 s depending on the experiment (1.5 s in
extracellular recording, 2.0 s in imaging experiments, 1.5, 2.5 or 4.0 s in optogenetic inactivation). Mice performed at 90% correct
(interquartile range 88%-92%) when they entered the testing phase.

Electrophysiology

Extracellular recordings were made acutely or chronically in head-fixed animals using 32- or 64-channel silicon probes (Buzsaki32
and Poly3, NeuroNexus; 1 X 64 acute H3 probe, HHMI). The probes were targeted stereotaxically to Pir, OFC and ALM using Bregma
coordinates as follows: Pir: AP 1.9-2.4 mm, ML 1.5-2.1 mm, DV 2.3-2.9 mm; OFC: AP 2.2-2.8 mm, ML 0.7-1.2 mm, DV 1.2-1.8 mm;
ALM: AP 2.5 mm, ML 1.5 mm, DV 0-1.1 mm. Four animals were used for Pir recordings, six for OFC recordings, and five for ALM
recordings.

In acute recordings, a small craniotomy (0.3-0.8 mm in diameter) was made over the targeted area before the recording session.
Recording depth from the pial surface was inferred from micromanipulator reading. After each recording session, the brain surface
was covered with silicone gel (3-4680, Dow Corning) and Kwik-Sil (World Precision Instruments). The recording sites were confirmed
by painting the recording probes with Vybrant DiO Cell-Labeling Solution (Invitrogen). Representative histology sections are shown in
Figure S7A-C. In chronic recordings, the probe (Buzsaki32-H32_21mm, NeuroNexus) was attached to a custom-made microdrive
which allows for advancement of the shanks. The microdrive was then implanted and cemented with C&B metabond and dental
acrylic (Lang Dental Jet Repair Acrylic, 1223CLR). We advanced the shanks by 50 um per day at the end of each recording session.

Two-photon calcium imaging

Calcium imaging was performed on Emx1-cre+/—;TITL-GCaMP6f+/—;CaMK2a-tTA+ mice. A square craniotomy (2mm side) was
made above left or right ALM, along the superior sagittal sinus and the inferior cerebral vein. The imaging window was constructed
from three stacked layers of custom-cut coverglass (CS-3S, Warner Instruments) and cemented with C&B metabond. Animals were
allowed 1-2 weeks of recovery before the imaging sessions began. Images were acquired with a Bruker Ultima two-photon
microscope under resonant galvo scanning mode. The light source was a femtosecond pulsed laser (Chameleon Vision Il, Coherent).
The objective was a 16X water immersion lens (Nikon, 0.8 NA, 3mm working distance). GCaMP6f was excited at 920nm and images
(512 x 512 pixels, ~820 um x 820 um field of view) were acquired at ~30 Hz.

Photostimulation

Animals were prepared with a clear skullcap to achieve optical access to ALM (Guo et al., 2014a). Briefly, after removing the scalp and
periosteum over the dorsal surface of the skull, a layer of cyanoacrylate adhesive (Krazy glue, Elmer’s Products Inc.) was directly
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applied to the intact skull. The entire skull was then covered with a thin layer of the clear dental acrylic (Lang Dental) with a head post
cemented over the lambda suture. Before photostimulation sessions, the dental acrylic was polished (0321B, Shofu Dental
Corporation) and covered with a thin layer of clear nail polish to reduce glare (Part No. 72180, Electron Microscopy Sciences). Light
from a 473nm laser (MLL-FN-473-50mW, Ultralasers, Inc.) was directed to an optic fiber and split into two paths (FCMH2-FCL,
Thorlabs, @200 um Core, 0.39 NA). The two optic fibers were positioned over ALM on each hemisphere. The light transmission
through the skullcap is ~50% in average power, as measured directly with a light meter (PM100D, Thorlabs) with freshly dissected
skullcap, consistent with previous measurements (Guo et al., 2014a).

We used 40 Hz photostimulation with a sinusoidal temporal profile (3 m\W average power as light reaches the skull, ~1.5 mW on the
brain surface). The photoinhibition inactivated a cortical area of ~1mm radius, as the population firing rate drops to ~50% at 1Tmm
away from the center of the laser beam (Figure S3A). To reduce rebound excitation after laser offset, we included a 250 ms linear
power ramp-down at the end of the photostimulation (Figure 4A) unless otherwise indicated. In the interleaved A/B x A/B & C X
C/D experiment, the delay epoch was extended to 4 s while sample and test epochs were kept at 0.5 s each. Here we used a
500 ms ramp-down at the end of the 4 s photostimulation, which terminates 500 ms before the test odor onset to allow more recovery
time. To prevent the mice from distinguishing photostimulation trials from control trials, a masking flash (40 Hz sinusoidal profile) was
delivered with 470 nm LED (Luxeon Star) and LED driver (SLA-1200-2, Mightex Systems) in front of the animals’ eyes on all trials. The
masking flash was not phased locked to the photostimulation, began at sample onset and lasted until the end of test, covering the
entire stimulus and delay epochs in which photostimulation could occur.

For the experiments in which we varied the duration of inactivation (Figure 4E), photostimulation was either limited to (/) the 0.5 s
sample epoch and the first 1.5 s of the 2.5 s delay epoch, or (i) the last 1.0 s of the delay epoch, or (jii) the entire sample plus delay
epoch. These inactivation trials were randomly interleaved to constitute 25% of all trials. For each animal, multiple (2-3) behavioral
sessions were pooled to collect at least 10 trials for each of the four trial types and the three inactivation durations.

Simultaneous photostimulation and recording
We calibrated the laser power for ALM and OFC inactivation by recording from these two areas during photoinhibition in awake
animals. For ALM inactivation, we positioned an acute 1x64 H3 probe at various distances from the optic fiber over ALM
(0-2.0 mm in 0.5 mm increments). A range of laser powers (0.5 mW, 1.5 mW, 5.0 mW, and 10.0 mW) as well as controls were exam-
ined at each location. We chose 1.5 mW power on the brain surface as it inactivates a cortical area of ~1mm radius and produces
minimal rebound activity after laser offset (Figure S3). For OFC inactivation, an optic fiber was targeted to Bregma AP 2.5 mm, ML
1.0 mm, DV 1.4 mm. The recording probe was then positioned at AP 2.5 mm, ML 1.5 mm, DV 1.0-2.3 mm, where it is close to the
border of OFC with agranular insular cortex. We recorded the neural responses similarly at a range of laser powers and chose
1.0 mW to silence OFC while minimizing the impact on neighboring brain areas.

For simultaneous recording and inactivation when animals performed the DMS task, we used the clear skullcap preparation for
photoinhibition and made a small craniotomy lateral to the optic fiber to insert the probe. The probe was advanced at 60-70° angle
from the horizontal plane at Bregma AP 2.3-2.5 mm, ML 2.0-2.5 mm to record from ALM, OFC, and Pir at different depth.

QUANTIFICATION AND STATISTICAL ANALYSIS

Electrophysiology data analysis

The 32- and 64-channel recording data were digitized at 40 KHz and acquired with OmniPlex D system (Plexon Inc.) The voltage
signals were high-pass filtered (200 Hz, Bessel) and sorted automatically with Kilosort (Pachitariu et al., 2016). The clusters were
then manually curated with Phy GUI (Rossant et al., 2016) to merge spikes from the same units and to remove noises and units
that were not well isolated. Recording depths were inferred from micromanipulator readings in acute recordings or microdrive turns
in chronic recordings.

We determined sample odor selectivity for each neuron by comparing the spike counts during the sample epoch (0.1-0.6 s from
sample onset) or late delay (1.5-2.0 s from sample onset) between sample odor A group (AA, AB) and sample odor B group (BA, BB).
The 0.1 s time offset from the sample epoch accounts for the olfactometer valve time. A neuron was considered odor selective if its
responses to sample odor A and B were significantly different by a two-tailed Mann-Whitney U test (p < 0.01, not corrected for
multiple comparisons). The selectivity index (Sl) was computed as follows for each unit: First, the trial-by-trial spike counts from
the responses to odor A and B were used to construct a Receiver Operating Characteristic (ROC). The area under the ROC (AuROC)
is the probability that a randomly sampled response associated with odor A is larger than a randomly sampled response associated
with odor B. The selectivity index is

Sl = 2<AuROC—%> M

such that + 1 represents perfect discriminability (i.e., no overlap of the response counts) and 0 indicates chance-level discrimina-
bility (i.e., complete overlap). Positive SI connotes a preference for sample odor A. We determined selectivity for the test odor and
choice in a similar fashion by comparing spike counts during the test epoch (2.1-2.6 s from sample onset), with appropriate trial
grouping. Positive Sl for choice connotes a preference for licking to the left spout.
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The trial-type selectivity in Figure S2C, F, | was computed as follows. Neurons from each of the three areas were first selected by
their test odor selectivity. Only neurons deemed test-odor selective as determined by a Mann-Whitney U test (p < 0.01, not corrected
for multiple comparisons) were considered further. These test-odor selective neurons were then treated separately based on their
preference for test-odor A or B. If a neuron preferred test odor A, its selectivity index for trial type was computed based on its
responses to AA versus BA trials, in a similar fashion described above. Positive SI connotes a preference for AA. If a neuron preferred
test odor B, its trial type selectivity was computed based on its response to AB versus BB, and positive SI connotes a preference
for AB.

Graphs depicting population odor selectivity of a brain area show the difference in firing rates associated with the preferred and
nonpreferred odors (Figure 3A, 41-N). The preferred odor of each neuron was designated using a subset of the trials (n = 5 per odor,
chosen randomly), in the epoch under consideration (e.g., sample), based on the sign of the difference in the means, irrespective of
statistical significance. These trials were then excluded and the odor selectivity was computed as the spike rate to preferred odor
minus the nonpreferred odor on the remaining data in a sliding bin of 100 ms. All neurons from each of the three areas are included
in Figure 3A (left graph). In Figure 4I-N, all neurons from each of the three areas are included.

For the decoding analysis (Figure 3B-D, 40-R and 6A, B), we trained a support vector machine (SVM) (Fan et al., 2008) with neural
responses recorded simultaneously from Pir, OFC, or ALM to classify sample odor identity, trial type, or match/nonmatch. 48-120
neurons were simultaneously recorded from Pir, 16-82 neurons from OFC and 14-82 neurons from ALM. In Figure 3B, we used
the spike counts in a sliding bin of 500 ms from 40 randomly selected neurons from each of the three areas at 100 ms steps. Sessions
with insufficient number of simultaneously recorded neurons were excluded. In Figure 3C, we used a 500 ms sliding bin with neural
responses from all Pir neurons recorded in a session. In Figure 3D, we used the firing rates in the 500 ms time window before animal’s
first lick. The decoding capability of each area was estimated by using varying numbers of randomly selected neurons that are
recorded simultaneously in a session. As we included more neurons, sessions with insufficient number of neurons dropped out of
the analysis. The classifier was trained on randomly selected 90% of the trials in each session and then tested on the remaining
10% of the trials. Only correct trials were used. The training/testing was repeated 50 times for every given number of neurons and
for all the sessions that may be included. The correct rates from the 50 repetitions were then averaged. When comparing
performance in control and inactivation conditions (Figure 40-R), the classifiers were trained on correct control trials and tested
on correct laser trials and held-out correct control trials.

Imaging data analysis

The raw images were first motion corrected with SIMA package (Kaifosh et al., 2014) (Release 1.3.2) and verified manually. Regions of
interest (ROIs) were selected automatically with constrained nonnegative matrix factorization (CNMF) (Pnevmatikakis et al., 2016).
The CNMF algorithm infers the time-varying background and extracts smoothed AF/F signals, which were used for plotting only.
For data analysis, we manually computed unfiltered AF/F traces as follows. We obtained the raw fluorescent trace of each ROI by
applying the spatial component (ROI filter) on the image sequence. We then smoothed the raw trace in each trial with a 1 s averaging
window (boxcar) and take the minimal fluorescence value in the inter-trial interval as the baseline. The AF/F signals were calculated by
subtracting the baseline from the raw trace and dividing the difference by the baseline. We used the constrained deconvolution spike
inference algorithm (FOOPSI) in the CNMF package to infer the spikes (decay time constant 0.7 s). The deconvolved activity was then
smoothed using a Gaussian filter over a five-element sliding window.

We compared the means of the response to odors A and B during the sample and delay epochs using a Mann-Whitney U test. Each
trial contributed a scalar value: the average AF/F signal from t = 0-2.5 s from onset of the sample odor. Neurons were classified as
sample odor-selective if p < 0.01 (two-tailed, not corrected for multiple comparisons). Test odor and choice selectivity were
determined similarly using time bins of 2.5-4.0 s and 2.5-5.0 s from sample onset, respectively. Selectivity indices (Sls, Equation 1)
were computed from the same scalar values. The distributions of the sample odor Sis of ALM L2 neurons acquired with calcium
imaging and those of ALM neurons sampled by electrical recording were compared using a two-sample Kolmogorov-Smirnov test.

The standardized odor and choice selectivity (Figure 5A and S5A) were computed by dividing the absolute value of the difference
between the mean AF/F responses to odor A and B (or match and non-match) by the common standard deviation: the standard
deviation is the square root of the sum of the variances of the AF/F responses to odors A and B (or match and non-match).

To determine the duration of the calcium response, we first computed the mean and standard deviation of the baseline (the epoch
before stimulus onset). Calcium transients were then identified as any response greater than 2 standard deviations away from the
baseline and lasting for at least 100 ms. The peak time is the time of the maximum calcium response. Only the calcium transients
during the sample and delay epochs were considered in Figure 5E. We used identical methods to determine the duration and
peak time of the inferred spiking activity except that a minimal response duration was not required.

To ascertain whether the transient responses from L2 neurons occur at random times during the delay, we measured the pairwise
correlation in the peak times of the responses (Figure S6A). Statistical significance of each r-value was established using Fisher
z-transformed values and their s.e., without correction for multiple comparisons (gray shaded histograms, Figure S6B). We also esti-
mated the distribution of correlation coefficients expected under the null hypothesis, using a shuffle control. The calculations are
identical except each ordered pair from the two neurons comprises peak times from non-corresponding trials. The red dashed
distribution (Figure S6B) was estimated using 1000 iterations of this procedure.
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For the decoding analysis (Figure 6A-B), we trained a support vector machine (SVM) (Fan et al., 2008) using the calcium responses
to classify sample odor identity (Figure 6A) or match/nonmatch (Figure 6B). The calcium responses were computed as the average
AF/F in a sliding bin of 100 ms at 100 ms steps using 40 randomly selected neurons from each of the five cortical depths in ALM.

We characterized a trial-by-trial association between the Caresponses of L2 neurons and the likelihood that the mouse would make an
error. The signals themselves are indirect measurements of neural activity and highly skewed. We therefore applied a variant of a choice
probability measure, which is based on ordinal statistics (Britten et al., 1996). We included 109 neurons that had statistically reliable pref-
erence for sample odor A or B using the integrated Ca signal over the sample and delay epochs. We included both correct and error trials
in determining the sample odor selectivity, to avoid biases favoring neurons with larger responses in correct trials due to random fluctu-
ation. For each neuron, the integrated signal was ranked and scored as a percentile ranking on (0,1] using the trials in which the sample
odor was the preferred odor to form the vector of trial-by-trial responses for each neuron, rﬁref , where the subscript identifies the neuron.
The percentiles were assigned for each neuron independently (not the population). The percentiles from all the neurons were then pooled.
We used the same procedure using the responses to each neuron’s nonpreferred odor to form r°”". The heatmap in Figure 6E was formed
by parametrically varying the two criteria, kper and kpon, to compute the proportion of errors when rPref < Kprer @nd r™" > knop, Using the
combined data from all 109 neurons (i.e., concatenating across all n). To evaluated the null hypothesis that these responses have
only a random association with the behavioral outcome, we conducted a simple logistic regression using the percentiles themselves:

Perr = {1 +eXp( - 60 - 61X)}71 (2)
Where X is the vector of the transformed percentiles:
7rpref 1
X = ( on ) ®

Note that the percentiles are simply reversed for r°®f so that the larger percentiles correspond to the weakest responses. We report
the p value associated with {Hy:8; = 0}.

Behavior/inhibition data analysis
Mouse performance (P) was reported as the fraction of correct responses in all trials. Animals may perform below chance (50%) due
to “no choice” trials (e.g., when they are challenged with novel C/D x C/D pairs; Figure S1F). To assess the statistical reliability of
photoinhibition on P we generated the distribution of log probability ratio (") under the null hypothesis
HO:JEIog%:O @
ctrl

We randomly permuted the designations, correct/incorrect, among the laser and control trials within each trial type (AA/AB/BB/
BA), repeating the process 10,000 times. From this distribution, we obtain the two-tailed probability of obtaining #" under Hp.

To compare the effect of inactivation across tasks, we generated a distribution of # for each task by bootstrapping. The laser and
control trials were re-sampled respectively with replacement within each trial type (AA/AB/BB/BA). Repeating this process 10,000
times, we established a t-statistic from the means and variances of these distributions (degree of freedom based on the number
of experimental trials). The reported significance reflects one-tailed comparisons.

We used the following logistic model to characterize an animal’s bias. “No choice” trials in which animals did not respond were
excluded in this analysis (< 1% of trials).

Pt = {1+exp(—-Q)}™" (5)

Q = Bo + B1Sm + Boliaser + B3Smillaser (6)

Where Pt is the probably that the animal licks to the left port, Sy is +1 or —1 if the trial is a match or non-match, respectively, and
liaser is 1 or O for laser on or off, respectively. The beta terms are fitted coefficients: 8, quantifies the bias in favor of left on control trials
in units of log odds; 3¢ + 8> quantifies the bias in laser-on trials; 84 quantifies how well the animal uses the match/non-match infor-
mation to determine the direction of licking (i.e., sensitivity to condition) on the control trials; and 84 + 83 quantifies the sensitivity in
laser-on trials. In a well-trained animal, 3 is always positive. Thus 3. is an estimate of the side bias induced by inactivation and 6z is an
estimate of the impairment on sensitivity by inactivation.

When trials from all the animals are combined in this analysis, the bias coefficients could be underestimated (8o, 82) because the
bias for left or right is different across experiments. It is theoretically possible that underestimation of the laser-induced bias, (,, could
lead to misattribution of this effect to a laser-induced change in sensitivity, §3. To address this possibility, we first determined the bias
of each animal in the laser condition by comparing the rate of correct match and non-match trials. Based on this bias, we designated
left or right as the preferred lick port and match or non-match as the preferred trial for each animal. Then we combined the trials from
all the animals to fit the following modified model:

Poet = {1+exp(-Q)} " @
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Q= 60 + 181 Spref + ﬁzllaser + 638prefllaser (8)

Where P, is the probability that the animal licks to the preferred port, and Syref is +1 or —1 if the trial is preferred or non-preferred,
respectively. In this model, 8, estimates the side bias induced by inactivation across all sessions. Importantly, if inactivation only
biased the mouse to lick more to one port or the other—a different bias on each experiment—this procedure would fail to reject
the null hypothesis, Ho: 83 = 0. We complemented this analysis using Monte Carlo methods to estimate the magnitude of impairment
on the task that is not accounted for by a bias to the left or right lick port. We simulated datasets using the estimated g coefficients and
their standard error, while setting 8, = 0. This recovers the proportion correct on the control trials and models the proportion correct
on the inactivation trials, were no bias induced by the laser. In Figure S4C, we show the distribution of impairments from 10,000
repetitions.

Attractor network models

We constructed recurrent neural network models consisting of three stages (Figure 7A): (1) primary sensory areas (e.g., Pir); (2)
intermediate areas; (3) ALM. Each stage a=1, 2, 3 contains N = 80 units whose activities are represented by an N-dimensional vector
X5 and follow the dynamics

ax,
Tat

The matrices J, and J;F represent recurrent input and feedforward input from the previous area, respectively. The vector xq is two-
dimensional, and its two elements are indicator variables (with value 1 or 0) representing the presence or absence of odors A and B.
The term o, (t) represents independent white noise input with standard deviation ¢. The vector b, represents the bias inputs to each
unit. The function f is rectified-linear and the time constant = (which represents combined membrane and synaptic time constants)
equals 100 ms.

In each trial, the network receives sample and test odors (A or B) for 500 ms each, beginning at times t =1 and 3 s. Each trial is
drawn randomly from one of the four trial types. A readout of the network must classify the trial as match or non-match during the
response period, from t=3.5 s to t=4 s. The readout is a softmax function of the ALM activity x3. At the beginning of each trial,
the initial values of the x, vectors are taken to be independent rectified Gaussian random variables with standard deviation 0.05.
Networks are simulated with a timestep of 20 ms.

The networks are trained through gradient descent with TensorFlow and the Adam optimizer (Agarwal et al., 2016; Kingma and Ba,
2014) to minimize a loss L = L jassifier + Lactivity determined by the classifier and an activity regularization term. Specifically, Lejassifier in @
given training epoch equals the summed cross-entropy loss between the classifier’s output and the desired output (match or non-
match) during the response period, averaged over a batch size of 50 trials. The regularization term Lacsiviyy = 104 ||ra||2> is propor-
tional to the 2 norm of the activities averaged across units, time, areas, and batches. Every 50 epochs of training, the network is
tested on 1000 trials to determine its classification accuracy, and training ceases when this accuracy exceeds 95%. The noise o
equals 0.05 during training and 0.1 during this testing phase. The learning rate of the optimizer decreases logarithmically from
10-3 to 10~ over 1000 epochs. Networks which do not reach the 95% criterion accuracy after these 1000 epochs are discarded.

At the beginning of training, all recurrent and feedforward weights J,, JgF are initialized as independent random Gaussian variables
with standard deviation 1/\/IV (except for J'gF, which has standard devation 1/\/§ because of the dimension of xp). Half of the
feedforward weights are then randomly set equal to zero, representing sparser connections across areas versus within areas. The
softmax classifier weights are initialized with standard deviation 2/\/IV, and the biases b, are initialized to zero. We assume that
only J; and b, are learned. All other variables are fixed during training.

To generate the performance curves in Figure 7B, 60 trained networks were tested with ¢ = 0.2 under four conditions. In the control
condition, the dynamics were identical to those described above. In the other conditions, which mimic ALM inactivation during
different epochs of the task, an inhibitory input was applied to ALM units during the sample and early delay epochs (the 1 s following
sample onset), the late delay period (the final 1 s of the delay epoch), or the entire sample and delay epochs. The inhibitory input was
equivalent to reducing the biases of all ALM units b3 by 5. To generate the curve for networks without ALM persistence, modifications
of J, were restricted to only J1 and J> while J; was held fixed, so that the training algorithm could not learn to implement attractor
dynamics in ALM (a =3). Conversely, for networks with only ALM persistence, training was restricted to only Jz, while J; and J, were
held fixed.

= —Xg +F(JaXa + I Xo 1 + om,(t) + ba),a=1,2,3. ©)

DATA AND CODE AVAILABILITY

The datasets and code are available upon request to the Lead Contact.
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