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Abstract—Most 3D laser scanners are based on 3D optical
triangulation algorithms, where the location of each 3D point is
estimated as the intersection of a camera ray and a plane of light
projected by a laser line generator.

Since a physical laser line generator projects a sheet of light of
finite thickness, inaccurate measurement and errors result from
assuming that the plane of light is infinitesimally thin.

We propose a new mathematical formulation for 3D optical
triangulation based on interval arithmetic, where 3D points are
only determined within certain bounds along the camera rays,
and multiple measurements are used to tighten these bounds.

We propose the Line Segment Cloud as an alternative surface
representation to visualize the measurement errors within the
proposed framework. We introduce the Iterative Line Segment
Tightening algorithm to convert line segment clouds to point
clouds, as a preprocessing step prior to surface reconstruction.

We describe how to construct a low cost laser line 3D scanner,
where the camera is fixed with respect to the object and the
laser line generator is mounted on a high resolution motion
platform. We describe a GPU-based implementation where the
large number of captured images are processed in real time.
Finally, we present some experimental results.

Index Terms—superresolution, triangulation, laser scanner,
line scanner, interval arithmetic

I. INTRODUCTION

METROLOGY is an ancient and diverse field, bridging
the gap between mathematics and engineering. The

ability to generate a 3D representation of an object is useful
for many applications, including, but not limited to, reverse
engineering, industrial design and quality control, artifact
preservation, and forensic analysis. For a detailed history of
3D scanning methods based on active illumination, we refer
the reader to the survey article by Blais [1].

This paper focuses on one type of 3D scanner, namely the
laser line 3D scanner, which is sometimes also referred to as
a slit scanner, laser profile sensor, or laser profilometer. Laser
line 3D scanners, as well as the vast majority of structured light
area 3D scanners, rely on 3D optical triangulation, primarily
differing in how they establish the correspondences between
projector planes and camera rays. As illustrated in Figure 1,
in the traditional model for 3D optical triangulation, each 3D
point is reconstructed as the intersection of a camera ray and
a plane of light generated by a laser line generator.

Laser line 3D scanners capture one image per projected line,
and reconstruct points illuminated by the projected laser line
in each image.

There are basically two approaches to the implementation
of a 3D scanner based on 3D optical triangulation. In the
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first approach, the camera is rigidly mounted with respect to
the laser line generator, and the object moves along a linear
or circular path in small steps. Such an implementation is
illustrated in Figure 2-Left. In the second approach, the camera
is fixed with respect to the object, and only the laser line
generator or structured light pattern projector undergoes mo-
tion relative to the camera. This implementation is illustrated
in Figure 2-Right. In both cases, after each motion step, the
camera captures one image while the laser line illuminates the
object. In this paper we explore the second approach, where
a laser line generator is mounted on a small linear motion
platform which allows for steps much smaller than the laser
line thickness, and the camera is fixed to the scanner frame,
and is therefore fixed with respect to the object.

Our paper is organized as follows: In Section II, we have
a brief description of laser line scanners and the need for a
model which more accurately represents the physical nature of
the system. In Section III, we describe how we can triangulate
line segments which pierce the surface of the object instead of
points as in the traditional approach. In Section IV, we discuss
the superresolution step in which we shorten the length of the
line segments, thereby improve our confidence of the location
of the object’s surface. In Sections V and VI, we discuss the
notion of a Line Segment Cloud and introduce a method for
extracting a pointcloud from a line cloud. In Sections VII,
VIII, and IX, we discuss details pertaining to the laser scanner
built for this paper, and in Sections X and XI we discuss our
findings.

Contributions

1) A new mathematical model for laser line 3D scanning
based on a two-plane ’sheet’ representation of the laser
light. This model, which more accurately represents the
laser projector because it does not make the false assump-
tion that the plane of light is infinitesimally thin, improves
performance without a significant part cost increase.

2) The Iterative Line Segment Tightening (ILST) algorithm
to convert line segment clouds into point clouds, as a
preprocessing step prior to surface reconstruction.

3) The design and fabrication of a low cost laser line 3D
scanner based on 3D printer motion components.

4) A real-time GPU-based implementation where the large
number of captured images are not stored, but instead are
processed ’on the fly.’

II. RELATED WORK

A number of low cost desktop laser line 3D scanners, such
as [2], [3], comprising of a laser line generator, a camera, and a
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Fig. 1. 3D Optical Triangulation. Left: Traditional model based on ray plane intersection. Center: A typical image captured by the camera. Right: Proposed
model based in interval arithmetic.

computer controlled turntable, have been introduced in recent
years to fill the needs of the consumer 3D printer market.

As a result of intrinsic limitations of laser line 3D scanning
technology and low quality optics, the resolution of these low
cost commercial laser line 3D scanners is not adequate for
certain applications in art, entertainment, industrial inspection,
reverse engineering, medicine, forensics, and many other ad-
vanced applications.

Industrial laser line 3D scanners, used primarily for indus-
trial inspection applications, are also referred to as laser profile
sensors or laser profilometers [4].

They include laser line generators with higher quality optics,
cameras, and built-in processors. They produce more accurate
measurements at a higher acquisition rate, but require relative
motion of the object with respect to the sensor in order
to produce dense scans. Industrial area 3D scanners based
on structured light techniques are capable of producing high
resolution 3D models from fewer images. Industrial scanners
are available on the market at a price point of one or two
orders of magnitude higher than consumer level scanners,
which makes them unsuitable for the high volume consumer
market, and even for some of the more advanced applications
listed above. Only laser line 3D scanners are studied in this
paper.

There are many influence factors which contribute to the
accuracy of a 3D scanner [5], [6], including, but not limited
to, the mechanical design of the scanner, the quality of the
components used, the calibration regime used to characterize
the scanner, as well as the model used to approximate the
physical geometry of the scanner. Laser line 3D scanners are
often limited by the quality of the components used in their
construction – for instance, the laser and cylindrical lens used
do not generate an ideal plane of laser light, which contributes

to errors and ambiguities in the detection and reconstruction
algorithms used, as optical triangulation assumes that the light
is planar. Higher quality components do produce a better
approximation of a plane of light and hence yield higher
quality results, but the use of such components may make
the overall system cost prohibitive. High-end commercial laser
projectors are capable of producing a line a few microns wide
[4], however, [7] asserts that the response of individual pixels
often results in a laser profile ’several pixels’ wide, even with
a laser projector adjusted to generate a line with sub-pixel
width.

[8], [9], [10] recognize that conventional models for 3D
scanners are inadequate due to the incorrect representation of
the laser line. These papers aim to improve the performance
of 3D scanners by proposing models which more accurately
represent the physical nature of the projected light. [8], [9]
propose improved models for the lens distortion of their
projectors. [8] acknowledges that the planar model is not
sufficient and proposes using a conicoidal surface to model
the light instead. However, these papers do not model the non-
zero thickness of the light, which contributes to errors in the
reconstructed model. Our approach models the thickness of the
laser light using two bounding surfaces, and also represents
the uncertainty in the location of the surface of the object by
means of a line segment cloud, which can be later tightened
by moving the laser by a small distance and acquiring another
image. They also can only reconstruct one point of data per
scan line, a side effect of the assumption that the light has
zero thickness. Our approach allows for the reconstruction of
data for all of the illuminated pixels in a scanline.

Furthermore, the traditional scanner model always con-
tributes to reconstruction errors unless the point selected for
triangulation lies on the calibrated laser plane as illustrated in

Fig. 2. Left: Typical hardware setup of a 3D Laser Scanner. The position of the laser and the camera are fixed, and the object moves with respect to the
scanner. Right: The setup used in our approach. The position of the camera and object are fixed, and the laser is moved with respect to the camera.
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Fig. 3. Left: The traditional scanner model will always contribute to reconstruction errors (that is, the distance between the true object points and the
triangulated points) unless the selected laser point lies on the calibrated laser plane. Center: Typical laser profile as observed by the camera, before filtering.
Note the noise present which makes laser identification tricky. Right: Gaussian smoothed laser profile, with conservative detection for calibration (dashed red
lines) and conservative detection for triangulation (solid red lines).

Figure 3-Left. Any errors or bias in the estimated peak position
of the profile directly contribute to reconstruction errors.

Naidu and Fisher [7] investigate a number of methods
for picking the peak intensity and analyzes their errors for
various object geometries. [11] proposes a centroid estimation
technique for sub pixel detection of the laser stripe. [11] ac-
knowledges that the source emits a ”widened” beam, however
they do not model this phenomena but rather assume that
the profile observed by the camera will be approximately
Gaussian. However, this assumption does not hold true if the
object is not locally smooth - the object may occlude part of
the profile which will cause a bias in their proposed estimator.
Our approach avoids this issue entirely by not relying on the
implicit assumptions that the object must be smooth or that the
light profile is Gaussian. Furthermore, our approach eliminates
the need for accurate peak position estimators as we can use all
illuminated points to reconstruct data instead of just a single
point. [10] proposes a method for peak extraction for scanning
reflective metal objects using laser profilers by modeling the
reflection and scattering of the laser, however it is unclear how
their estimator behaves near depth discontinuities.

III. TRIANGULATION BASED ON INTERVAL ARITHMETIC

Laser line generators do not project infinitely thin mathe-
matical lines. They project lines of a non-zero width.

The region of 3D space illuminated by a laser line generator
or by a line made of projector pixels can be described as a
slab bounded by two surfaces. In this paper, we propose to
model the bounding surfaces as two planes.

We propose a new mathematical formulation for 3D optical
triangulation based on interval arithmetic, where 3D points
are not deterministically reconstructed as the intersection of
one projector plane and one camera ray, but they are only
determined along the camera rays within the bounds defined
by the intersection of the two planes mentioned above and the
ray.

Figure 1-Left illustrates the traditional formulation, where
the projected line is modeled as a plane, each illuminated pixel
detected in the image defines a ray, and the intersection of the
ray and the plane determine a 3D point which is assumed to
be on the surface of the object. Figure 1-Center is an typical
image captured by the laser scanner described in Section VII,
showing that it is not clear which illuminated pixels should be
used to define the rays, since the width and intensity profile
of the illuminated pixels along each row varies from place to
place. This ’peak ambiguity’ is further illustrated in Figure
3-Center, where the laser profiles is noisy and has a rather
flat top, when it should ideally be Gaussian. Figure 1-Right
illustrates the new formulation, where the projected laser line
is modeled as a slab bound by two planes. Each image pixel
which is fully illuminated defines a ray which intersects the

Fig. 4. Principle of 3D optical triangulation super-resolution. A: Example of a line segment triangulated along a single camera ray. B: Each laser projector
position results in different bounds along the same ray. C: The intersection of the ray and the surface belongs to the intersection of the two intervals. D:
Visualization of a Line Segment Cloud. For each camera pixel illuminated by the laser, there is one camera ray, and one corresponding line segment, resulting
from the intersection of the thick laser line with the ray. The segment endpoint closest to the camera was painted blue, and the other end was painted red,
with a gradient in between.
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Fig. 5. Left: Raw image of an object illuminated by the laser projector, with ROIs marked by red boxes. Right: Sequences of binarized ’synthetic laser’
images. The first image is a binary image of the recovered laser line from a single acquisition. The subsequent images show pixels which were illuminated
in the all of the preceding frames. As the laser is translated, the effective width of the synthetic laser line decreases, as if a thinner laser line projector had
been used. This can be repeated until the thickness reaches a lower bound determined by the size of the motion step.

two planes. The two intersection points define an interval along
the ray which contains a 3D point where the ray intersects the
surface.

We aim to address the aforementioned issues with the
traditional model by introducing a two-plane model for the
laser line projector, which more accurately represents the
nature of the laser light and allows for the processing of
multiple illuminated laser points per cross-section.

Explicitly, we model the laser as the region between two
planes, which correspond to the edges of the laser sheet.
Each illuminated pixel detected in the image plane, with pixel
coordinates (u1, u2) corresponds to a 3D point p in world
coordinates lying on the object’s surface.

Using the pinhole camera model, the illuminated pixel
and the 3D point are related by the well known perspective
projection equation λu = K(Rp+ T ), where u = [u1, u2, 1]

t

is the representation of the pixel in homogeneous coordinates,
λ is a scalar value corresponding to the distance between the
focal point of the camera, K is the 3 × 3 camera intrinsics
matrix, and R, T are the rotation matrix and translation vector
describing the pose of the camera respectively. The values of
K, R, and T are intrinsic to the camera and its location in
the world, and are determined by calibrating the camera. The
perspective projection equation can be rewritten as

p = λv + q, (1)

where v = (RtK−1u) is a known 3D vector, and q = −RtT
is a known 3D point. Note that in practice, the value of u
is dependent on the lens distortion parameters of the cam-

era, which must be compensated for by an image distortion
removal subroutine [12]. This is a system of three equations
in four unknowns (one for λ and three for p). An additional
constraint is added by using the knowledge that the point p
must also lie on the laser plane.

By defining the laser plane in implicit form ntp+w = 0 in
world coordinates, where n is a 3D normal vector to the plane
and w is a scalar parameter, the value of λ corresponding to
the intersection is obtained by solving the equation nt(λ v +
q) + w = 0:

λ = −(ntq + w)/(ntv). (2)

An additional calibration procedure is required to estimate the
equation of the laser plane, which is described in Section VIII.

In the proposed formulation, for each illuminated pixel u,
this set of equations is solved separately for each laser plane,
resulting in two values of λ (one for each plane), as shown in
Figure 4-A and Figure 4-B. These points form a line segment
in space supported by the ray corresponding to the illuminated
pixel, which pierces the surface of the object.

This segment Su can be naturally represented as the set of
points

Su = {p : p = λv + q|λ ∈ [λN , λF ]}, (3)

where λN , λF represent the distance to the points nearer to and
farther from the camera respectively. Repeating this process
for all illuminated points results in an unorganized collection
of line segments in space which pierce the object. Shorter
line segments correspond to those with a greater confidence
in the location of the object’s surface. Scanning the entire

Fig. 6. Diagram illustrating the effects of the threshold levels used for laser calibration and detection during triangulation. A: If a low threshold used for
calibration and a low threshold is used for detection, then segments may lie completely outside of the object because pixels illuminated by multiple reflections
or subsurface scattering may be incorrectly detected as being directly illuminated by the laser. B: If a low calibration threshold and a high detection threshold
is used, we can guarantee that all segments will pierce the object. C: If a high calibration threshold and a low detection threshold is used, we may get incorrect
segments for the same reasons listed in (A). D: If a high calibration threshold and a high detection threshold is used, incorrect segments may be generated if
the object is more reflective than the calibration object. This is because the detected points may not lie between the calibrated planes.
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Fig. 7. The proposed ILST algorithm.

object results in a ’line cloud.’ A rendering of a line cloud is
shown in Figure 4-D.

IV. SUPER-RESOLUTION

In this paper, we propose a method by which the length
of the line segments along the camera rays can be tightened.
This tightening represents an increase in the confidence of the
location of the surface of the object. We refer to this increase
in confidence as ’superresolution.’ We refer to the process by
which multiple images are used to tighten these bounds as ’the
superresolution step.’

The required motion platform can be implemented using
low cost 3D printer components, as described in Section VII.
More expensive nano-positioning devices are also available for
even more precise motion [13], but we don’t have access to
these devices.

Since one image must be captured for each position of
the laser with respect to the object, the many small motion
steps result in large data sets and longer processing times.
This potential disadvantage is addressed by the real-time GPU-
based implementation described in Section IX. Keep in mind,
though, that all image super-resolution algorithms suffer from
the same problem.

Figure 4 illustrates the principle for a laser line 3D scanner.
Here the laser line generator is mounted on small motion
platform, the camera is kept in the same pose with respect
to the object, and multiple images are captured while the laser
moves.

Consider a pixel in the image which has been illuminated
by the laser in two different laser positions. These two images
produce two line segments [λ1N , λ

1
F ] and [λ2N , λ

2
F ], as shown

in Figure 4-A and Figure 4-B respectively. Note that these line
segment will lie on the same ray, as they are both from the
same pixel.

Since the true point p lies on both line segments, p must lie
on the intersection of the two line segments. This allows us to

tighten the bounds of the segment for that pixel ray, as shown
in Figure 4-C. The new line segment can be then revised to
the smaller segment:

Su = {p : p = λv + q|λ ∈ [λN , λF ]}, (4)

where [λN , λF ] = [λ1N , λ
1
F ]∩ [λ2N , λ2F ]. This procedure can

then be repeated for an arbitrary number of laser positions in
order to further reduce the lengths of the line segments:

[λN , λF ] = [λ1N , λ
1
F ] ∩ · · · ∩ [λKN , λ

K
F ] . (5)

By considering pixels which have been illuminated by the
projector across multiple images, we are essentially analyzing
a ’synthetic’ image of a laser line whose thickness is deter-
mined by the geometry of the scene, and the laser translation
distance between frames. As the laser is translated in small
steps, the thickness of the synthetic laser line decreases, until
it eventually reaches a lower bound determined by the size of
motion step. This effect is shown in Figure 5.

Whether or not a pixel is classified as illuminated is
determined by thresholding.

It is of utmost importance that great care is taken when
determining the bounding planes of the laser model and when
selecting the illuminated points in the acquired image, as
incorrectly selecting pixels for triangulation will not guarantee
that segments will pierce the surface of the object. A lower
threshold should be used for the calibration of the laser
planes, and higher threshold for the actual super-resolution
3D scanning.

The threshold used to determine the equations of the
bounding planes should be selected such that the two planes
completely encapsulate the laser profile, as shown in Figure
6. Picking planes which only partially cover the width of the
beam will result in the creation of line segments which are too
short and may result in the reconstruction of segments which
do not pierce the surface of the object.

In the scanning phase, pixels not fully illuminated must
be ignored, because the reduced intensity may result from a

Fig. 8. Several iterations of a 2D simulation of the proposed point cloud extraction algorithm. The ground truth is plotted as a gray line, and the acquired
upper and lower bound points are plotted as plus signs and circles circles respectively.
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Fig. 9. Left: Laser scanner used for the experiments. A: Carriage assembly. B:
System camera. Right: Closeup of the carriage assembly. A: Stepper motor.
B: Control electronics. C: Carriage driven by a lead screw. D: Laser line
projector mounted to the carriage. E: Lead screw (foreground) and linear
slide (background). F: Magnetic encoder strip.

variety of issues which cannot be easily differentiated from
each other, such as multiple reflections, specular highlights,
subsurface scattering, etc. Triangulating such pixels will result
in segments which do not pierce the object. To avoid this, laser
points should be selected very conservatively – only points
which are clearly illuminated by the laser can be used for the
reconstruction.

V. LINE SEGMENT CLOUDS

The 3D scanning algorithm based on the new formulation
does not produce point clouds, but rather line segment clouds,
where each segment supports one point, but its location along
the segment undetermined. We propose the Line Segment
Cloud as an alternative surface representation and as a tool
to visualize the measurement errors within the proposed 3D
optical triangulation framework.

VI. ITERATIVE LINE SEGMENT TIGHTENING

After a line cloud is generated by the super-resolution
algorithm, it is often necessary for further analysis and/or
visualization to reconstruct a surface represented as a polygon
mesh. Since most current surface reconstruction algorithms
operate on point clouds, we propose a novel method to extract
point clouds from the line clouds produced by the super-
resolution algorithm described in Section IV.

In the super-resolution algorithm described in Section IV
the line segments bounds are tightened for each pixel inde-
pendently of each other, but the length of the line segments
does not converge to zero. Selecting the midpoint of each line

Fig. 10. System topology.

segment is an arbitrary decision. Instead, we introduce the
Iterative Line Segment Tightening (ILST) algorithm, which
further tightens the line segment bounds for each pixel as a
function of the line segment bounds of neighboring pixels,
guaranteeing the convergence of each line segment to a point.
The ILST algorithm is as efficient as Laplacian Smoothing, but
includes a nonlinear step which makes it preserve features, as
in Median Filtering. However, the ILST algorithm applies to
ordered pairs of values, rather than single values.

Each camera pixel illuminated by the moving laser line in
at least one image results in a corresponding line segment.
Another way of looking at the segment cloud produced by the
super-resolution algorithm is as a depth map with two depths
per pixel, for the subset of illuminated pixels.

For each pixel location i we consider the pixel locations
in a neighborhood i∗ of i. For simplicity, we assume that
i∗ is the N × N neighborhood of the pixel i, however the
same formulation is applicable to other neighborhoods. Each
illuminated pixel j in this neighborhood has an associated with
a line segment with a far point or ’upper bound’ λjF , and a
near point or ’lower bound’ λjN . Note that i ∈ i∗, that is, we
include the case j = i.

The ILST algorithm is a simple loop comprising the fol-
lowing three inner steps, which are repeated for a fixed
number of iterations, or until a convergence criterion is met.
The inequality constraints λiF > λiN are satisfied at the
beginning of the algorithm. The three inner steps are designed
to iteratively shrink the length of the segments so that they
all converge to a point, while maintaining these inequality
constraints. In the first step the following first line segment
bound updates are computed for every pixel i{

λiF
′

= minj∈i? λ
j
F

λiN
′

= maxj∈i? λ
j
N .

(6)

Since the inequality constraint may not be satisfied after the
first step, in the second step the second line segment bound
updates are computed as{

λiF
′′

= (1− ti)λiF + tiλ
i
F
′

λiN
′′

= (1− ti)λiN + tiλ
i
N
′
,

(7)

where the parameter 0 ≤ ti ≤ 1 is calculated as follows. If
λiF
′
> λiN

′ we set ti = 0.5. Otherwise, if λiF
′ ≤ λiN

′, we solve
for the value of 0 ≤ τi ≤ 1 corresponding to the crossover
point, where

(1− τi)λiF + τiλ
i
F

′
= (1− τi)λiN + τiλ

i
N

′
, (8)

and set ti to the midpoint ti = τi/2:

ti =
1

2

(
λiF − λiN

λiF − λiN − λiF
′
+ λiN

′

)
. (9)

Since the first two steps do not assure that all the segments
shrink to a point, in the third step we shrink the segments by
a constant amount and update the bounds as follows:{

λiF = (1− ε) λiF
′′

+ ε λiN
′′

λiN = ε λiF
′′

+ (1− ε) λiN
′′
,

(10)

where ε is a small positive number.
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Fig. 11. Reconstruction workflow.

A flowchart showing the steps of the ILST algorithm is
shown in Figure 7. Figure 8 shows several iterations of a
2D simulation of this algorithm. To generate simulated upper
and lower bounds, Gaussian noise was added to a periodi-
cally sampled ground truth function. Note that the proposed
approach quickly converges and preserves step and tangential
discontinuities.

After a point cloud is generated using the ILST algorithm,
point normals need to be calculated for each point. This is
done by taking the normal vector of the least squares fit plane
to the k nearest neighbors of that point. k is typically on the
order of 10−50. An existing surface reconstruction algorithm
is used to fit a surface to the point cloud.

VII. LINEAR SCANNER CONSTRUCTION

In lieu of purchasing an expensive industrial linear motion
platform, we designed and fabricated our own, utilizing low
cost motion control components commonly used in 3D print-
ers. The system used to test our proposed approach is pictured
in Figure 9. An overview of the system topology is shown in
Figure 10.

To ensure structural rigidity, aluminum extrusion were used
to create the frame of the scanner. A 12.5mm thick aluminum
optical breadboard was used as the baseplate. The overall
system footprint is 46×46 cm. The effective scan volume is
constrained by the depth of focus of the camera and lens.
Larger scan volumes could be realized by using wide angle
lenses and/or multiple cameras. For image acquisition, an
industrial USB3 8.8 MP color CMOS camera was used in
conjunction with a F1.4 12.5mm focal length lens. The
working distance of the camera and lens combination was
approximately 40 cm. The laser line generator is a low cost and
low quality version intended for hobbyist projects, comprising
of a red laser diode and a plastic lenticular array.

This line generator is mounted on a 3D printed carriage,
which is then mounted on a linear slide attached to an L-

shaped aluminum bracket for rigidity. A separate commercially
available low-backlash linear axis driven by a stepper motor
and lead screw is used to move the carriage along the linear
slide.

Motion control was achieved using a stepper motor driver,
an AS5311 magnetic encoder IC [14], and a multi-pole mag-
netic strip with pole lengths of 2.0mm. The encoder has a
resolution of 212 steps per pole, resulting in a theoretical
linear resolution of 2.0mm

212 = 0.488 µm. This setup allows
for closed-loop control of the laser position, thereby reducing
positioning errors due to missed steps, backlash, friction, etc.
Mechanical limit switches were mounted at the ends of the
motion assembly, which allows for precise homing of the
carriage upon startup, as is usually done in 3D printers.

A USB interface on the closed loop stepper motor driver
board was used for communication between the host PC and
the scanner.

VIII. CALIBRATION

For camera and laser calibration, a COGNEX 40 × 30
checkerboard with square size of 6.35×6.35mm is used along
with the matching corner detection algorithm implemented as
part of the COGNEX Vision Library [15].

The OpenCV camera calibration routines are used to esti-
mate intrinsic and lens distortion parameters, as described in
[12]. Laser calibration is performed twice: once for the super-
resolution approach, and once for the traditional approach. In
either case, the R, T vectors of a checkerboard pattern in an
image are calculated. For the super-resolution calibration, the
laser is then projected onto the plane, and the points on the
left and right edges of the laser are extracted. These points are
then triangulated to obtain their location in world coordinates
using ray-plane intersection. This process is then repeated
for several checkerboard positions. This results in two point
clouds: one each for the left and right edges of the laser.

Fig. 12. Left: Ground truth image. The color assigned to each pixel corresponds to the depth of the scene along that camera ray. Center: Binary image
showing the comparison between the depth map errors of each reconstruction approach. Pixels painted white are pixels for which the superresolution approach
has a lower reconstruction error than the traditional temporal approach. Right: Inset showing a detail on the pixels near the edge of the image (marked by the
box in the middle image) where superresolution is not as effective.
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Fig. 13. Left: Error distribution of the traditional reconstruction approach,
with a standard deviation of σ = 79.2 µm. Right: Error distribution of the
proposed approach, with a 37% lower standard deviation of σ = 49.6 µm.

Planes are then fitted to these point clouds, generating the
bounds of the laser. Each plane is then defined by an implicit
equation of the form ntp + w = 0, where n is the normal
vector to the plane, p is a point on the plane, and w is a
scalar value. This procedure is then repeated for the traditional
calibration, but instead of extracting left and right edges of
the laser from the images, the peak of the laser profile after
image smoothing is used for triangulating points to form a
single laser plane. Because the laser is mounted on a linear
translation stage in our implementation, the normal vector of
the laser plane is constant under stage movement, and the
scalar offset component w(θ) is a linear function dependent
only on the motor position θ. This parameter is known since
it is set by the user’s scan settings.

IX. REALTIME IMPLEMENTATION

Because each pixel can be processed independently, the
super-resolution algorithm described in Section IV is readily
parallelized. Our implementation splits the process into two
phases: acquisition and reconstruction.

In the image acquisition phase, images are acquired and
processed in order to update the line segment bound estimates.
A microcontroller initiates an image capture by sending a
trigger signal which is synchronized with the laser motion.

Before the scan starts, two ’depth image’ arrays representing
λN , λF for each pixel in the image are allocated as in Equation
3. Each element in these arrays corresponds to the depth of the
near and far points respectively of the segment corresponding
to that pixel in the image. At the start of the scan, no segments
have been recovered. A convenient way to represent an empty
set in these arrays is to assign an negative depth value to all
of the elements upon initialization.

A basic overview of the image processing pipeline is shown
in the flowchart in Figure 11. After an image is acquired by the
camera, a laser image is created by extracting the red channel
and then compensating for lens distortion using the approach
described in [12]. The illuminated pixels in the image are then
identified. The endpoints of the segments are triangulated per
Equation 2, resulting in new depth values λN , λF for each of
the illuminated pixels. These values are then used to update
the master depth images per Equation 5.

After all of the images are processed, a CPU-based imple-
mentation of the ILST algorithm is applied.

We have implemented our approach in C++/CUDA which
runs on an NVIDIA Jetson TX1 embedded system. We have

also used OpenGL to render the reconstructed point cloud
live. Our software implementation can process frames at
approximately 40−50Hz, which could be further improved by
defining adaptive ROIs/search regions or switching to a B/W
camera to reduce the required memory bandwidth. Currently
our scan rate is limited by the camera frame rate of 21Hz,
which is determined by the bandwidth of the USB3 bus.
Typical scan times are on the order of a few minutes.

X. RESULTS

A. Simulation Results

In order to quantify the error between the recovered data
and the ground truth, we devloped software which generates
synthetic data sets comprising of artificial images. These
artificial images are generated by a raytracer which simulates
a scene containing an object to be scanned illuminated by a
virtual laser projector.

These simulated datasets were then analyzed using both the
proposed superresolution approach as well as the traditional
temporal approach. Analyzing the data sets results in a ”depth
image” where the value assigned to each pixel is the distance
from the focal point of the camera to the scene along that
pixel’s camera ray.

Because the data set has been artificially generated, the
ground truth depth image is known. Ideally, the reconstructed
depth image will match the ground truth depth image exactly,
however in practice, this is not the case due to the aforemen-
tioned factors explained in Section II.

We can then quantify the reconstruction errors by first
defining the ”depth error image” as the difference between
the reconstructed depth image and the ground truth.

When processing the data using the temporal approach, one
must calculate the sub-pixel position of the laser peak for each
row using a peak estimator. For our simulations, we have used
a naı̈ve peak estimator (where the peak position is the pixel
maximum observed laser intensity), as well as the parabolic
and Gaussian approximation estimators which fit parabolic and
Gaussian functions to the observed profile in order to estimate
the sub-pixel peak position.

We found that the superresolution approach results in recon-
struction errors lower than the temporal approach for roughly
99% of the pixels in the image. In Figure 12 we show an
image where these pixels are painted white.

In the case where the Gaussian estimator is used, our ap-
proach outperforms the temporal approach for approximately
89% of pixels, where the median error was roughly 2x lower
than in the temporal approach. For the remaining pixels, the
median error of the superresolution approach was roughly 1.6
times that of the temporal approach.

B. Experimental Results

Camera calibration is evaluated by projecting the calculated
3D location of the checkerboard features onto the image plane,
and then measuring the RMS error between the projected
points and the detected corner locations. The typical RMS er-
ror is on the order of 0.22 pixels. For performance evaluation,
the reference plane method as described in [16] is used. In
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Fig. 14. Left: Scanned object. Center: Mesh reconstructed via the traditional approach. Right: Mesh reconstructed via the proposed approach.

this method, a planar reference object is scanned, and then
a plane is fitted to the resulting mesh. The distribution of
errors between the scanned points and the fitted plane is then
analyzed. The reference plane used in our experiments was
a commercially available precision ground 15 × 15×0.64 cm
plate of O1 tool steel. For the traditional implementation,
the Gaussian approximation method as described in [7] was
used for laser point detection. After the super-resolution
algorithm was run, the midpoint of each of the segments
was used to generate a point cloud to compare against the
result from the traditional reconstruction approach. For the
reference plane test, 1800 images were taken with the laser
translated 25 µm between frames. The distribution of errors
between the collected points and the fitted plane are pictured
in Figure 13-Left and Figure 13-Right for the traditional
approach and the super-resolution approach using ILST for
point cloud extraction respectively. As expected, the error
distribution is Gaussian, with the traditional approach having a
standard deviation of σ = 79.2 µm and our proposed approach
having σ = 49.6 µm. In other test cases, the proposed method
consistently provides point clouds with a standard deviation
of plane fit errors approximately 10% lower than that of the
traditional approach. We also compare surfaces reconstructed
using both the traditional and the proposed approaches. To
reconstruct the mesh, first normals were calculated by fitting
a plane to each point and nearest neighbors. Then, the SSD
Surface Reconstruction algorithm [17] was used to generate
the mesh. For the first test, a plastic coffee cup lid was
scanned. This scan comprised of 400 images with the laser
translated 125 µm between frames, computing normals using
the 10 nearest neighbors, and using an SSD reconstruction
depth of 9. The results are shown in Figure 14. Note how
the super-resolution approach produces a mesh with better
definition near the embossed text, lower noise in the flat

regions, and better definition around the vent at the top of the
lid. For the second test, ceramic dish with the fish relief was
scanned. This scan comprised of 1500 images with the laser
translated 25 µm between frames, computing normals using the
50 nearest neighbors, and using an SSD reconstruction depth
of 11. Figure 15 is the reconstruction result of this scan. Note
how the super-resolution model produces a result with lower
noise.

XI. CONCLUSION

There are several issues which warrant further research. The
proposed extraction algorithm adjusts the bounds based on a
small neighborhood. Future surface reconstruction techniques
should consider a global approach. Furthermore, our approach
assumes that each segment pierces the object once, which is
a consequence of the implicit assumption that OT >> LT ,
where OT is the thickness of the object and LT is the thickness
of the laser line. However, it is possible that segments may
pierce the surface more than once if the object has thin
features.

Unfortunately there isn’t a widely accepted standardized
way to evaluate the performance of 3D scanners. There is
a standard (VDI 2634) which suggests objects for single
view systems [18]. ASTM has recently released performance
standards for medium range scanners (2m-150m working
distance), such as E2938-15 [19], but does not currently have
standards for short range scanners (<2m working distance).
We are currently working with the E57 committee to help
develop a new standard for short range scanners.

The system could also employ several fixed laser line
projectors, which do not necessarily have to be mounted on
the motion platform. Using multiple projectors could result in
higher acquisition rates and/or accuracy, provided that each

Fig. 15. Left: Scanned object. Center: Mesh reconstructed via the traditional approach. Right: Mesh reconstructed via the proposed approach.
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laser line could be identified in the images. We plan to study
such an extension as well.
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