
Fast Non-Convex Hull Computation

Julián Bayardo Spadafora
Universidad de Buenos Aires

Buenos Aires, Argentina
jbayardo@dc.uba.ar

Francisco Gómez-Fernandez
Universidad de Buenos Aires

Buenos Aires, Argentina
fgomez@dc.uba.ar

Gabriel Taubin
Brown University

Providence, RI, USA
taubin@brown.edu

Abstract

3D surface reconstruction usually begins with a point
cloud and aims to build a representation of the object pro-
ducing that point cloud. There are several algorithms to
solve this problem, each with different priors over the point
cloud, such as the type of object represented, or the method
by which it was obtained. In this work, we focus on an
algorithm called Non-Convex Hull (NCH), which recon-
structs surfaces through a concept similar to the Medial
Axis Transform. A new algorithm called Shrinking Planes is
proposed to compute the NCH, based on the Shrinking Ball
method with a few improvements. We prove that the new
method can approximate surfaces to arbitrarily small er-
ror, and evaluate its performance on the surface reconstruc-
tion task. The new method maintains the same reconstruc-
tion quality as the Naı̈ve Non-Convex Hull method, while
achieving a large performance improvement.

1. Introduction
3D objects are often represented as polygon meshes.

This representation is chosen because it is very efficient

for most common operations in computer graphics appli-

cations. In 3D scanning, an unstructured point cloud is ob-

tained as a finite set of points P = {p1, . . . ,pn} ⊂ R
3

that lie in the boundary ∂S of the object’s surface S. These

have peculiarities owed to the specific scanning methodol-

ogy and the object being scanned. The points are then pro-

cessed into a polygon mesh via surface reconstruction algo-

rithms, which is what we are going to be concerned with in

this work. As will be evident later on, reconstruction is a

hard problem, and its many complexities lead algorithms to

be difficult to understand, code and parallelize.

The Medial Axis Transform (MAT) is a shape represen-

tation due to [6], in which objects are given as a union of

balls contained within it, each one called a Medial Atom

(MA). The MAT is well-structured and holds useful infor-

mation about the surface, which is why it has been exten-

sively used for a variety of purposes: surface reconstruction

[3], shape simplification [29] [4], point cloud simplification

[20] [24], and skeletonization [20] [15], among others.

Non-Convex Hull (NCH) Surface Reconstruction [31] is

a method which is very simple to understand, code and par-

allelize, albeit slow for large point clouds. In this work, we

analyze and improve the algorithm in order to make it ap-

plicable to large point clouds. We chose the NCH as the

focus of this work because it is the first method to con-

sider both spheres and planes as atoms for shape represen-

tation; all other algorithms that we are aware of work with

either more complex objects fitted locally, such as poly-

nomials and non-explicit functions, or simpler objects (i.e.

planes). The NCH merges two approaches that have per-

formed well before: planes [14], and spheres (as in the

aforementioned MAT-based reconstructions). This contri-

bution went largely unnoticed, and there have not been any

improvements to the method since. The work of several au-

thors in developing the Shrinking Ball (SB) algorithm [20]

[15] [24], inspired us to make it work with the large data-

sets omnipresent today. Based on SB, we built a new fitting

algorithm for the NCH called Shrinking Planes (SP). Our

method reduces the complexity of estimating the NCH from

Θ(N2) to expected O(N logN).
This work is organized as follows. We introduce the

MAT and NCH, as well as several of their important the-

oretical properties in section 3, where we also explain the

relationship between the MAT and the NCH. A new fit-

ting algorithm for the NCH, called Shrinking Planes, is pre-

sented in section 4. Results of experimentation over dif-

ferent shapes and operating conditions is presented in sec-

tion 5. Several conclusions and future work ideas are de-

scribed in section 6.

2. Related Work
Vast amounts of work have been dedicated to surface re-

construction over the past two decades. For a more com-

plete literature review, [5] is a great survey, and [10] an ex-

cellent book on the topic.

[14] wrote one of the first papers in the field. Tech-

niques such as Poisson Surface Reconstruction by [17],

747

2019 International Conference on 3D Vision (3DV)

2475-7888/19/$31.00 ©2019 IEEE
DOI 10.1109/3DV.2019.00087

Authorized licensed use limited to: Brown University. Downloaded on July 22,2020 at 19:07:32 UTC from IEEE Xplore. Restrictions apply.

Multi-Level Partition Of Unity by [22], Point-Set Surfaces

by [1], Algebraic Point-Set Surfaces by [13], and Smooth

Signed Distance (SSD) by [30] arose out of considering

smooth priors over the surface being fit. Recent reconstruc-

tion methods have become more specialized, in order to tar-

get specific shapes, structure, and priors in the missing data

or noise. For instance, [7] performs surface reconstruction

for point clouds with color information as well as normals.

The work of [3] on the Power Crust presented many in-

teresting theoretical results that can be used to prove NCH’s

correctness. Substantial work has been dedicated to extract-

ing medial representations from surfaces, see [27] for a thor-

ough overview. There are methods for obtaining medial rep-

resentations from both meshes and point clouds; only work

that applies to the latter will be cited, as the former is con-

sidered out of scope for this work.

Signed Distance Functions are a common representation

of 3D surfaces: the border ∂S of the surface S is repre-

sented as the σ level set of a scalar field f : R
3 → R,

which may be stated explicitly as a function definition or

implicitly, for example as a uniform grid of samples. The

σ level set is then extracted into a polygonal representation

via isosurfacing algorithms. Methods based on this concept

have been used for reconstruction from the very beginning

[14], and it has been a common theme in many popular tech-

niques such as Poisson Reconstruction [17], MPU [22], and

Moving Least Squares-based techniques [1] [13].

The NCH can be seen as an extension of the MAT repre-

sentation to allow planes: these are thought as spheres of in-

finite radius and define an implicit surface through the NCH

Signed Distance Function. For isoextraction, the function

that determines the grid is not needed, only samples of it and

maybe its derivative. This is enough to compute a polygonal

mesh using popular techniques, such as the classic March-

ing Cubes [19], or improved methods that work on the dual

representation, like Dual Marching Cubes [21] and Dual

Contouring [16]. Other approaches can generate a mesh di-

rectly from the MAT, such as in [9]; however, the method-

ology is significantly more complex and less explored.

There are many algorithms for computing the MAT from

a point cloud; the most popular are derivations of [2]. Such

methods rely on extracting a subset of the Voronoi diagram

and properly scaling/filtering the MAs. The diagram is well

defined for densely sampled surfaces, but for point clouds

with missing data the corresponding Voronoi diagram may

no longer resemble the MAT.

If approximate approaches are acceptable, more robust

methods are available. Ma et al.[20] built an algorithm to

approximate the MAT, called Shrinking Ball (SB), as a pre-

processing step for skeletonization; Jalba et al.[15] worked

on parallelizing it on the GPU and improving convergence.

Recent work [24, 23] adapted the SB to include a denois-

ing heuristic and approximate the θ Simplified Medial Axis

(θ-SMA) [11].

3. The Medial Axis Transform and the Non-
Convex Hull

In this section we formally introduce the representation

of a surface as a union of balls, called the Medial Axis

Transform (MAT), as well as the representation as a union

of balls and planar half-spaces, called the Non-Convex Hull

(NCH).

Given a surface S of a smooth, bounded, orientable

(i.e. with a consistent choice of surface normal vector

at every point) and watertight (closed) object, the pair

(P,N) denotes an oriented point cloud for S. Here P =
{p1, . . . ,pN} s.t. P ⊂ ∂S is a sampling of S, and

N = {n1, . . . ,nN} is the set of associated unit length nor-

mal vectors for pi, consistently oriented with respect to the

surface.

3.1. Medial Axis Transform

Several equivalent definitions for the MAT exist. Our

exposition is based on multiple sources; for a complete

overview, the book by [27] can be a valuable resource. The

following definitions are due to Choi et al.[8]:

Definition 3.1 (Set of inscribed disks). Given Ω a con-

nected and bounded subset of R
k, D(Ω) is the set of in-

scribed disks inside Ω:

D(Ω) = {Br(p) | p ∈ Ω, r ∈ R≥0, Br(p) ⊂ Ω},Ω ⊂ R
k

where Br(p) is the closed ball of radius r centered at p (if

r = 0, then Br(p) = {p}).

Definition 3.2 (Core). CORE(Ω) filters D(Ω) to maximal

inscribed disks in Ω, each one called Medial Atom (MA)

and defined as follows:

CORE(Ω) = {Br(p) ∈ D(Ω) |
Bs(q) ∈ D(Ω) ∧Br(p) ⊂ Bs(p)
=⇒ Br(p) = Bs(q)}

Definition 3.3 (Medial Axis). MA(Ω) is the set of centers

of the Medial Atoms in CORE(Ω):

MA(Ω) = cl({p ∈ Ω|Br(p) ∈ CORE(Ω)})

Note that we take the closure cl of the ball’s centers, i.e.

including the limit points. This trivially makes the MAT

closed, and even compact if Ω is bounded [26]; these facts

will be useful later on when considering sharp edges.

Definition 3.4 (Medial Axis Transform). MAT(Ω) is the

set of pairs consisting of the center and radius of each disks

in MA(Ω).

748

Authorized licensed use limited to: Brown University. Downloaded on July 22,2020 at 19:07:32 UTC from IEEE Xplore. Restrictions apply.

Remark 1. definition 3.2 implies that two Medial Atoms

cannot have the same center. Thus, the mapping

MA(Ω) → MAT(Ω) giving the radius for each center is a

well-defined isomorphism. Concretely, they are just differ-

ent representations of the same object.

In the literature, it is usual to split the MAT into Exterior

(or Outer) and Interior (or Inner), where the Interior MAT

refers to the definitions given earlier, and the Exterior is de-

fined similarly for Ωc. Intuitively, the Interior MAT builds

a shape out of balls, while the Exterior MAT carves them

out of a block of marble: in both cases we generate the

same shape when the surface is infinitely sampled, but one

method is “additive” and the other is “subtractive”.

3.2. Non Convex Hull

The following exposition roughly follows [31] with

slight differences leading to the same results.

Definition 3.5 (Half-Space). Given X ⊂ R
k and f : X →

R, we define Hf = {x ∈ X | f(x) ≤ 0} as a half-space.

We call it linear when f is a linear function.

Definition 3.6 (Supporting Half-Space). Given a point

cloud P = {p1, . . . ,pN}, Hf is a supporting half-space

for P , when P ⊆ Hf and ∃x ∈ P : f(x) = 0. (i.e. P is

contained in it, with at least one point at its border).

Definition 3.7 (Oriented Convex Hull). Let (P,N) be an

oriented point cloud. Define fi(x) = 〈ni,x− pi〉. Then:

OCH(P,N) =
⋂

i

Hfi

Remark 2. fi(x) as defined in the OCH is positive when x
is inside of the half-space given by a plane centered at pi

with normal ni. Thus Hfi is both the other side and the

border connecting both sides.

Definition 3.8 (Non-Convex Hull). Let (P,N) be an ori-

ented point cloud, and ρ = {ρ1, . . . , ρN} such that ρi ≥ 0.

Define fρi

i (x) = 〈ni,x− pi〉 − ρi||x− pi||2. Then:

NCH(P ,N , ρ) =
⋂

i

Hf
ρi
i

Each fi is called a basis function for pi and note that

all the half-spaces involved are supporting by construction.

Furthermore, we define the set of Non-Convex Hull Atoms

(NCHA) as:

NCHA(P,N , ρ) = {(pi,ni, ρi) | 1 ≤ i ≤ N}

Remark 3. When ρi = 0, f0
i (x) is equivalent to the fi used

in the OCH (definition 3.7).

Lemma 3.1. When ρi > 0, fρi

i (x) is a SDF for the comple-
ment of a sphere centered on pi+rini with radius ri = 1

2ρi

fρi

i (x) =
1

2ri
{r2i − ||x− (pi + rini)||2}

Proof. Replace in the formula above the square norm:

fρ
i (x) =

1

2ri
(r2i − (||x− pi||2 + (−2ri)〈ni,x− pi〉+ r2i))

=
1

2ri
(−||x− pi||2 + (2ri)〈ni,x− pi〉)

= 〈ni,x− pi〉 − 1

2ri
||x− pi||2

Which is exactly the original definition. The important de-

tail here is that the SDF for the sphere is undefined when

ri = 0, which is why the other representation is taken.

Definition 3.9 (NCH SDF). f(x) = max1≤i≤N fri
i (x) is

also an SDF, representing the intersection of all fri
i (inter-

section of complements). Each one of these objects may be

either a sphere, or a hyperplane.

We have thus far worked with an oriented point cloud

(P,N), we call this NCH SDF f+(x). We denote by

f−(x) the NCH SDF given by reversing the direction of

the normals. The relationship between these two func-

tions is akin to the Inner and Outer MAT. We call f̂(x) =
f+(x)−f−(x)

2 the Symmetric NCH SDF.

Nothing has been said up to this point about how ρ =
{ρ1, . . . , ρN} should look. [31] defines it so we can al-

ways ensure that, for a given oriented point cloud (P,N)
and point pi: (i) the point is at the border of the SDF, i.e.

fρi

i (pi) = 0, (ii) the normal of the SDF at the point coin-

cides, i.e. ∇fρi

i (pi) = ni, (iii) other points are left outside

of the sphere, or at its border, i.e. fρi

i (pj) ≤ 0 for all j �= i
(iv), ri is maximal and ρi ≥ 0.

3.3. Relationship with the MAT

The key difference between the MAT and the NCH is

that the latter is also able to use planes as “Medial Atoms”.

If we take away this freedom from the NCH, what we are

left is a shape represented as a union of balls (i.e. the MAT).

The following lemma proves this:

Lemma 3.2. Let (P,N) be an oriented point cloud, with
ρ suitably defined such that ρi > 0 for all i (i.e. no plane
fits are allowed). Also, let Sc = NCH(P,N , ρ). Then,
there is a surjective function g : NCHA(P,N , ρ) →
MAT(S).
Proof. We define g(pi,ni, ρi) = (pi + rini, ri), s.t. ri =
1

2ρi
. Take any Br(p) ∈ MAT(S); by construction, ∃pi ∈

P : pi ∈ ∂Br(p); thus, observe that g(pi,ni,
1
2r) = (p, r)

749

Authorized licensed use limited to: Brown University. Downloaded on July 22,2020 at 19:07:32 UTC from IEEE Xplore. Restrictions apply.

as expected since the ball is tangent in pi and the unit length

normal ni points to the center p. Notice that such pi must

exist: we know that ∃x ∈ (∂Br(p) ∩ ∂S), this in turn im-

plies that ∃i ∈ [N] such that the associated ball to pi has x
in its boundary, as it is determined by the NCH SDF.

Concretely, the NCH covers the entire MAT, proving

that it is a viable representation for general shapes. Indeed,

lemma 3.2 also implies that many properties of the MAT

also apply to the constrained NCH (when ρi > 0 for all i).
This last assumption is reasonable in the Inner NCH, as any

watertight shape will have at least one point in the direction

of its normal when it is sufficiently sampled.

The reason to prefer the NCH over the MAT follows di-

rectly from the fact that planes are allowed. It is well known

that the MAT has problems representing sharp edges. From

a theoretical standpoint, this derives from the fact that the

Medial Axis needs to include limit points in order to fit

sharp edges [12]. In practice, there cannot be an arbitrar-

ily accurate reconstruction of sharp edges unless more and

more points are sampled near edge points. Practical appli-

cations that use the MAT usually do not handle this case or

wade around this limitation by artificially generating such

atoms [28]. One of the significant benefits of the NCH is

that it does not suffer from such limitation: it is naturally

able to represent sharp edges, simply by fitting planes in-

stead of spheres. For example, a cube may be represented

using one sample per side, with normals pointing outwards.

Furthermore, the MAT produces poor reconstructions when

few sample points are available, or when normals are not

consistently oriented. As we will see, using the Symmetric

NCH gives much better quality results in these cases.

Overall, a NCH representation can be more accurate, ro-

bust, compact, and require less samples than the MAT.

4. Shrinking Planes
In this section, we introduce Shrinking Planes, our al-

gorithm to approximate the NCH; its pseudocode is shown

in algorithm 1. In order to understand it, we must first ex-

plain Shrinking Ball, an algorithm to approximate the Me-

dial Axis Transform proposed by [20], with follow-up work

by [15] and [24]. The core idea is similar to the Naı̈ve Non-

Convex Hull (NNCH) algorithm [31], and has been spotted

in unrelated works [28] [4].

Take an oriented input point cloud (P,N) sampled from

∂S, and imagine you want to find a finite approximation to

MAT(S). One idea is to fit one ball per point pj ∈ P:

first, begin with a ball B such that pj is at its border and

the normal matches accordingly; then pick any other point

pi ∈ (P ∩ int(B))1, and compute a new maximal ball with

pi in the border. Since the ball must be maximally con-

tained, we can repeat the process until it cannot shrink any

1int(B) is the interior of the set, using the standard definition

more (i.e, the intersection is empty), defining a sequence of

progressively smaller balls Bj = {Brji(cji)}i∈N that con-

verges into a ball Brj (cj). If the sample is noise-free and

sufficiently dense, doing this will result in a set of maximal

balls B = {Br1(c1), . . . , BrN (cN)} ⊂ MAT(S). This is

the core idea behind the SB algorithm; its pseudo-code, in a

format close to the original paper but including our contri-

butions, can be seen in algorithm 1. Without our changes,

the algorithm is the Shrinking Ball variant later used for

comparison.

The NNCH algorithm runs a similar procedure, except

that its initial “ball” is actually of infinite radius (i.e. a

plane), and every point is considered instead of iteratively

picking points. Seen this way, the SB algorithm is an clear

optimization, since it can choose strategic points. However,

for the purpose of reconstruction a few hurdles need to be

overcome, as we explain below.

4.1. Radius initialization

Once we pick a point pj, the first step is to determine

an initial radius (InitialRadius auxiliary method, line 2 al-

gorithm 1). Ideally, this initial radius would be exactly the

distance to the Medial Atom center, tangent to the point:

Definition 4.1 (Local Feature Size). Given w ∈ S ,

LFS(w) = d(w,MA(S)) = inf
c∈MA(S)

{d(w, c)}

That is, the distance to the nearest point in MA(S).
Since this value is unknown, heuristics are used, and

it is adjusted after every point is processed (AdjustRa-

diusHeuristic method, line 15 algorithm 1) to improve the

estimation.

Thus, the first issue is that it unclear what the initial ra-

dius should be, as it can not be infinite (i.e. a plane): if it is

too small, then the ball is not in the MAT, and will not cover

the entire surface; if it is too large, it will protrude from the

surface and convergence will be slow.

Ma et al. [20] proposed an heuristic that randomly

chooses another point and uses it as border to compute the

initial radius. For all following points, adjust it to the ra-

dius of a ball, in the proper direction of the normal for the

point. From a theoretical standpoint, it exploits the fact that

the next point should always keep the current point outside

of its MA, which follows from the maximality requirement.

However, this has a crucial problem, which is that such an

atom does not necessarily exist: the previous point could

be in the opposite direction of the current point’s normal,

which would require a negative radius. The authors did not

elaborate on this problem in their work, and it is a signifi-

cant one, especially when dealing with noisy point clouds.

Jalba et al.[15] presented a parallelization-friendly ap-

proach to initial radius estimation, which consists of divid-

ing the point cloud into equal-sized chunks and processing

750

Authorized licensed use limited to: Brown University. Downloaded on July 22,2020 at 19:07:32 UTC from IEEE Xplore. Restrictions apply.

one chunk per thread. Concretely, they estimate the initial

radius to a number similar to the average LFS for the sam-

ple. A priori, the average LFS can be much smaller than the

actual LFS of any given point, which translates into smaller

balls than required (i.e. holes in the surface). They do not

comment on this, and we could not find their source code

for further experimentation or inspection.

The optimal initial value for a given pj is LFS(pj),
meaning supp∈S LFS(p) would be a reasonable choice for

every point. Peters et al.[25, 24] use an user-supplied max-

imum radius for all points. It is a reasonable way to avoid

the problem using this strategy, as we usually have an esti-

mate of the maximum two points that can be apart, which is

an upper bound to the LFS.

We estimate an upper bound to the maximum distance

between any two points in linear time as the diagonal of the

point cloud bounding box. This is guaranteed to be larger

than the local feature size at any given sample, making it

correct to use as a constant initial radius without incurring

in a severe performance loss.

4.2. Shrinking the ball

Given a point pi and its normal vector ni, we fit either

a plane or a sphere. Spheres can be determined by either

setting their radius or giving another point in its border.

If we fix another point pj, the radius of the sphere that

puts both pj and pi in its border and guarantees that the

normal at pi matches is r′i =
||pj−pi||2

2〈ni,pj−pi〉 (TangentSpher-

eRadius, line 5 of algorithm 1); r′i will be negative when pj

is in the direction opposite to the normal with respect to the

point, and infinite if both points lie in the same plane. Both

NNCH and SB attempt to find a maximal ball that touches

only two points of the surface (another characteristic of the

MAT). For a given point, the former iterates through all re-

maining points trying to find the smallest maximal ball that

fits, while the latter attempts to pick a subset of points and

reduce the search space. If NNCH does not find a ball in the

direction of the normal, it fits a plane.

The heuristic that SB uses to pick a subset of points is

to exploit that these balls will be progressively smaller and

closer to what the real value is, and hence a nearest neigh-

bor search will yield candidates likely to be the real tangent

point as iterations progress.

There is one significant issue with Ma’s idea [20]: since

the Kd-Trees used in practice are usually approximate, the

“nearest neighbor” found may not be in the appropriate side

of the normal of the point. Thus, the radius computation

could return a negative value when it should found a better

candidate point, and hence crippling the reconstruction pro-

cess. A corrected version is already shown in algorithm 1

by only checking the sign of r′i.
The SB algorithm as presented finds an approximation

to the MAT. However, we are interested in approximating

the NCH. This can be done by mimicking what the NNCH

algorithm does: begin with a plane, and shrink from there

on. Since it is not possible to use the SB algorithm with a

plane as an initial guess (because there is no center to the

Medial Atom being fit), we need to find a different way to

choose to fit a plane.

If we can guarantee that the initial radius ri is strictly

greater than LFS(pi), then we can also guarantee that any

sufficiently dense sampling shrinks ri at least once. How-

ever, points that ought to be planes instead are different: no

point can be used to compute a new radius, causing a break

from the iterative process in the very first iteration. Hence,

we can check if the current radius is still the same as the

initial one, and if so fit a plane (line 12 of algorithm 1).

We have taken δ = 1× 10−5 and tmax = 10 (maximum

number of iterations). For all models we have run, conver-

gence take no more than 5 iterations. Smaller values of δ
showed no significant improvements in the quality of the

estimation.

Algorithm 1: Shrinking Planes algorithm for computing the

NCH. Main differences with SB are highlighted.

1: for i = 1 . . . N do
2: ri ← InitialRadius(i)
3: for 1 . . . tmax do
4: j ← NearestNeighbor(pi + rini,pi) {Excludes pi}
5: r′i ← TangentSphereRadius(pi,pj) { ||pj−pi||2

2〈ni,pj−pi〉}
6: if r′i < 0 then
7: break {pj is in the wrong direction of the normal}
8: swap(ri, r

′
i)

9: if |ri − r′i| < δ then
10: break {Algorithm has converged}
11: RadiusRefinementStage(i) {See algorithm 2}
12: if ri ≥ InitialRadius(i) then
13: ri ← ∞ {Fit a plane with normal ni}
14: ρi ← 1

2ri
{Convert into the NCH}

15: AdjustRadiusHeuristic(i)
16: return {ρ1, . . . , ρN}

4.3. Radius refinement

The algorithm as presented up to here works for most

shapes, but fails subtly in others. The causes were elusive

to find, but easy to understand: it is likely to break the loop

due to false convergence issues (line 10 of algorithm 1),

since the radiuses often do not change critically from one

iteration to the next; it also rarely happens that the iteration

gets stuck between two points due to the usage of an ap-

proximate Kd-Tree. Our fix for these issues is to enforce

the maximality of the ball; after the inner loop has finished

(line 11 of algorithm 1), we are in one of three cases: (i)

we have a plane -in which case it is impossible to shrink

at all-, (ii) the ball has converged -i.e. it is maximal-, or

751

Authorized licensed use limited to: Brown University. Downloaded on July 22,2020 at 19:07:32 UTC from IEEE Xplore. Restrictions apply.

(iii) the ball has shrunk partially -thus the estimate can be

improved-.

In any case, we can run a radius search using a KD-Tree

(line 2 algorithm 2), which we already have for the near-

est neighbor search in algorithm 1, and shrink it so that all

points found are outside the ball. In the first case, only pi

will be returned; in the second case, only border points will

be found, and thus no shrinking will happen; in the third

case, points will be found inside the ball, which will shrink

it further into convergence. See algorithm 2 for the pseudo-

code.

Algorithm 2: RadiusRefinementStage

1: for 1 . . . ymax do
2: N ← RadiusSearch(pi + rini, ri, k)
3: changed ← false

4: for j ∈ N do
5: if j �= i then
6: r′i ← ComputeTangentSphereRadius(pi,pj)
7: if r′i < ri then
8: ri ← r′i
9: changed ← true

10: if not changed then
11: break {Early stop refinement}
12: return ri

It is important to point out that the radius search stage

is not viable on its own as a way to compute the MAT,

although it would be a correct algorithm if the number of

neighbor points k = ∞, basically by being equivalent to

NNCH. If the radius search is constrained to be returned in

descending sorted order from the center point, the search

becomes very costly and the algorithm runs more slowly.

These problems imply that a good radius estimate is re-

quired before actually running it, and that is precisely what

lines 3 through 10 of algorithm 1 do.

One possible problem with this algorithm, as provided,

is the presence of noise, which may lead to over-shrinking.

However, it should be straightforward to incorporate de-

noising heuristic based on [11]. Such modifications will not

be explored in this work and will be left as future work.

In terms of correctness, on one hand, [20] proved that

given an ε-sample, the SB algorithm converges to a subset

of the MAT, and furthermore it converges to the true MAT

as ε → 0. This indeed proves that error-free reconstruction

is possible with SB. On the other hand, [31] established the

same for the NCH algorithm.

In conclusion, algorithms 1 and 2 are basically equiva-

lent, so the radius approximation derives directly from this

property: a plane is fit only when there are no points in

the direction of the half-space (which is exactly what NCH

does), and otherwise we are guaranteed to find the maximal

ball because of the call to algorithm 2 in line 11 of algo-

rithm 1. Of course, this is a priori only true when k = ∞;

otherwise, we may miss points.

4.4. Complexity

In terms of time complexity, it is important to point out

that both SB and SP are O(N2), as we have to process each

point, and the nearest neighbor search may take O(N) in

the worst case. Under the assumption that the data struc-

ture used for lookup is a KD-Tree, the expected complex-

ity of the search is O(logN), which implies that the ex-

pected worst case complexity is O(N logN), a significant

improvement from NNCH’s Θ(N2). Notice that tmax, the

number of iterations for shrinking (line 3 of algorithm 1),

have not entered in our analysis, because this is a constant

in practice and can be systematically reduced when using a

good radius initialization heuristic. In the same way, ymax

iterations of the radius refinement loop are allowed (line 1 of

algorithm 2), but none of the shapes presented in this work

took more than 2 iterations per point, and most of them only

required one.

It is important to point out that the need of a radius search

over the KD-Tree increases the time complexity of SP. The

worst case of such a search is O(k logN), where k is the

number of neighbor points to be found, so that indeed turns

the complexity into O(kN logN). However, k was set to

10 because we did not notice any significant contribution

to the convergence when setting it higher, leading to a total

complexity of expected linearithmic time. As will be shown

later in section 5, the difference in performance between SB

and SP is negligible.

Finally, the algorithm has a spatial complexity of O(N),
since that is how much the KD-Tree, points, normals and

corresponding radiuses take to store.

5. Results

For all experiments run, the default parameters (named

as they appear in the pseudo-code) will be used. All point

clouds and meshes are inside the unit cube centered at 0 (so

the choice of initial radius is good), and no re-scaling or

transform is used. All normal vectors are always pointing

inwards when input to the program.

As a first example, notice in fig. 1 that the Outer MAs

does not look like a fit to the shape. This is because there are

more plane fits than spheres, and a point is drawn only if the

ball’s radius is not infinite. This renders the visualization for

the Outer MAT useless.

In terms of the missing data, the results are more inter-

esting than before, as shown in fig. 2. Notice the difference

in NCH fit on the under side where there is missing data: the

Inner (fig. 2 a) has protruding balls, while the Outer (fig. 2

b) goes in the other direction, as expected. Also, notice how

the Symmetric NCH SDF makes a compromise between the

two solutions (fig. 2 c).

752

Authorized licensed use limited to: Brown University. Downloaded on July 22,2020 at 19:07:32 UTC from IEEE Xplore. Restrictions apply.

(a) Oriented point

cloud with 34k

points.

(b) Inner Medial

Atoms.

(c) Outer Medial

Atoms.

Figure 1: MAT computed with the SP algorithm

(a) Underside of the

Inner NCH recon-

struction

(b) Underside of the

Outer NCH recon-

struction

(c) Underside of the

Symmetric NCH

reconstruction

Figure 2: Detail of a reconstruction by the SP algorithm.

The three meshes were extracted using the NCH SDF for

the inner, outer and symmetric MAT.

5.1. Radius approximation

In order to evaluate the NCH fit, we compare the ρ+ and

ρ− sets by computing the absolute value of the difference

and looking at its distribution. We have the NNCH method

which is what we want to approximate, and we have a two

algorithms for approximating it, the Shrinking Planes (SP)

and Shrinking Ball (SB) algorithms. Since the output of

both methods must be of the same size, we can directly

compare ρ+NNCH
i and ρ−NNCH

i , the Inner and Outer NCH fit

for ρi, respectively, against ρ+SP
i and ρ−SP

i , the fit produced

by SP, and analogously for the SB.

We take three models, shown in fig. 3: one with smooth

features but large planar regions, one with sharp regions,

and one with just smooth features. Then, we sample point

clouds for each one, perform reconstruction using SB, SP

and NNCH, and compare the results as explained above.

(a) Hand (b) Hinge (c) Key-pad

Figure 3: The reference models used for experimentation.

In all cases, a 40k point cloud sample will be used through-

out the experiments, since we found this size to visually

preserve all features in the models.

The results of these comparisons are shown in table 1.

As we can see, both SB and SP successfully approximate

the radiuses computed by NNCH, with a better performance

for SP in the Outer NCH case, as expected.

Outer NCH Inner NCH

model / method max mean max mean

Key-pad SP 5.15E-05 6.09E-07 9.44E-01 2.72E-04

SB 4.35E-01 4.82E-05 9.44E-01 3.16E-04

Hinge SP 1.53E-05 7.36E-07 1.52E-01 5.15E-05

SB 1.84E-01 7.95E-05 1.52E-01 6.87E-05

Hand SP 4.01E-05 2.79E-07 9.50E-01 2.02E-04

SB 7.29E-01 8.91E-05 9.50E-01 2.28E-04

Table 1: Error Metrics for the NCH representations com-

puted by Shrinking Ball (SB) and Shrinking Planes (SP),

both compared against Naı̈ve Non-Convex Hull (NNCH).

After this, we use the estimated radiuses to extract the

zero-level isosurface of the NCH SDF using Marching

Cubes with a resolution of 50x50x50, and compare results

against the original source mesh using the Hausdorff dis-

tance. The three methods produce almost the same mesh,

according to the Hausdorff distance for the Inner, Outer and

Symmetric NCH reconstructions in all the models. From

the table 1 we observe that SB and SP behave very simi-

larly to NNCH for radius estimation, so it makes sense that

the NCH SDF for each method also behaves in a similar

way. However, there are small differences between SDFs as

pointed out in the bunny example. For reference, a recon-

struction of the Hand model using SP is shown in fig. 4.

(a) Inner NCH (b) Outer NCH (c) Symmetric NCH

Figure 4: Reconstructions of Hand point cloud sampled

from the reference model. The process was performed us-

ing SP and MC with a resolution of 50 in all axes. Minimum

value (blue) is 0, maximum value (red) is 0.003.

Finally, we run Screened Poisson (SPR) Reconstruction

for each sampled model and compare the resulting mesh

with the original one. For SPR, algorithm parameters were

fixed to the defaults following [18] and implemented by the

its authors2. Table 2 shows that SPR performs better for the

Hinge and Hand models, however we can observe that the

SDF’s computed by Shrinking Planes present competitive

results in all cases, being the best for the Key-pad model.

2https://github.com/mkazhdan/PoissonRecon

753

Authorized licensed use limited to: Brown University. Downloaded on July 22,2020 at 19:07:32 UTC from IEEE Xplore. Restrictions apply.

In general, SP generates approximations of the NCH that

are very close to the NNCH. Thus, the behavior of both

algorithms tends to be very similar; for example, neither are

resilient to noise -especially in the normal vectors-, when

compared to more complex algorithms such as SPR.

Model Method / SDF Error

Key-pad SPR 2.34E-02

INCH 9.35E-03
ONCH 1.05E-02

SNCH 9.95E-03

Hinge SPR 8.42E-03
INCH 4.53E-02

ONCH 1.19E-02

SNCH 3.24E-02

Hand SPR 5.72E-03
INCH 9.65E-03

ONCH 1.01E-02

SNCH 9.85E-03

Table 2: Errors measured by the Hausdorff distance for

the reconstructed meshes. SP was used to approximate

each SDF: Inner (INCH), Outer (ONCH) and Symmetric

(SNCH). SPR stand for Screened Poisson Reconstruction.

5.2. Performance

Regarding timing measurements, we decided to take the

Hinge model’s reference mesh and generate multiple point

samples, each increasing in size, and run the full recon-

struction pipeline for NNCH, SP, and SB. All measure-

ments have been done on a Intel Core i7-6500U running

at 2.50GHz with 16 GB of memory.

The results from the measurements of the reconstruction

stage (i.e. radius estimation) are shown in fig. 5. Notice

that, as expected, for small point clouds we do not achieve

a significant computation gain over NNCH (although there

is still a 4 seconds difference on average). Also expected is

the growth shown, in which our gains progressively become

higher: notice how by 70k points we manage to perform the

fit in roughly 24 seconds less on average. The SP algorithm

is clearly slightly slower than SB. As expected, the memory

requirements of SP are very low by today’s standards, both

for obtaining the NCH and for reconstruction keeping as

high as 250 MB for all the tested models.

Performance was not compared with SPR because our

isoextraction routine is very slow, mainly due to the NCH

SDF evaluation and improving it is not the focus of this

work.

6. Conclusions
We have developed the Shrinking Planes algorithm,

which computes an approximation to the NCH in expected

Figure 5: Performance measurements for radius estimation

as the number of samples grow; three (averaged) runs are

shown per sample size and algorithm

linearithmic time, a significant improvement over the orig-

inal quadratic algorithm. We have tested its bounded-error

reconstruction in densely sampled point clouds, and have

run several experiments to test both its reconstruction qual-

ity and performance across different models. We have

shown that the SP algorithm provides an excellent approx-

imation to the NCH as computed by the NNCH algorithm,

and in particular superior to that of the SB algorithm that

we adapted for the NCH.

We also performed comparisons with Screened Poisson

Surface Reconstruction, a state-of-the-art algorithm in the

field, presenting very competitive results in terms of recon-

structed meshes from point samples. It is quite clear that

the algorithms shown in this work can appropriately recon-

struct surfaces, albeit with difficulty in the presence of noise

and extensive missing data. At last, our performance exper-

iments showed our very small memory footprint, as well the

much improved computation times of SP and SB in compar-

ison to the Naı̈ve Non-Convex Hull.

As to future work, all algorithms presented in this work

are embarrassingly parallel, and thus very straightforward

to parallelize both into multiple cores and into graphic pro-

cessing units. [20] and [15] have done this previously as

part of their work, and managed to get running times in the

order of milliseconds for very large point clouds. The most

time-consuming aspect of our implementation is the surface

isoextraction. The NCH has a lot of structure, which could

be exploited for faster isoextraction. We are currently work-

ing along these lines and hope to produce results in the near

future.

Acknowledgments

This work was partially supported by the National Sci-

ence Foundation grant No 1717355 and the Cognex Re-

search Award Program.

754

Authorized licensed use limited to: Brown University. Downloaded on July 22,2020 at 19:07:32 UTC from IEEE Xplore. Restrictions apply.

References
[1] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and

C. T. Silva. Point set surfaces. In Proceedings of the Confer-
ence on Visualization ’01, VIS ’01, pages 21–28, Washing-

ton, DC, USA, 2001. IEEE Computer Society. 2

[2] N. Amenta and M. Bern. Surface reconstruction by voronoi

filtering. In Proceedings of the Fourteenth Annual Sympo-
sium on Computational Geometry, SCG ’98, pages 39–48,

New York, NY, USA, 1998. ACM. 2

[3] N. Amenta, S. Choi, and R. K. Kolluri. The power crust,

unions of balls, and the medial axis transform. Comput.
Geom. Theory Appl., 19(2-3):127–153, July 2001. 1, 2

[4] M. Berger and C. T. Silva. Medial kernels. Comput. Graph.
Forum, 31(2pt4):795–804, May 2012. 1, 4

[5] M. Berger, A. Tagliasacchi, L. M. Seversky, P. Alliez,

G. Guennebaud, J. A. Levine, A. Sharf, and C. T. Silva. A

survey of surface reconstruction from point clouds. Comput.
Graph. Forum, 36(1):301–329, Jan. 2017. 1

[6] H. Blum. A Transformation for Extracting New Descriptors

of Shape. Models for the Perception of Speech and Visual
Form, pages 362–380, 1967. 1

[7] F. Calakli and G. Taubin. SSD-C: Smooth Signed Distance
Colored Surface Reconstruction, pages 323–338. Springer

London, London, 2012. 2

[8] H. I. Choi, S. W. Choi, and H. P. Moon. Mathematical theory

of medial axis transform. Pacific J. Math, 181:57–88, 1997.

2

[9] T. Delamé, C. Roudet, and D. Faudot. From a medial surface

to a mesh. Computer Graphics Forum, 31(5):1637–1646,

2012. 2

[10] T. K. Dey. Curve and Surface Reconstruction: Algorithms
with Mathematical Analysis (Cambridge Monographs on
Applied and Computational Mathematics). Cambridge Uni-

versity Press, New York, NY, USA, 2006. 1

[11] M. Foskey, M. C. Lin, and D. Manocha. Efficient computa-

tion of a simplified medial axis. In Proceedings of the Eighth
ACM Symposium on Solid Modeling and Applications, SM

’03, pages 96–107, New York, NY, USA, 2003. ACM. 2, 6

[12] P. Giblin and B. B. Kimia. A formal classification of 3d

medial axis points and their local geometry. IEEE Trans.
Pattern Anal. Mach. Intell., 26(2):238–251, Jan. 2004. 4

[13] G. Guennebaud and M. Gross. Algebraic point set surfaces.

ACM Trans. Graph., 26(3), July 2007. 2

[14] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and

W. Stuetzle. Surface reconstruction from unorganized points.

SIGGRAPH Comput. Graph., 26(2):71–78, 07 1992. 1, 2

[15] A. C. Jalba, J. Kustra, and A. C. Telea. Surface and

curve skeletonization of large 3d models on the gpu. IEEE
Transactions on Pattern Analysis and Machine Intelligence,

35(6):1495–1508, 06 2013. 1, 2, 4, 8

[16] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contour-

ing of hermite data. ACM Trans. Graph., 21(3):339–346,

July 2002. 2

[17] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface

reconstruction. In Proceedings of the Fourth Eurographics
Symposium on Geometry Processing, SGP ’06, pages 61–70,

Aire-la-Ville, Switzerland, Switzerland, 2006. Eurographics

Association. 1, 2

[18] M. Kazhdan and H. Hoppe. Screened poisson surface recon-

struction. ACM Trans. Graph., 32(3):29:1–29:13, July 2013.

7

[19] W. E. Lorensen and H. E. Cline. Marching cubes: A high

resolution 3d surface construction algorithm. SIGGRAPH
Comput. Graph., 21(4):163–169, Aug. 1987. 2

[20] J. Ma, S. W. Bae, and S. Choi. 3d medial axis point approx-

imation using nearest neighbors and the normal field. The
Visual Computer, 28(1):7–19, 01 2012. 1, 2, 4, 5, 6, 8

[21] G. M. Nielson. Dual marching cubes. In IEEE Visualization
2004, pages 489–496, Oct 2004. 2

[22] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H.-P. Seidel.

Multi-level partition of unity implicits. ACM Trans. Graph.,
22(3):463–470, July 2003. 2

[23] R. Peters. Geographical point cloud modelling with the 3D
medial axis transform. PhD thesis, Delft University of Tech-

nology, 03 2018. ISBN: 978-94-6186-899-2. 2

[24] R. Peters and H. Ledoux. Robust approximation of the Me-

dial Axis Transform of LiDAR point clouds as a tool for vi-

sualisation. Computers & Geosciences, 90(A):123–133, mar

2016. 1, 2, 4, 5

[25] R. Peters, H. Ledoux, and F. Biljecki. Visibility Analysis in

a Point Cloud Based on the Medial Axis Transform. In Eu-
rographics Workshop on Urban Data Modelling and Visu-
alisation 2015, pages 7–12, Delft, Netherlands, Nov. 2015.

5

[26] E. C. Sherbrooke, N. M. Patrikalakis, and F.-E. Wolter. Dif-

ferential and topological properties of medial axis trans-

forms. Graphical Models and Image Processing, 58(6):574

– 592, 1996. 2

[27] K. Siddiqi and S. Pizer. Medial Representations: Mathe-
matics, Algorithms and Applications. Springer Publishing

Company, Incorporated, 1st edition, 2008. 2

[28] S. Stolpner, P. Kry, and K. Siddiqi. Medial spheres for shape

approximation. IEEE Trans. Pattern Anal. Mach. Intell.,
34(6):1234–1240, June 2012. 4

[29] R. Tam and W. Heidrich. Shape simplification based on the

medial axis transform. In IEEE Visualization, 2003. VIS
2003., pages 481–488, 10 2003. 1

[30] G. Taubin. Smooth signed distance surface reconstruction

and applications. In Progress in Pattern Recognition, Image
Analysis, Computer Vision, and Applications, pages 38–45,

Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. 2

[31] G. Taubin. Non-convex hull surfaces. In SIGGRAPH Asia
2013 Technical Briefs, SA ’13, pages 2:1–2:4, New York,

NY, USA, 2013. ACM. 1, 3, 4, 6

755

Authorized licensed use limited to: Brown University. Downloaded on July 22,2020 at 19:07:32 UTC from IEEE Xplore. Restrictions apply.

