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Numerous efforts to generate “connectomes,” or synaptic
wiring diagrams, of large neural circuits or entire nervous
systems are currently underway. These efforts promise an
abundance of data to guide theoretical models of neural
computation and test their predictions. However, there is not
yet a standard set of tools for incorporating the connectivity
constraints that these datasets provide into the models
typically studied in theoretical neuroscience. This article
surveys recent approaches to building models with constrained
wiring diagrams and the insights they have provided. It also
describes challenges and the need for new techniques to scale
these approaches to ever more complex datasets.
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Introduction

Theoretical models in neuroscience often make assump-
tions about synaptic connectivity that lead to predictions
about neural activity and behavior. These assumptions
range from specifying the parameters of a statistical
distribution that characterizes the wiring of many neurons
(for example, populations of pyramidal cells in a volume
of neocortex [1]) to specifying the properties of
connections among individual neurons with prescribed
functions (for example, specific connections among
motion-selective retinal neurons [2°°]). Except for sys-
tems with sufficiently few neurons, these assumptions are
often informed by incomplete knowledge of connectivity
obtained from electrophysiological measurements of a
subset of connections.

Electron microscopy (EM) reconstruction techniques
promise a more complete picture of neuronal intercon-
nectivity, obtained by tracing the processes and identify-
ing the synaptic connections of all neurons in an imaged
volume of brain tissue [3]. An EM wiring diagram has
existed for the nematode C. elegans since the mid-1980s
[4], and for the larva of the ascidian Ciona intestinalis since
2016 [5]. Efforts are underway to map the full nervous
systems of the adult [6] and larval [7,8,9,10°] Drosophila
melanogaster fruit fly, larval zebrafish [11], volumes of
rodent brains including retinal [12] and cortical areas
[13-15], and other systems [16,17].

These efforts suggest the possibility of inferring the
connectivity of models directly from EM data, rather
than assuming it. Such an approach may lead to better
models whose activity and interactions can be more
readily compared to experiments. We survey recent
studies that build models based on synaptic wiring
diagrams, highlighting results that have been obtained
and the assumptions that are required to build the
models. We argue that new quantitative techniques must
be developed to exploit EM data as a meaningful con-
straint in models with many uncertain parameters.

EM wiring diagrams and the information they
provide

EM reconstructions of neuronal connectivity are based on
images obtained from thin sections of a volume of brain
tissue [3]. These images are analyzed to identify
structures of interest, typically 3-d reconstructions of
neurons, their processes, and their synaptic connections.
While this is often done manually, advances in automated
image segmentation methods are accelerating the speed
at which analyses can be performed [18]. EM reconstruc-
tions are effective at identifying neurons and the presence
of chemical synapses between them, but many quantities
of interest for modeling remain unconstrained (Figure 1).
The first source of uncertainty involves the connectivity
itself. In addition to tracing errors, EM datasets often
provide reconstruction of only a subset of a complete
neural circuit. Such “partial” connectomes do not provide
knowledge of interactions between neurons that
involve unreconstructed synapses. Such “hidden”
neurons can make it substantially more difficult to infer
accurate models [19,20].

As has been discussed before [21], even knowledge of a
“complete” connectome leaves many parameters rele-
vant for modeling unknown. Neurotransmitter identities
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lllustration of the use of EM data to constrain the wiring of a network model. While such data can be used to determine the presence or absence
of chemical synapses between neurons, only incomplete information about synaptic weights and cell types may be available, and many
biophysical parameters remain unconstrained. EM images illustrate a volume of mouse somatosensory cortex [14] (available under the Open Data
Common Attribution License) and are visualized using the NeuroGlancer software (https://github.com/google/neuroglancer).

for each synapse are not revealed and must be identified
by other means, for example by antibody staining or
transcriptomic profiling [22,23]. This can make it difficult
to identify excitatory or inhibitory interactions unless
morphology clearly identifies excitatory or inhibitory cell
types. Size and number of synaptic contacts likely corre-
late with the size of evoked postsynaptic potentials, but
the precise relationship has not been quantitatively mea-
sured [24]. Gap junctions may be difficult to identify,
depending on the staining protocol used. The effects of
neuromodulators cannot be inferred [21]. Many other
cellular and synaptic properties, such as membrane time
constants, excitability, and plasticity, are also uncon-
strained and must be characterized by non-EM means
[25°,26°]. What can we infer from a neural circuit’s
connectivity alone in the face of this uncertainty? An
instructive account comes from modeling studies that
focus on the stomatogastric ganglion (STG), a collection
of about 30 neurons in crustaceans that reliably produces a
periodic rthythm [27]. The limited number of neurons has
permitted a relatively complete characterization of this
system’s wiring diagram using electrophysiological meth-
ods. This wiring diagram has guided many important
studies of the STG’s dynamics, but does not fully con-
strain them. Researchers have found that there is a space
of distinct models that differ in their cellular and synaptic
properties but are consistent with both the observed
rhythm that the STG produces and its connectivity
[28]. Modelers must therefore contend with the challenge
that any dynamical model they build will contain
unknown parameters and dynamics that are not a perfect
match to real neurons, raising the concern that knowledge
of a wiring diagram will be unable to sufficiently constrain
the space of models consistent with available data.

Graph theoretic approaches
One approach to this challenge is to develop methods that
draw conclusions based only on the graph of connections

defined by a synaptic wiring diagram and independent of
unknown quantities. Methods have been developed to
extract structure such as the presence of distinct cell types
from combined connectivity and anatomical data [29°°],
or to infer latent variables that characterize neurons and
their connectivity based on a graph of connections [30].
Studies of C. elegans have quantified the statistics of
network motifs [31]—patterns of connections among small
groups of neurons—which may be over- or underrepre-
sented compared to an Erdés—Rényi random graph in
which all connections are drawn independently. How-
ever, relating these graphical properties to neural dynam-
ics is challenging. Theoretical progress has been made
relating motif statistics to correlations between the
spike trains of neuron pairs [32], but these approaches
require assumptions such as homogeneity of cellular
properties, linearized synaptic interactions, and knowl-
edge of the correlation structure of external inputs.
Mathematical progress has also been made in understand-
ing how the dynamics of inhibitory threshold-linear recur-
rent networks depend on network motifs [33°]. Models of
associative learning make testable predictions about
motif statistics under the assumption that wiring is
optimized to maximize the number of stable patterns,
or “attractors,” of neural activity [1]. EM reconstructions
will quantify these graph statistics with greater accuracy
and scope than has been previously possible with
clectrophysiology [34].

The nervous system of C. elegans exhibits global coordi-
nated activity during movement [35]. An account of such
dynamics likely requires analyses beyond average graph
properties or small circuit motifs. A recent study
approached this subject by focusing on the notion of
network controllability, defined as follows [36]: if a time-
varying input to a subset of N neurons (the controlling
neurons) can be chosen such that the output of another
subset of M neurons (the outputs) can be driven to an
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arbitrary point in M-dimensional space, then the outputs
are said to be controllable by the controlling neurons. The
authors identified classes of neurons in the graph of the
C. elegans connectome, that, if ablated, reduce the number
of controllable muscles, and compared their results to
experiments. This network control theory approach is
attractive because it connects global structure to function
using only a graph of connections. However, like other
approaches that focus on graph-theoretic properties, it
requires strong assumptions on neuronal dynamics. Inter-
actions between neurons are modeled as a linear dynam-
ical system with identical time constants for each neuron,
and the strengths or signs of interactions do not come into
play. Complete controllability may also be too strong a
requirement to ask of a biological system. Future studies
may relax some of these assumptions.

Models constrained by function

Among the first results provided by the wiring diagram of
C. elegans was a characterization of its circuitry for detect-
ing touch [37]. Systems close to the periphery are
attractive targets for modeling based on EM wiring dia-
grams. For many of these systems, inputs and outputs can
often easily be identified and relatively complete circuits
can be reconstructed, leading to readily-formed hypothe-
ses about function that can be tested even if certain
system parameters are unknown.

A major target of EM reconstruction efforts in mice and
Drosophila has been the visual system, which has the
advantages of well-characterized cell types and inputs.
Since the 1960s, researchers have known that subtypes of
mammalian retinal neurons exhibit selectivity to the
direction of visual motion [38], but the mechanisms of
this selectivity have been a matter of debate. EM recon-
struction of mouse retina permitted, for the first time,
testing of models that predicted specific connectivity
motifs, such as direction selectivity of connections from
starburst amacrine cells onto retinal ganglion cells [39], or
differential dendritic targeting of connections from bipo-
lar cells onto starburst amacrine cells [2°°]. Such direct
model evaluation was only possible once EM reconstruc-
tions were available. In Drosophila, the early visual system
has also been the target of reconstruction efforts. A
reconstruction of of the optic medulla made predictions
about the circuit underlying motion selectivity of neurons
in this area [40,41]. Connectivity constraints from these
data combined with activity measurements have led to
models of Drosophila motion processing that are being
continually refined [42-46].

EM reconstructions of the olfactory system have also
been performed, including maps of the Drosophila anten-
nal lobe [47] and zebrafish olfactory bulb [48], which
receive input from olfactory receptor neurons. A recurrent
network model of the zebrafish olfactory bulb, using
threshold-linear neurons with connectivity constrained

by EM data, demonstrated that its wiring is consistent
with a role in decorrelating odor responses [49°°]. In
Drosophila, several studies have focused on the mushroom
body (MB), an associative learning center that receives
input from the antennal lobe [50,10°,6]. Previous experi-
ments in adult Drosophila found that the wiring of Kenyon
cells (KCs) in the MB is consistent with random formation
of synapses [51], an idea with theoretical support [52,53].
An EM reconstruction of the larval MB found KC con-
nectivity largely consistent with this hypothesis [10°].
Modeling KCs as threshold-linear neurons, the study
argued that these wiring statistics were optimal based
on the ability of a readout of KC responses to discriminate
odors. A more recent analysis of an adult Drosophila EM
volume suggests that there may be additional structure in
PN-to-KC wiring that has yet to be characterized, and
future models will investigate the consequences of this
structure [6].

Other studies have focused on the motor periphery,
modeling the generation of locomotor activity and escape
responses in Drosophila larvae [7,8,54°°] and visual navi-
gation in Platynereis larvae [17]. Frequent themes in the
above studies are largely feedforward architectures, lim-
ited numbers of input channels that convey information
with well-characterized statistics, and sufficient knowl-
edge of the properties of cell types of interest to model
their responses (‘Table 1). For many systems, not all of
these features may be present. In the next section, we
discuss the possibility of constraining neural network
models to infer task-relevant neural activity in the face
of uncertainty in biophysical parameters.

Constrained optimization of neural network
models

For many complex neural circuits, it may not be possible to
manually infer or tune unknown model parameters in order
to produce a desired function, even with knowledge of the
circuit’s connectivity. In recent years, artificial neural net-
works (ANNSs), optimized using stochastic gradient
descent, have proven effective at performing tasks such
as object classification and at predicting neural responses in
higher visual cortical areas [55]. Can such optimization
approaches benefit from knowledge of a neural system’s
wiring diagram? This question is not easy to answer
because, in typical ANN approaches, the activity of model
units is generally not compared directly with individual
recorded neurons. Instead, projections of population activ-
ity (obtained by algorithms like principal components
analysis) in the model and the recordings are compared,
or a linear mapping is found that relates the two.

If the wiring of an ANN model is constrained by EM data,
however, a one-to-one correspondence between model
units and biological neurons is introduced. In certain
cases, knowledge of a task and this correspondence
may be sufficient to predict features of neural activity,
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Table 1

Examples of published modeling approaches that infer properties of a neural system from knowledge of its connectivity. With the
exception of the first entry, we focus on approaches that use connectivity as a constraint for models of neural dynamics.

Modeling approach Data used

Assumptions on dynamics

Assumptions on
function

Prediction

Graphical approaches
[31,29*))

Adjacency matrix, potentially
other anatomical information
[297]

Motifs of weighted
adjacency matrix

Motif expansion (reviewed
in [32])

Competitive threshold-linear
networks [33°]

Adjacency matrix
Network control theory [36] Adjacency matrix
Decorrelation [49°°]

Weighted adjacency matrix

Dimensionality [10°] Weighted adjacency matrix

Constrained neural network Weighted adjacency matrix
optimization (e.g. [56°°])

None

Linearized interactions,
homogeneous neurons,
knowledge of external input
correlations

Homogeneous threshold-linear
neurons, purely inhibitory
interactions

Linear dynamical system with
identical time constants for each
neuron

Threshold-linear neurons,
known membrane and synaptic
properties

Feedforward network,
threshold-linear neurons, known
membrane and synaptic
properties

Known external inputs and
parameterized firing rate

None

None

None

Full control of
output neurons

Decorrelation of
inputs

Maximization of
dimension of
neural
representation
Determined by
cost function

Motifs, community structure,
cell types, etc.

Spike train cross-correlations

Qualitative behavior (e.g. fixed
points, limit cycles)

Necessity of each neuron for full
controllability

Correlations between neurons

Dimension and linear
separability

Activity of modeled neurons

response functions

even if neurons are modeled with simplified dynamics. A
recent study used this approach to analyze the carly
Drosophila visual system [56°°]. A convolutional neural
network model with threshold linear dynamics, whose
lower layers were constrained by EM connectivity data,
was trained to track objects in videos of natural scenes.
The authors observed that the model reproduced the
experimentally measured motion selectivity of specific
neuron classes, but only when the connections in the
model were initialized using the synapse counts obtained
from EM (a proxy for connection strength). A similar
approach has also been applied to the premotor circuitry
of the Drosophila larva by training the model to reproduce
the measured pattern of muscle activity during forward
and backward crawling [54°°].

Future work must determine how much of a limitation
mismatches between model and neural dynamics pose for
predicting neuronal activity. To potentially reduce this
mismatch, studies should aim to parameterize uncertainty
in neural response properties (e.g. gains, thresholds, and
time constants) and infer these unknown parameters dur-
ing optimization, rather than connection strengths which
may be inferred from synapse counts or sizes. Under the
assumption that these parameters can be inferred by opti-
mizing for the system’s function, this approach reduces the
number of unconstrained parameters from O(N?) synaptic
weights to O(N) biophysical parameters, where NV is the
number of neurons. Theoretical work has demonstrated
that modulating single-neuron properties rather than

connections can substantially reorganize network activity
[57], supporting the feasibility of such an approach.

Incorporating other sources of knowledge
Constraints in addition to connectivity and optimization for
task performance are likely necessary to achieve a good
match between model and recordings. Many of the above
studies relied on knowledge of neuronal response proper-
ties or neurotransmitter identities, which can be used to
infer the signs of weights corresponding to excitatory or
inhibitory synapses. Future work should also aim to infer,
for distinct neurotransmitter types, distinct mappings from
synapse count or size to effective synaptic strength.

The identification and recording of many neurons simul-
taneously using calcium imaging has made combined EM
and electrophysiological datasets possible [58,39]. If a
subset of neurons’ activities during a task or behavior
is known, a model may be optimized subject to con-
straints on these activity profiles. Such approaches trade
off between optimizing for function and producing real-
istic neural activity. These neural activity constraints will
likely be particularly important for systems for which only
partial wiring diagrams are available, or for systems in
which neurons do not have stereotyped functions (for
example, reconstructions of cortical columns; [14]).

Partial wiring diagrams
The strength of EM reconstructions comes from the
comprehensiveness of connectivity data that they
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provide, but so far the only “complete” connectomes to
have been annotated are those of C. elegans [4] and Ciona
intestinalis [5], and only recently at the level of detail
needed to assess variability across individuals or sexes
[59]. While a relatively complete wiring diagram of the
Drosophila adult and larva will likely be available soon, for
larger organisms such completeness is still far away. It is
therefore important to assess what information can be
inferred from partial wiring diagrams.

For structures with specific functions and well-
characterized input and output pathways, such as sensory
or motor systems, a limited wiring diagram containing the
structure of interest may be sufficient to construct models
of the function of individual neurons (e.g. [39,2°°,56°°]).
On the other hand, this may be difficult in the case of a
reconstruction of a portion of a highly recurrent network,
such as mammalian neocortex [14]. In these cases, EM
data may provide a statistical characterization of proper-
ties such as cell-type-specific connectivity [29°°], motifs
[34] or preferential connectivity among functionally simi-
lar neurons [15]. These properties may be used to gener-
ate realistic simulated wiring diagrams for modeling
studies focused on statistical descriptions of population
activity rather than individual neurons.

Conclusions

Future theoretical work focused on EM datasets should
attempt to develop techniques for identifying features of
interest in connectivity graphs independent of
assumptions on neural dynamics. Techniques to auto-
matically cluster neuronal types [29°°], identify latent
connectivity structure [30], and visualize wiring diagrams
are needed to facilitate the discovery of connectivity
patterns that suggest further experimental or modeling
study. Such techniques must be robust to reconstruction
errors and account for heterogeneity within and across
individuals if and when multiple reconstructions of indi-
viduals of the same species are available [59].

Studies that use wiring diagrams to infer neural dynamics
should focus on leveraging multiple sources of informa-
tion — from biophysics to neural activity to function — to
guide modeling. Regarding biophysics, an understanding
of the variables that determine effective synaptic weights,
whether they can be determined from EM images using
synapse counts, postsynaptic density sizes, and spine
sizes, and how these vary across neurotransmitter and
cell types, would lead to better parameterizations of
unknown model variables. An understanding of when
standard assumptions such as additive synaptic interac-
tions and simple neuronal input/output functions apply,
and when circuit elements should be simulated as point
neurons (as is done in most theoretical models; Table 1)
or as multi-compartmental models, would outline regimes
in which modeling efforts are likely to be well-
constrained. Expanding these regimes by relaxing

assumptions — for example, by generalizing approaches
that require linear input/output functions to restricted
forms of nonlinearities — would also bring models closer to
biology. Calibration experiments are crucial to the devel-
opment of these new classes of models of single neurons
and synapses. [t would be particularly useful to be able to
correlate detailed EM measurements of neuronal mor-
phology and connectivity [24] to measurements of neural
activity under perturbations [60,61] in the same circuit.

Approaches should be able to incorporate constraints on
subsets of the network to predict unknown quantities —
for example, using recordings of a subset of neurons along
with a connectivity graph to predict the activity of unre-
corded neurons. They should be able to trade off between
constraints of different types, including connectivity,
activity, and function. Theoretical work should also focus
on an understanding of the solution spaces of models
consistent with these constraints [28]. Such an under-
standing would help determine analyses and experiments
that would be most effective at reducing uncertainty in
model parameters, permitting an iterative refinement of
models based on experimental data.
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