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ABSTRACT

Eclipsing post-common-envelope binaries are highly important for resolving the poorly understood, very short-lived common-
envelope phase of stellar evolution. Most hot subdwarfs (sdO/Bs) are the bare helium-burning cores of red giants that have lost
almost all of their hydrogen envelope. This mass loss is often triggered by common-envelope interactions with close stellar or even
substellar companions. Cool companions to hot subdwarf stars such as late-type stars and brown dwarfs are detectable from char-
acteristic light-curve variations — reflection effects and often eclipses. In the recently published catalog of eclipsing binaries in the
Galactic Bulge and in the Asteroid Terrestrial-impact Last Alert System (ATLAS) survey, we discovered 125 new eclipsing systems
showing a reflection effect seen by visual inspection of the light curves and using a machine-learning algorithm, in addition to the
36 systems previously discovered by the Optical Gravitational Lesing Experiment (OGLE) team. The Eclipsing Reflection Effect
Binaries from Optical Surveys (EREBOS) project aims at analyzing all newly discovered eclipsing binaries of the HW Vir type (hot
subdwarf + close, cool companion) based on a spectroscopic and photometric follow up to derive the mass distribution of the compan-
ions, constrain the fraction of substellar companions, and determine the minimum mass needed to strip off the red-giant envelope. To
constrain the nature of the primary we derived the absolute magnitude and the reduced proper motion of all our targets with the help
of the parallaxes and proper motions measured by the Gaia mission and compared those to the Gaia white-dwarf candidate catalog.
It was possible to derive the nature of a subset of our targets, for which observed spectra are available, by measuring the atmospheric
parameter of the primary, confirming that less than 10% of our systems are not sdO/Bs with cool companions but are white dwarfs or
central stars of planetary nebula. This large sample of eclipsing hot subdwarfs with cool companions allowed us to derive a significant
period distribution for hot subdwarfs with cool companions for the first time showing that the period distribution is much broader than
previously thought and is ideally suited to finding the lowest-mass companions to hot subdwarf stars. The comparison with related
binary populations shows that the period distribution of HW Vir systems is very similar to WD+dM systems and central stars of
planetary nebula with cool companions. In the future, several new photometric surveys will be carried out, which will further increase
the sample of this project, providing the potential to test many aspects of common-envelope theory and binary evolution.
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1. Introduction

Most subluminous B stars (sdBs) are core helium-burning stars
with very thin hydrogen envelopes and masses around 0.5 Mg
(Heber 2009, 2017). To form such an object, the hydrogen enve-
lope of the red-giant progenitor must be stripped off almost
entirely. Since a high fraction of sdB stars are members of short-
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period binaries (Maxted et al. 2001), common envelope ejection
triggered by a close stellar companion is generally regarded as the
most probable formation channel for many of the sdB stars.
There is however increasing evidence that substellar compa-
nions might also have a significant influence on sdB star for-
mation (which is still poorly understood) and it has been
proposed that planets and brown dwarfs could be responsible for
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the loss of envelope mass in the red-giant phase of sdB progeni-
tors (Soker 1998). As soon as the primary star evolves to become
a red giant, close substellar companions must enter a common
envelope. Whether those objects are able to eject the envelope
and survive, evaporate, or merge with the stellar core depends
mostly on their mass. While planets below 10 My, might not
survive the interactions, companions exceeding this mass might
be able to eject the envelope and survive as close companions
(Soker 1998).

The best evidence for interactions with substellar companions
is provided by the discovery of three close, eclipsing sdB binaries
with brown dwarf companions. Photometric and spectroscopic
follow-up observations of the sdB binary J162256+473051
revealed that the system is eclipsing with a period of 0.069d
and the companion is probably a brown dwarf with a mass of
0.064 M (Schaffenroth et al. 2014a). The short-period system
J082053+000843 (0.0964d) is also eclipsing, and the compan-
ion has a mass in the range 0.045-0.067 M, (Geier et al. 2011).
Schaffenroth et al. (2015) discovered another, especially inter-
esting eclipsing hot subdwarf that shows pulsations and has
a brown dwarf companion with a mass of 0.069 My (V2008-
1753, 0.065d). Additionally, two sdB systems with candidate
brown dwarf companions have been detected (periods ~ 0.3 d,
Schaffenroth et al. 2014b), but since they do not eclipse, only
minimum companion masses — both below the hydrogen-burning
limit — can be derived (0.048 and 0.027 My).

The most successful way to detect eclipsing binaries with
cool stellar or substellar companions (HW Vir systems) is by
inspecting their light curves, which, in addition to the eclipses,
show a characteristic quasi-sinusoidal variation caused by the so-
called reflection effect (see Schaffenroth et al. 2018, and refer-
ences therein). This effect is observed in any close binary system
consisting of a hot primary and a cool companion. As the sec-
ondaries in these systems are supposed to orbit synchronously,
the hemisphere of the cool companion facing the hot primary is
constantly irradiated, which leads to an increased flux over the
orbital phase as the heated side of the secondary comes into view
(see Wilson 1990; Budaj 2011, for a detailed discussion of this
effect).

The amplitude of the reflection effect scales with the temper-
ature ratio and the radii of the primary and secondary stars, as
well as the inverse orbital separation (Wilson 1990; Budaj 2011).
Hence, the reflection effect is strongest when both components
of a close binary system have a very small separation, similar
radii, and a high temperature difference. In systems consisting of
a low-mass main sequence star or brown dwarf and a hot, com-
pact star like a hot subdwarf, these conditions are fulfilled. The
same features can be seen in very hot white dwarf binaries with
cool companions, such as NN Serpentis (Parsons et al. 2010), or
post-AGB stars with cool, main sequence companions, including
central stars of planetary nebula (e.g., UU Sge, Afsar & Ibanoglu
2008).

Due to the short periods and similar radii of the components,
sdB binaries with low-mass companions also have a high proba-
bility of eclipsing. Such systems are of great value because they
allow the determination of the masses and radii of both compo-
nents, as well as their separation, with an accuracy up to a few
percent using combined photometric and spectroscopic analy-
ses. The known sample of eclipsing and noneclipsing systems
is relatively inhomogeneous, with most having been found in
photometric surveys due to their characteristic light curve varia-
tions (e.g., Schaffenroth et al. 2013) or from light curves only
covering a few hours aimed at searching for pulsations (e.g.,
Jeffery & Ramsay 2014). These published systems have orbital
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periods between 0.069d and 0.26d (Schaffenroth et al. 2018,
and references therein).

A photometric follow-up of spectroscopically selected tar-
gets (Schaffenroth et al. 2018) also allowed us to determine the
fraction of substellar companions to sdBs. We derived a value of
more than 8% for substellar companions in close orbits around
sdBs. Moreover, they seem to be at least as frequent as low-mass
stellar companions, as two of the four reflection-effect binaries
we discovered are sdBs with substellar companions.

This shows that close substellar companions are able to eject
a red-giant envelope and that they are much more frequent than
predicted by standard binary-evolution theory. Due to their high
fraction of close substellar companions, hot subdwarfs are well
suited to the study of interactions between stars and brown
dwarfs or giant planets. To understand both the common enve-
lope phase under extreme conditions and the role of close-in
planets and brown dwarfs for late stellar evolution, we need to
study a large and homogeneously selected sample of eclipsing
sdB binaries.

2. Project overview

The increasing number of photometric surveys provides us
with a huge source to find more eclipsing hot subdwarf
stars. Thirty-six new HW Vir candidates were discovered by
the Optical Gravitational Lensing Experiment (OGLE) project
(Pietrukowicz et al. 2013; Soszynski et al. 2015), almost tripling
the number of such objects known and providing the first large
sample of eclipsing sdBs. These systems have been identified by
their blue colors, short orbital periods, and characteristic light
curves in the /-band.

To investigate this unique sample of HW Vir candidates, we
conduct the EREBOS (Eclipsing Reflection Effect Binaries from
Optical Surveys) project, which aims to measure orbital, atmo-
spheric, and fundamental parameters.

Key questions we want to answer over the course of the
EREBOS project include the following: What is the minimum
mass of the companion necessary to eject the common envelope?
Is there a well-defined minimum mass or a continuum rang-
ing from the most massive brown dwarfs down to hot Jupiter
planets? What is the fraction of close substellar companions
to sdBs and how does it compare to the possible progenitor
systems such as main sequence stars with brown dwarf or hot
Jupiter companions? To address these questions and understand
both the common envelope phase under extreme conditions and
the role of close-in planets and brown dwarfs for late stellar
evolution, we need to know the parameters of post-common-
envelope systems over as much of the period distribution as
possible.

In the following sections we discuss our target selection, try
to constrain the nature of the primary star, and present the first
results based on orbital parameters from the light curves and
atmospheric parameters from the spectra we have taken so far.

3. Target selection

As already described, hot subdwarf binaries with cool, low-mass
companions exhibit a unique light-curve shape produced by their
strong eclipses and reflection effect. By visual inspection of light
curves, the OGLE team identified 36 new HW Vir candidates
in their sample (Pietrukowicz et al. 2013; Soszynski et al. 2015).
In the course of the OGLE survey, approximately 450 000 new
eclipsing binaries have been published to date (Soszynski et al.
2016). More light-curve surveys monitoring billions of stars are
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available. As we are searching for systems with a defined set of
characteristics, we developed a set of criteria to select a limited
number of potential targets for our own visual inspection.

3.1. Light-curve surveys

We used two different surveys to search for light curves with the
typical properties that we require.

3.1.1. OGLE project

OGLE is a long-term, large-scale photometric sky survey
focused on variability. Its original purpose was the detection
of micro-lensing events and it therefore focuses on observing
fields with high stellar densities. A detailed description of the
fourth phase of the project can be found in Udalski et al. (2015).
OGLE-1V is conducted at the Las Campanas Observatory in
Chile with a 1.3 m telescope dedicated to the project.

More than a billion sources are regularly monitored in dif-
ferent fields in the Galactic Bulge, the Small and Large Mag-
ellanic Clouds, and the Galactic disk. The OGLE-IV camera is
equipped with V- and I-band interference filter sets. The OGLE
I-band filter very closely resembles the standard Johnson /-band
filter; the OGLE-IV V-band filter is similar to the standard John-
son filter but extends slightly less far into the red. Most of the
observations are performed in the 7 filter and the resulting light
curves have from several hundred to more than a thousand data
points with an integration time of 100s. The OGLE-IV photom-
etry covers the range of 12 < I < 20.5 mag (Udalski et al. 2008).
The light curves are published in different catalogs together with
an ephemeris for each star.

3.1.2. ATLAS project

ATLAS is a high-cadence all-sky survey system designed to
find dangerous near-Earth asteroids. ATLAS achieved first light
in June 2015 and now consists of two independent units,
one on Haleakala (HKO), and one on Mauna Loa (MLO) in
the Hawai’ian islands. Details of the project can be found in
Tonry et al. (2018). Each telescope is a 0.65 m Schmidt observ-
ing in a cyan filter (¢, covering 420-650 nm) and an orange filter
(0, 560-820 nm). The fisheye camera takes 32 s exposures on a
40s cadence and ATLAS covers the entire accessible sky with
a cadence of 2days over a magnitude range 0 < m < 20. As
of the end of January 2018, ATLAS had taken about 600000
exposures resulting in 240 million light curves with more than
100 epochs.

3.2. Color selection and period constraints

Because sdBs are hot and therefore blue, we limited our search
to the bluest targets in OGLE. As OGLE observes not only in
the /-band but also in the V-band for most targets (more details
in Sect. 3.1), we could use the color index V — I for the selec-
tion. The Galactic Bulge is a very dense region and has very
patchy and substantial reddening. Because of this, we cannot
simply apply color cuts characteristic for hot subdwarfs. Instead,
we investigated the colors of the HW Vir candidates identi-
fied by Pietrukowicz et al. (2013) and Soszynski et al. (2015)
and decided to limit our search to targets with V — 1 < 1 (see
Fig. 1), as only three systems were found outside these lim-
its. The longest-period HW Vir system previously known is
AA Dor with a period of 0.26 d. The longest-period reflection-
effect system has a period of 0.8d (Jeffery & Ramsay 2014).

: The EREBOS project
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Fig. 1. Period and color selections applied to the eclipsing systems
published by the OGLE team (Soszynski et al. 2016). HW Vir systems
found by the OGLE team are shown as black stars. Red circles repre-
sent those found by visual inspection and blue squares those found by
machine learning. It can be seen that we select short-period binaries
with the bluest colors.

Consequently, we focused our search on systems with orbital
periods less than one day. Later, we also started to extended our
searchuptoV -1 < 1.5.

Figure 1 shows the color and period selection we applied
and the systems we found. These criteria left us with 2200 sys-
tems, each of which was phased with the ephemeris provided by
the OGLE team. We inspected the light curves of all 2200 sys-
tems visually and found 51 new HW Vir candidates with peri-
ods between 0.1 and 0.6 d. Most of the other light curves were
consistent with contact systems or 8 Lyrae-type binaries. It is
unsurprising that for the shortest periods almost all blue objects
are HW Vir system candidates, as blue main sequence stars are
much larger and have longer periods.

3.3. Light-curve selection with machine learning

To identify additional systems not covered by the initial color
selection we used the light curves of the 87 identified systems as
a training set for machine learning.

As this set already includes systems with a large period
range, variety of inclinations, and different S/N, it is ideally
suited for training. For this we used the support vector machine
(SVM) provided by the PYTHON package SKLEARN. We per-
formed a C-Support Vector Classification (SVC) with the default
squared exponential (rbf) kernel with a penalty parameter, C, of
10° and a Kernel coefficient, y, of 1072, All 450000 eclipsing
binaries were phased with the OGLE ephemerides. The SVM
was then trained with the previously identified systems and
applied to all OGLE light curves.

Using the above procedure, 2613 light curves were selected.
These were inspected again visually. In this way, 20 new systems
were found, which have redder colors than our initial color selec-
tion. For two of these new systems, no observations are available
in the V band. Only six out of 87 systems found previously by
our color criteria were not detected by the SVM. All of those
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systems have very poor S/N. This means the number of false
positives is still relatively high, but we are dealing with a suffi-
ciently small number of systems to investigate them all by eye.
In the future we would like to improve this process by creating a
sample of synthetic light curves with different inclinations, S/N,
and orbital periods.

3.4. Cross-matching the Gaia catalog of hot subdwarf stars
with ATLAS

Geier et al. (2019) published a catalog of candidate hot subdwarf
stars of the complete sky. This catalog was used to search for
more HW Vir systems by cross-matching it with ATLAS. With
the cross-match, 1600 objects from the Gaia hot-subdwarf cata-
log were found in ATLAS. All of them were again phased after
identifying the period with a Lomb-Scargle algorithm (Lomb
1976; Scargle 1982) and were then inspected visually. Fifty addi-
tional new HW Vir candidates were found in the ATLAS data, as
well as several known systems. The light curves of all systems
in our sample can be found in Figs. A.1 and A.2.

Figure 2 shows the Galactic distribution of the new HW Vir
candidates. The OGLE and Gaia magnitudes of all our targets,
along with those of the published HW Vir binaries, can be found
in Tables A.1 and A.2. The OGLE targets, shown with blue
circles, are found in the Bulge and the Galactic disk fields of
OGLE. The ATLAS targets, shown with red squares, are dis-
tributed over the complete sky accessible from the Northern
hemisphere.

The magnitude distribution of our targets is illustrated in
Fig. 3. The OGLE targets peak at a brightness of 19 mag, which
is much fainter than any previously known systems and makes
the follow-up more difficult. However, we found several brighter
systems in the ATLAS survey.

4. Spectral parameters of the EREBOS targets

We can obtain very accurate orbital parameters from the light
curves: the orbital period, the inclination of the system, and
the relative radii. However, the light curve analysis suffers from
degeneracies due to several coupled parameters, and so it is
essential to constrain as many of these parameters as possi-
ble using time-resolved spectroscopy. For 27 of our targets, we
already have spectroscopic follow-up to confirm the nature of
the primary star. All our observing runs can be found in Table 1.
In the following we give more details of the spectroscopic
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Fig. 3. Magnitude distribution of the published HW Vir systems (white),
the ATLAS HW Vir candidates (gray), the OGLE HW Vir candidates
(black), the eclipsing systems with candidate white dwarf primaries
(blue) and the central stars of planetary nebula (red; more details are
given in Sect. 5 and Tables A.1-A.3).

observations and show the first atmospheric parameters derived.
Figure 4 shows three examples of our co-added spectra from the
ESO-VLT/FORS?2 spectrograph.

4.1. Spectroscopic observations
4.1.1. ESO-NTT/EFOSC2

For the brighter systems we used the EFOSC2 spectrograph
mounted at the 3.58 m ESO/NTT telescope. Nine of our systems
have been observed in several runs (092.D-0040(A), 099.D-
0217(A), 0101.D-0791(A)). We always took several spectra per
star in grism Gr#19 (4441-5114 A) with a 1” slit to achieve a
resolution of R ~ 3000 to derive a radial-velocity curve cover-
ing the whole orbit. This grism includes HB as well as Hel 4472
and 4922. Usually, several objects were observed in a repeating
sequence but always with exposure times less than 5-10% of
the orbital period to avoid orbital smearing. To derive the atmo-
spheric parameters, moreover, one spectrum per star was taken
with grism Gr#07 (3270-5240 A) with resolution R ~ 500—700.
This grism covers the Balmer jump.
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Table 1. Spectroscopic follow-up observations.

: The EREBOS project

Date Nights Run Telescope and instrument Observers
09/10 May 2015 2 095.D-0167(A) ESO-VLT/FORS2 S. Kimeswenger
Oct. 2015-Jun. 2017  12.5 196.D-0214(A-D) ESO-VLT/FORS2 Service
04/05 Aug. 2016 2 NOAO 2016B-0283 SOAR/Goodman B. Barlow
30/31 Mar. 2016 2 NOAO 2016A-0259 SOAR/Goodman B. Barlow
07/08 Jun. 2016 2 NOAO 2016A-0259 SOAR/Goodman B. Barlow
01-05 Feb. 2014 4 092.D-0040(A) ESO-NTT/EFOSC2 S. Geier
01-04 Jul. 2017 3 099.D-0217(A) ESO-NTT/EFOSC2 E. Ziegerer
30 Jul.-02 Aug. 2018 3 0101.D-0791(A) ESO-NTT/EFOSC2 S. Kreuzer
26 Feb. 2019 1 S02018B-002 SOAR/Goodman L. Pelisoli

2.5
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Fig. 4. Three example spectra showing a typical sdB (OGLE-BLG-ECL-000114), a DA white dwarf (OGLE-BLG-ECL-000091), and a pre-He
white dwarf (OGLE-BLG-ECL-000109). SdBs and pre-He white dwarfs show very similar spectra and can only be distinguished by deriving the

atmospheric parameters.

4.1.2. ESO-VLT/FORS2

Most of the OGLE target periods are quite short and, as we
are interested especially in the shortest periods, this limits the
exposure times greatly; EFOSC2 is not adequate for observa-
tion of those targets. We applied successfully for an ESO large
program with ESO-VLT/FORS (196.D-0214(A-D)) for fainter,
short-period systems, after a feasibility study in visitor mode
(095.D-0167(A)). In our first run on 10 May 2015 we observed
one 20-mag object (OGLE-GD-ECL-10384) for a half a night
taking 24 spectra using Grism GRIS_600B+22 (330-621 A, 17
slit, R ~ 780) each with an exposure time of 600s and cover-
ing two full orbits. The ESO large program was executed in ser-
vice mode over the course of two years. We divided all observa-
tions into 1 hour observing blocks (OBs), in which time-resolved
spectroscopy of one target was performed per block. As the peri-
ods of many of our targets are very short, a significant part of the
orbit can be covered in one hour. For these observations we used
Grism GRIS_1200B+97 (3660-5110, 1” slit, R ~ 1420). We
limited the exposure time to ~5% of the orbital period to pre-
vent orbital smearing. About 6-8 spectra were taken per OB.
For each target, several OBs were taken to cover the whole orbit
distributed over one semester.

The observation of the Bulge targets and the data analysis
turned out to be less straightforward than expected, as we have
problems with the enormous crowding in the Bulge field, which
complicates photometry as well as spectroscopy. Already, the

identification of the targets was a huge challenge at the begin-
ning, because of the lack of good finding charts in the visual,
which lead to misidentification of the target in some cases. Addi-
tionally, the ESO-VLT/FORS?2 spectrograph was found not to be
as stable as expected, because it was not designed for the deter-
mination of radial velocities. This complicates the determination
of accurate radial velocity curves. Hence, we concentrate only on
the determination of the atmospheric parameters for this paper,
as more work is needed to derive the radial velocity curves from
the FORS2 spectra. The radial velocities of all of our targets will
be presented in future papers.

Individual spectra were then co-added after being corrected
for radial velocity so that we could use the co-added spectra for
atmospheric analyses. Radial velocities were determined with
the IRAF' task FXCORR for cross-correlation against model spec-
tra and co-added spectra to measure the radial velocity shifts in
the Balmer and helium lines.

4.1.3. SOAR/Goodman

We have collected time-resolved spectroscopy of many of the
brighter, short-period systems with the Goodman Spectrograph
on the 4.1 m SOuthern Astrophysical Research (SOAR) tele-
scope (Clemens et al. 2004). Four of our targets have been
observed to date with time allocated through the National

! Tody (1986).
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Table 2. Atmospheric parameters of our observed targets from the ERE-
BOS project spectroscopy with statistical errors.

Target name Teff logg logy
[10°K] [cgs]

OGLE-BLG-ECL-000114 @ ©  292+0.5 5.55+0.07 —2.28+0.10
OGLE-BLG-ECL-000139 © 29.6+0.5 5.50+0.06 —-2.97+0.13
OGLE-BLG-ECL-000103 @ 295+04 5.70+0.05 -1.75+0.11
OGLE-BLG-ECL-000163 © 28.0+0.3 537+0.04 -1.96+0.10
OGLE-BLG-ECL-000124 @ 263+0.7 546+0.06 -2.02+0.16
OGLE-BLG-ECL-000010 279+0.7 532+0.06 -2.59+0.18
OGLE-BLG-ECL-000202 @ 363+0.5 525+0.09 -3.17+0.12
OGLE-BLG-ECL-000110 @ 23.6+0.5 5.35+0.05 -2.30+0.13
OGLE-BLG-ECL-000109 @ 293+03 6.05+0.05 -1.96+0.10
OGLE-BLG-ECL-000212 @ 30.1+0.5 5.38+0.07 -2.64+0.11
OGLE-BLG-ECL-000207 @ 244404 554+006 -2.15+0.14
OGLE-BLG-ECL-173411 ® 26.0+0.1 528+0.03 -2.48+0.11
OGLE-BLG-ECL-361688 272+13 520+0.08 -2.39+0.02
OGLE-BLG-ECL-416194 356+0.9 534+020 -2.21+0.35
OGLE-BLG-ECL-017842 29.7+0.8 5.81+0.17 -2.65+0.28
OGLE-BLG-ECL-280838 283+0.6 5.55+0.08 -2.78+0.25
OGLE-BLG-ECL-412658 36.7+0.8 5.48+0.08 -2.49+0.33
OGLE-GD-ECL-08577 ® 284+1.0 543+0.15 -2.01+0.27
OGLE-GD-ECL-10834 @ 27.6+0.8 5.64+0.16 -2.54+0.18
OGLE-GD-ECL-11388 ® 29.0+03 5.56+0.04 -2.77+0.05
OGLE-GD-ECL-11471 @ 284+0.5 5.71+0.10 -2.17+0.08
1282.4644-13.6762 © 275+0.6 554+0.07 -2.25+0.21
1351.7186+12.5060 29.0+04 5.68+0.08 -1.86+0.14
1315.0724-14.190 ® 302420 5.96+038 -2.00+0.16
J079.5290-23.1458 309+0.7 5.75+0.09 -1.96+0.14
7129.0542-08.0399 (©) 31.1+£03 5.49+0.06 -2.85

Notes. “ESO-VLT/FORS2. ®ESO-NTT/EFOSC2. ©SOAR/Goodman.

Optical Astronomy Observatory (NOAO Proposal IDs 2016B-
0283,2016A-0259,S02018B-002). Our standard observing con-
figuration uses a 930 mm~' VPH grating from Syzygy Optics,
LLC, in conjunction with a 1.03” longslit to achieve a spectral
resolution of 2.9 A (R ~ 1500) over the wavelength range 3600—
5300 A. We observed each target using a series of consecutive
spectra covering one full orbital period. In order to maximize
our duty cycle, the spectral images were binned 2 X 2, resulting
in a pixel scale of 0.3” per binned pixel in the spatial direction
and 0.84 A per binned pixel in the dispersion direction. We again
kept the integration times to less than 5% of the orbital period
to avoid phase smearing. We use Gaussian fits to the Balmer
lines to determine radial velocities and created a co-added spec-
trum for atmospheric modeling after individually correcting their
velocities.

4.2. Atmospheric parameters

Atmospheric parameters were determined by calculating syn-
thetic spectra using LTE model atmospheres with solar metallic-
ity and metal line blanketing (Heber et al. 2000) and fitting these
to the Balmer and helium lines using SPAS (Hirsch 2009). In this
way, we determined the atmospheric parameters (effective tem-
perature T, surface gravity log g and helium abundance log y)
for 25 systems, which can be found in Table 2. Some example
line fits are showed in Fig. 5. The errors given are only statistical
errors. As the contribution of the companion to the visible flux
varies over the orbital phase due to the reflection effect, appar-
ent variations of the atmospheric parameters are found in some
eclipsing sdB binaries with cool companions with high-S/N
spectra on the order of 1500 K and 0.1 dex over the whole orbital
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phase (Schaffenroth et al. 2014a). This means that in the case of
systems with very low statistical error we have to adopt an uncer-
tainty of 750 K in temperature and 0.05 dex in log(g).

The parameters show that the primaries are mostly typical
for HW Vir systems (see Schaffenroth et al. 2018, and references
therein). OGLE-BLG-ECL-000091 and J186.9106—30.7203 are
the only exceptions, as both clearly look like DA white dwarfs
with very broad Balmer lines (see Fig. 4 for an example).

However, it is not only the tracks of He-core burning objects
that cross the extreme horizontal branch, but also those of post-
RGB objects with masses too low to burn He in the core (see
Fig. 6). Both of the above evolve directly into He-WD and are
therefore also called pre-He WDs. The lifetime of pre-He WDs
crossing the EHB is only one hundredth of the lifetime of a core-
He-burning sdB on the EHB. Therefore, we expect them to be
much rarer and that most objects on the EHB are hot subdwarfs.
This also depends, however, on the birth rate of these systems,
which is unknown. This means in most cases that it is not possi-
ble to distinguish between sdBs and pre-He WDs from the atmo-
spheric parameters alone.

To compare the atmospheric parameters of our targets
to other sdB binaries we plotted the T.s—logg diagram of
the reflection-effect systems and other sdB binaries from
Kupfer et al. (2015) in Fig. 6. The published HW Vir and
reflection-effect systems seem to cluster in a relatively small
region of the T.s— log g diagram. Very few are found on the EHB
at higher temperatures. Our new systems almost double the num-
ber of atmospheric parameter determinations for sdBs with cool,
low-mass companions. It appears now that the EHB is well pop-
ulated with such systems. It is only near the He-main sequence
(HeMS) that we still do not find any HW Vir systems. Moreover,
we find three systems which have already evolved away from the
EHB.

An interesting system is OGLE-BLG-ECL-000109, which
lies clearly below the He-main sequence. This means it cannot
be a He-core burning object is most probably a post-RGB object
with a mass that is too low to burn He in the core. The position
of OGLE-BLG-ECL-000109 agrees best with a track for a very
low-mass white dwarf with a mass near 0.27 M (Althaus et al.
2013). Some HW Vir systems have been found where the
analysis could not unambiguously distinguish between a
helium-core-burning object on the extreme horizontal branch
and a pre-He WD (e.g., J082053+000843 and HS 2231+2441,
Geier et al. 2011; Almeida et al. 2017). This is the first HW
Vir system lying significantly below the EHB and can only be
explained by being a pre-He white dwarf.

5. Constraining the nature of the primary star

We selected our candidates purely based on the shapes of their
light curves. To learn about the population of our targets, we
need to constrain the nature of the primary star. The easiest way
to do this is with spectroscopy and so far we have spectroscopic
confirmation for 25 systems with a most likely hot subdwarf pri-
mary. Only two of our targets have a white dwarf primary (see
Sect. 4.2).

For the rest of our sample, we have not yet obtained spec-
troscopy. As described in Sect. 2, white dwarfs or post-AGB
objects can be possible contaminants in our sample. Of course,
such systems are no less interesting, but it is important to have a
homogeneous sample from which to draw conclusions.

The ESA Gaia Data Release 2 (Gaia Collaboration 2018b)
provided us for the first time with tools to constrain the nature of
the primary star. All results and Gaia parameters for our systems
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Fig. 5. Example fits of hydrogen and helium lines with model spectra for a typical sdB (OGLE-BLG-ECL-000103, left panel), and a pre-He WD
star (OGLE-BLF-ECL-000109, right panel). The atmospheric parameters of these stars are given in Table 2.
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Fig. 6. T.q—log g diagram of the HW Virginis systems. The zero-age
EHB and ZAEHB, and the terminal-age EHB and TAEHB are superim-
posed by evolutionary tracks by Dorman et al. (1993) for sdB masses of
0.471, 0.473, and 0.475 M, with one track for an extremely low-mass
white dwarf of a mass of 0.2724 M, by Althaus et al. (2013). The newly
found systems are shown as red circles with error bars. The published
HW Vir systems are shown as green circles, the reflection effect systems
without eclipses as yellow squares. The blue crosses represent other
sdB binaries (Kupfer et al. 2015), either with white dwarf or unknown
companions.

can be found in Tables A.1, A.2, A.4, and A.5. Parallaxes and
proper motions are available for 75 of the 107 OGLE targets and
all ATLAS targets have.

30 A

25 1

20 A
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Number of systems
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Mg [mag]

10 12 14

Fig. 7. Distribution of the absolute G magnitude (Mg) of our targets.
The published HW Vir stars are shown in white; the ATLAS targets
are displayed in gray; and the OGLE targets with parallaxes with errors
less than 25% are displayed in black. For the rest of the OGLE targets
we used the distances by Bailer-Jones et al. (2018), shown in red. The
red line marks Mg = 6.5 mag, above which the primary stars are faint
enough that they are more likely to be white dwarfs.

5.1. Absolute magnitudes and distances

As seen in Fig. 6 it is not possible to uniquely distinguish sdBs
from pre-He WDs from the atmospheric parameters alone. How-
ever, the masses and radii of pre-He WDs are expected to be
lower, and therefore, the absolute magnitudes are fainter. Hot
subdwarf stars have radii around 0.15-0.2 R, comparable to M
dwarf stars. White dwarfs have radii that are much smaller —
comparable to that of Earth (~0.01 Ry) — and usually have much
fainter absolute magnitudes.

In Fig. 7 the distribution of the absolute G magnitude (M¢)
is shown. Absolute magnitudes were calculated via the distance
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Fig. 8. Color-magnitude diagram of all our targets in Gaia colors. Red
circles represent the published HW Vir systems for comparison. Squares
indicate the OGLE targets and triangles the ATLAS targets. Targets
with parallaxes better than 25% are marked in orange. For the green
OGLE targets and the blue ATLAS targets we used the distances by
Bailer-Jones et al. (2018). The yellow stars mark our confirmed system
with a white dwarf primary.

modulus G — Mg = 5log,d — 5 + (Ag). We used the distances
published by Bailer-Jones et al. (2018). Distances with large par-
allax errors are mostly based on the length scale model they use,
which is unclear for sdBs, and therefore they have to be taken
with caution. As all our systems show photometric variability,
the uncertainty in G will also be larger than that given in the
DR2 Gaia catalog. On the other hand, outliers are neglected
for the determination of G, and therefore the mean Gaia mag-
nitude should give a good estimate of the correct sdB magnitude
(Riello et al. 2018).

For targets in the Bulge, the reddening cannot be neglected,
and we constrained the reddening E(B — V) by using Stil-
ism? (Lallement et al. 2014), which gives the reddening at cer-
tain coordinates depending on the distance. In most cases, we
derive only a lower limit for the reddening because the dust
maps do not extend far enough (<1-2kpc). To obtain the Gaia
G-band extinction coefficient A we used Eq. (1) from the
Gaia Collaboration (2018a), which uses G, BP, RP, and E(B—-V)
as input parameters. For some of the OGLE targets, no BP or
RP was given in the Gaia data, so we assumed similar colors to
those found for the other OGLE targets (see Fig. 8).

When looking at the distribution of absolute G magni-
tudes of all targets, it is obvious that the different subsamples
show the same distribution peaking at Mg=4.5mag — as
expected for sdBs. We checked the absolute magnitudes of
the white dwarf candidates from the Gaia white dwarf catalog
(Gentile Fusillo et al. 2019) and the Gaia hot subdwarf catalog
(Geier et al. 2019). Most of the objects with Ms > 6.5 are clas-
sified as white dwarf stars, and therefore a white dwarf primary
is more likely. Nine of our objects have absolute magnitudes
fainter than 6.5 mag and two of them have been spectroscop-
ically confirmed as white dwarfs. On the other hand, three of
them have been confirmed as sdBs. As mentioned before, the
reddening we applied is only a lower limit, and therefore the
absolute magnitude of the OGLE targets is an upper limit. The
temperatures of those three targets is relatively low for sdBs with
24.000-26 000 K. It is also possible that they are pre-He WDs
instead of sdBs.

2 https://stilism.obspm.fr/
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Fig. 9. Distance distribution of our targets. The published HW Vir stars
are shown in white, the ATLAS targets are displayed in gray, and the
OGLE targets with parallaxes that have errors of less than 25% are dis-
played in black. For the rest of the OGLE targets, shown in red, we used
the distances by Bailer-Jones et al. (2018).

Another criterion is the color of the targets, which we
can combine with absolute magnitude in a color magnitude
diagram, shown in Fig. 8. The published HW Vir stars (see
Tables A.1 and A.4) are concentrated at BP — RP < 0. The
ATLAS targets show a larger spread, but we neglected redden-
ing for those, which might be important for more distant targets.
Due to the high reddening, which can only be poorly constrained
in the bulge, the OGLE targets have an even wider distribution
in color.

From the Gaia parallaxes it is also possible to determine the
distances of the objects; this is shown in Fig. 9. The distance
distribution agrees nicely with the distribution of the Gaia hot
subdwarf catalog (Geier et al. 2019). The only difference is that
there appear to be anomalously few objects observed at distances
between 1.25 kpc and 2 kpc. This bi-modality is mainly seen in
the ATLAS targets. As expected from their fainter magnitudes,
the OGLE targets are mostly further away (80% have distances
>2.5kpc). All but two targets with distances larger than 3 kpc
have large parallax errors and hence uncertain distances.

5.2. Reduced proper motions

As the reddening cannot be constrained perfectly for the more-
distant objects, and because they have parallaxes with large
errors, the absolute magnitudes of these targets are not reliable.
However, to distinguish hot white dwarfs from hot subdwarf
stars, reduced proper motions can be used. The reduced proper
motion, defined as H; = G + 5(logu + 1), can be used as a
proxy for the distance of an object, since more-distant objects
exhibit less movement, on average. Gentile Fusillo et al. (2015)
showed that this selection method is well suited to separate hot
subdwarfs from white dwarf candidates.

Figure 10 shows the distribution of the reduced proper
motions of our targets superimposed with the distribution
for white dwarfs taken from the Gaia white dwarf catalog
(Gentile Fusillo et al. 2019). It is clear that the subdwarfs are
found at smaller reduced proper motions. However, there is a
region where both distributions overlap and the nature of the
primary cannot be determined unambiguously. Combining the
selection from the absolute magnitude with the reduced proper
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Fig. 10. Normalized distribution of the reduced proper motions of our
targets (white are the published HW Vir systems, gray the ATLAS tar-
gets, and black the OGLE targets). Superimposed are the reduced proper
motions of the objects with a white dwarf probability greater than 90%
from the Gaia white dwarf catalog (Gentile Fusillo et al. 2019), shown
with the red dashed line. The green dotted line shows the subsample of
the targets with spectral classification from SDSS spectra. The red line
marks our reduced proper motion cut of Hs < 14.5; at higher values,
targets are less likely to be hot subdwarfs.

motion and the spectroscopically confirmed targets, we decided
to define the cut at H; < 14.5. This leaves us with seven objects,
which have higher probabilities of being white dwarf binaries
with cool, low-mass companions out of 123 objects with Gaia
parallaxes and proper motions. All white dwarf binary candi-
dates can be found in Tables A.2 and A.5. This means that the
white dwarf binaries represent only a very small part of our sam-
ple and most targets are indeed hot subdwarf binaries.

This becomes even more clear when we look at the rela-
tion between reduced proper motion and apparent G magnitude
(Fig. 11). The bulk of white dwarfs is seen at larger reduced
proper motions than the sdBs and also at fainter apparent mag-
nitudes. It is not surprising that most white dwarfs are fainter as
they have much smaller radii. Only very few white dwarfs are
found in the overlapping region. However, they are much more
frequent, and so an uncertainty for some OGLE targets remains.

5.3. Binary central stars of planetary nebula

Another class of objects that can have similar light curves to
those of HW Vir systems are binary central stars of plane-
tary nebula (bCSPNs) with cool, low-mass companions. For
those objects, whether the nebulae are ejected AGB or RGB
envelopes, or ejected common envelopes (e.g., Hillwig et al.
2017) is under debate. With our selection criteria we cannot
properly distinguish bCSPNs from sdBs. However, bCSPNs
have relatively short lifetimes and are therefore much rarer
(Miller Bertolami 2016). In our absolute magnitude distribution,
we have a few targets which are much brighter than the rest.
For the latter, the probability of being a post-AGB binary with
an extremely hot primary is higher. OGLE-BLG-ECL-412658
with an absolute magnitude of 1.6970-92 was found to be an
sdB star with a temperature of 35 600 K evolving away from the
EHB. Two of our targets (J265.3145+29.5881 and OGLE-BLG-
ECL-149869) seem to have an absolute magnitude brighter than
1 mag, which is much brighter than one would expect for a hot
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Fig. 11. Relation between reduced proper motion and apparent G mag-
nitude. Filled symbols mark objects with spectral confirmation. Red
squares represent the published HW Vir systems, green diamonds the
ATLAS targets, and blue circles the OGLE targets. The yellow star
marks the confirmed white dwarf binary. Superimposed is the number
distribution of objects with a white dwarf probability greater than 90%
from the Gaia white dwarf catalog (Gentile Fusillo et al. 2019).

subdwarf. However, both have a very small and uncertain paral-
lax. J171.4930—-20.1447 on the other hand has an absolute mag-
nitude of 1.66 +0.22 with a small parallax error of only 10% and
is therefore the best candidate to be a post-AGB object.

Miszalski et al. (2009) performed a survey to find planetary
nebulae in the direction of the Galactic Bulge. Four objects
from our target list were confirmed as planetary nebulae by
these latter authors; these can be found in Tables A.3 and A.6.
Another known planetary nebula was found in the cross-match
of the Gaia hot subdwarf catalog with ATLAS. Currently only
11 eclipsing central stars of planetary nebula showing a reflec-
tion effect are known>.

5.4. Nature of the primary star

By combining all criteria, it is safe to say that we have only a
small level of contamination by white dwarfs or post-AGB bina-
ries, probably less than 10%. For most of our target sample, an
sdB primary star is most likely. This is also supported by the fact
that only 2 out of 28 targets were confirmed not to have an sdB
primary (see Sect. 4.2).

6. Results

6.1. The period distribution of eclipsing hot subdwarfs with
cool companions

With all the newly discovered candidate HW Vir systems pre-
sented here, the number of known systems has increased from 20
to 170. The most straightforward parameter to derive from light
curves of eclipsing binaries is the orbital period. It can be found
in Table A.1. All light curves are displayed in Figs. A.1 and A.2.
The period distribution is shown in Fig. 12. The previously
known period distribution of the HW Vir systems covered
a range of 0.07-0.26d with a sharp peak around 0.1d; the

3 http://www.drdjones.net/bCSPN/
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Fig. 12. Period distribution for all our targets. The currently published
HW Vir systems are shown in white, with the ATLAS targets in gray,
and the OGLE targets in black. In blue we marked those systems which
have a higher probability of being white dwarf binaries, in red the cen-
tral stars of planetary nebula.

distribution of the new systems is much broader, now spanning
periods from just 0.05 d to more than one day.

As the eclipsing probability strongly correlates with the
period, it is not surprising that most systems are found at peri-
ods around 0.1 d — as seen in the smaller sample. The number of
systems at shorter periods has increased, but we also find a sig-
nificant number at longer periods — up to 0.5 d. This population
was previously completely unknown, but most of the known sys-
tems were found while looking for short-period pulsations with
light curves of perhaps only an hour or two, and therefore long-
period systems would not necessarily have been detected. Apart
from the smaller chance of detecting eclipses, reflection effects
will tend to become much smaller as the component separation
and period increase.

As we limit ourselves to eclipsing systems, we also tried to
constrain the true period distribution. For this we had to correct
for the number of systems which are not selected by EREBOS
because they do not show eclipses. The probability of eclipses
occurring is dependent on the relative radius of both stars and
therefore correlates with the orbital separation a, (pec = %).
The separation a can be calculated from the masses and the
period (a = (G™32)!/3 . P2/3). We assumed for the eclipsing
probability the median masses and radii of the published HW
Vir systems (see Schaffenroth et al. 2018). The corrected period
distribution can be found in Fig. 13. Up to a period of 0.35d it
appears to be a fairly flat distribution. For longer periods — up
to one day — the number of systems drops significantly. Above
0.55d we found only eight systems. This small number of sys-
tems does not allow significant conclusions to be drawn on the
number of systems for periods longer than 13 h.

6.2. Selection effects

For interpretation of the period distribution it is important to
understand the selection effects that limit the detection of HW
Vir systems at certain periods. To detect the shortest-period sys-
tems, a short cadence of observation of the light curve is essen-
tial. The light curve surveys we used have relatively random
cadence. The shortest-period eclipsing system released by the
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Fig. 13. Period distribution for all our targets corrected for the eclips-
ing probability. The currently published HW Vir systems are shown in
white, the ATLAS targets in gray, and the OGLE targets in black.

OGLE team has a period of 0.052 d and is part of our target sam-
ple. The shortest-period system we found in the ATLAS survey
has a period of 0.062d. In OGLE, three systems with signifi-
cantly shorter periods have been found. We were able to find
systems with shorter periods of around 0.05 d when phasing the
ATLAS light curves of the sdB candidates from the hot subd-
warf Gaia catalog (Geier et al. 2019). The question is, why did
we not find such short-period systems in ATLAS? One explana-
tion is that they might be very rare. From the OGLE catalog it
is hard to say what the minimum period of a HW Vir system is,
as there were no shorter-period systems released. To solve the
question about the minimum period, we have to wait for photo-
metric surveys observing a large number of systems with a better
cadence and more epochs.

The eclipsing probability decreases substantially as the
period increases, so it is not surprising that we do not find
systems with periods longer than about a day. The eclipsing
probability for those systems is less than 10%. The reflection
effect also gets weaker with increasing period. We expect to find
only systems with an extremely high reflection effect for peri-
ods larger than one day assuming the quality of the light curves
from the OGLE and ATLAS surveys. Such systems are much
rarer than the typical systems (see the light curves of our targets
shown in Figs. A.1 and A.2). To find longer-period sdB bina-
ries with cool companions we need a larger sample and have to
include the systems showing only the reflection effect, as well as
observations with very accurate light curves.

7. Discussion

For population synthesis, the criteria for the ejection of the com-
mon envelope are crucially determined by the orbital-period dis-
tribution of post-CE binaries (Han et al. 2002). Hence, a period
distribution as complete as possible is important for the under-
standing of those parameters.

7.1. Companion masses and periods of the known
reflection-effect binaries

Figure 14 shows the companion masses of the published HW
Vir systems (Schaffenroth et al. 2018, and references therein for
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Fig. 14. Period/companion mass diagram of the published HW Vir sys-
tems. A summary of the parameters can be found in Schaffenroth et al.
(2018) and references therein. The gray area marks the hydrogen-
burning limit. Companions with smaller masses are substellar. The solid
red line denotes the minimum period at which a companion of a certain
mass can exist in orbit around a canonical-mass sdB, assuming the com-
panion cannot exceed its Roche radius. In the lower panel the period
distribution of the newly discovered HW Vir systems presented here is
shown for comparison (OGLE targets in black and ATLAS targets in

gray).

a summary of the orbital parameters) plotted against their orbital
periods — there is no obvious correlation between companion
mass and period. However, the confirmed substellar companions
seem to be found preferentially in the shortest-period systems.
The minimum period possible for a system consisting of an sdB
and a companion of a certain mass can be calculated by assuming
that the radius of the companion cannot exceed its Roche radius.
To derive the Roche radius we used the formula by Eggleton
(1983), which depends on the mass ratio and separation of the
binary. For the radius of the companion we used the mass—radius
relation by Baraffe et al. (1998), and for the sdB mass we adopt
the canonical value (~0.47 M).

The minimum orbital period is reached for an sdB with
a cool, low-mass companion in the brown dwarf mass range.
When we look at the period distribution of the newly discov-
ered systems, which is shown in Fig. 14 for comparison, we
can see that the number of short-period systems below 0.1d
has increased substantially. In particular, in the period range
below 0.1d, where all the currently confirmed brown dwarf
companions have been found, we discovered 30 new systems,
down to almost the minimal possible period at 0.04 d (see also
Nelson et al. 2018).

To find possible Jupiter-mass planets we have to search
for longer periods, because these planets get destroyed during
the common-envelope phase if they are too close to the star.
We estimate that they can only survive at periods longer than
0.2-0.25d (see Fig. 14). The only eclipsing sdB binary with a
cool, low-mass companion known to have such a period was
AA Dor. The newly discovered systems increase the range of
periods up to more than one day, allowing a search for close
Jupiter-mass objects around hot subdwarf stars, which could
be responsible for the formation of the sdB. This newly dis-
covered sample provides a unique opportunity to study the
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Fig. 15. Updated version of Fig. 4 from Schaffenroth et al. (2014b)
adding the HW Vir systems published since then (see Schaffenroth et al.
2018, for a table of the parameters of all published HW Vir systems).
Shown are the RV semi-amplitudes of all known sdB binaries with
reflection effects and spectroscopic solutions plotted against their orbital
periods. Blue squares mark eclipsing sdB binaries of HW Vir type
where the companion mass is well constrained and red circles show
systems without eclipses, where only lower limits can be derived for
the companion masses. The dashed lines mark the regions to the right
where the minimum companion masses derived from the binary mass
function (assuming 0.47 M,, for the sdBs) exceed 0.01 M, (lower curve)
and 0.08 M, (upper curve).

parameters of post-common-envelope systems over a large
period range.

For noneclipsing systems, the absolute mass of the compan-
ion cannot be determined. Some first tests show, however, that
the inclination and radii can be constrained with light curves
of space-based quality (Schaffenroth et al., in prep.), which
will allow us to constrain the companion masses. Assuming the
canonical sdB mass, a minimum mass for all companions can be
derived. An overview of the 33 known sdB binaries with reflec-
tion effects and known orbital parameters is shown in Fig. 15.
Although only minimum masses can be derived for most of
the companions, we can use this sample to do some statistics.
While most companions are late M-dwarfs with masses close
to ~0.1 Mg, there is no sharp drop below the hydrogen-burning
limit. The fraction of close substellar companions is substantial.
An obvious feature in Fig. 15 is the lack of binaries with peri-
ods shorter than ~0.18d and K < 47kms™! corresponding to
companion masses of less than ~0.06 M. This feature is not
caused by selection effects: the comparable radii of giant planets
and stars close to the hydrogen-burning limit means that their
eclipse depths would be similar, and their shorter orbital peri-
ods would mean the reflection effect should be as strong as or
stronger than that of typical HW Vir binaries. An explanation
for the lack of objects at short periods could be that the com-
panion triggered the ejection of the envelope, but was destroyed
during the common-envelope phase. This could also explain the
formation of some of the single sdBs. Our target sample is ideal
for studying this region in the diagram more thoroughly, as it sig-
nificantly increases the number of known systems with periods
smaller than 0.15d.
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Fig. 16. Period distribution of different kinds of post-common-envelope systems. Left: top: all HW Vir systems including the HW Vir candidate
systems from this paper (gray); middle: known eclipsing WD+dM/BD systems from Parsons et al. (2015) (blue); bottom: known sdB+WD systems
from Kupfer et al. (2015) (white). Right: top: known eclipsing binary central stars of planetary nebula showing a reflection effect (red) and
noneclipsing binary central stars of planetary nebula showing a reflection effect (orange®); middle: known sdB + main sequence companions from
the Roche lobe overflow channel (Vos et al. 2019, light-gray); bottom: post-AGB binaries from Oomen et al. (2018, dark green).

7.2. Comparison with related (eclipsing) binary populations

It is also interesting to compare our period distribution with the
distribution of other types of post-common envelope systems.
This is shown in Fig. 16. The eclipsing WD+dM/BD systems
show a very similar distribution. However, the longest-period
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systems have periods of 2.3d. All the systems with periods
longer than 0.5d have WD primaries with masses greater than
0.55 M, and have to be post-AGB stars. The longest-period sys-
tem KOI-3278 with a period of 88 d is a post-common envelope
system of a CO-WD with a G type companion (Parsons et al.
2015). It is the longest-period eclipsing post-common-envelope
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system known. As the primary is a CO white dwarf it has to be
a post-AGB binary. The white dwarf is much smaller than the
subdwarf, which means that the eclipsing probability is much
smaller for white dwarf binaries. However, they are much more
common than hot subdwarf stars.

As already discussed in Kupfer et al. (2015) the period distri-
bution of the known sdB+WD systems resulting from the second
common envelope channel is much broader than the period dis-
tribution of the reflection-effect systems with a secondary peak
at periods of several days.

Another type of post-common-envelope systems are the
binary central stars of planetary nebula. As only 11 eclipsing
systems are known, we also added systems which only show the
reflection effect. The period distribution of the eclipsing bCSPNs
with cool companions looks very similar to the distribution of the
HW Vir systems. However, systems showing only the reflection
effect and no eclipses are found up to periods of several days,
almost as long as the sdB+WD systems. The primary can be a
very hot WD or sdO and so the amplitude of the reflection effect
is relatively large in some but not all cases. The bCSPNs can
either be post-RGB or post-AGB systems.

The longest-period post-common-envelope system with an
sdB primary has a period of 27.8 d, but the nature of the com-
panion has not yet been determined. For comparison we also
added the group of long-period sdB systems with FGK compan-
ions showing composite spectra. They are found at periods of
a few 100d which means they were formed through the Roche
lobe overflow channel. The shortest period for such sdB binaries
is 479d (Vos et al. 2019). No systems with periods in the range
~28-480d have been found yet.

Oomen et al. (2018) published a sample of 33 post-AGB
binaries. They have periods similar to those of long-period sdB
binaries and share other characteristics with this latter group
(e.g., significant eccentricities in many systems); population
synthesis, on the other hand, predicted periods of a few days
for common-envelope systems (Nie et al. 2012). Oomen et al.
(2018) claim that post-AGB stars with periods less than 100d
should fill their Roche lobes and therefore evolve into bCSPNs
quickly or contain hotter post-AGB primaries. Those should be
distinguishable from post-RGB stars quite easily, as they are
expected to be much more luminous.

8. Summary and outlook

In the EREBOS project we study a large sample of homoge-
neously selected HW Vir systems. We investigated two pho-
tometric surveys to find more such systems and increased the
number of known systems by a factor of almost ten. We plan a
photometric and spectroscopic follow-up of as many targets as
possible to determine the fundamental stellar (M, R), atmospheric
(Ter, logg), and binary parameters (a, P). At the moment we
already have spectroscopic follow-up for 28 objects. For several
of our systems we took photometric follow-up in several bands
(B, V, R), which is essential for modeling the reflection effect.

For 25 of our targets, it has been spectroscopically confirmed
that they are indeed systems consisting of a hot subdwarf pri-
mary and a cool, low-mass companion; only two targets have
a DA primary. Four systems in our sample were confirmed to
be central stars of planetary nebula. This means that ~90% of
our target sample are most likely to be eclipsing hot subdwarf
binaries.

The main goal of EREBOS is to investigate HW Vir sys-
tems over the whole range of the period distribution. We hope
to improve the understanding of the common-envelope phase by

: The EREBOS project

investigating a large number of post-common-envelope binaries.
Moreover, we are especially interested in the influence of the
lowest-mass companions — brown dwarfs or massive planets —
on stellar evolution. A future goal is an improved physical model
of the reflection effect, which we hope to achieve with this huge
sample of reflection-effect binaries.

A byproduct that will emerge from our sample is a mass—
radius relation for cool, low-mass objects which are highly
irradiated by a hot companion. This should shed light on the
question of how much such objects are inflated.

The TESS mission, which is observing at the moment,
provides 27 d light curves of each field and, for a few bright tar-
gets, light curves with a 2 min cadence are transmitted. The full-
frame images are transferred every 30 min, allowing us to derive
the light curves of all targets. This will give 27 d light curves of
space-based quality, allowing us to detect reflection effects with
periods of several days and to find the longest-period reflection-
effect systems. It will also provide excellent light curves to
expand our target sample further. Additionally, several ground-
based surveys are providing or will provide excellent light-curve
data in several photometric bands, which will find a large num-
ber of new HW Vir systems (e.g., ZTF and BlackGEM, of which
we are now members).

Acknowledgements. Based on observations collected at the European Organi-
sation for Astronomical Research in the Southern Hemisphere under ESO pro-
gramme(s) 092.D-0040(A), 095.D-0167(A), 196.D-0214(A-D), 099.D-0217(A),
0101.D-0791(A). Also based on observations obtained at the Southern Astro-
physical Research (SOAR) telescope, which is a joint project of the Ministério
da Ciéncia, Tecnologia, Inovacdes e Comunicagdes (MCTIC) do Brasil, the US
National Optical Astronomy Observatory (NOAO), the University of North Car-
olina at Chapel Hill (UNC), and Michigan State University (MSU). We would
like to thank the Chilean Time Allocation Committee for awarding us time for
complementing the EREBOS Project with the proposal CL-2016B-018. Unfor-
tunately, there was an error on our side and the finder chart was wrongly marked
so that the data were not used in the analysis presented in this paper. V.S. is
supported by the Deutsche Forschungsgemeinschaft (DFG) through grant GE
2506/9-1. BB is supported by the National Science Foundation grant AST-
1812874. DK acknowledges financial support from the University of the Western
Cape and the National Research Foundation of South Africa. IP acknowledges
funding by the Deutsche Forschungsgemeinschaft under grant GE2506/12-1.
This work was supported by the National Science Foundation through grant
PHY 17-148958. V.S. and S.G. were supported by the DAAD PPP USA for this
project. Thereby, we would also like to thank the Kavli Institute for Theoretical
Physics, UC Santa Barbara for hosting V.S and S.G. during the stay funded by
DAAD PPP USA, where a large part of the manuscript was written. This research
has made use of ISIS functions (ISISscripts) provided by ECAP/Remeis obser-
vatory and MIT (http://www.sternwarte.uni-erlangen.de/isis/). This
work has made use of data from the European Space Agency (ESA) mission Gaia
(https://www.cosmos.esa.int/gaia), processed by the Gaia Data Pro-
cessing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/
web/gaia/dpac/consortium). Funding for the DPAC has been provided by
national institutions, in particular the institutions participating in the Gaia Mul-
tilateral Agreement.

References

Afsar, M., & Ibanoglu, C. 2008, MNRAS, 391, 802

Almeida, L. A., Damineli, A., Rodrigues, C. V., Pereira, M. G., & Jablonski, F.
2017, MNRAS, 472, 3093

Althaus, L. G., Miller Bertolami, M. M., & Cérsico, A. H. 2013, A&A, 557, A19

Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Mantelet, G., & Andrae, R.
2018, VizieR Online Data Catalog: 1/347

Baraffe, 1., Chabrier, G., Allard, F., & Hauschildt, P. H. 1998, A&A, 337, 403

Budaj, J. 2011, AJ, 141, 59

Clemens, J. C., Crain, J. A., & Anderson, R. 2004, in Ground-based
Instrumentation for Astronomy, eds. A. F. M. Moorwood, & M. Iye, Proc.
SPIE, 5492, 331

Dorman, B., Rood, R. T., & O’Connell, R. W. 1993, APJ, 419, 596

Eggleton, P. P. 1983, ApJ, 268, 368

Gaia Collaboration (Babusiaux, C., et al.) 2018a, A&A , 616, A10

A80, page 13 of 29


http://www.sternwarte.uni-erlangen.de/isis/
https://www.cosmos.esa.int/gaia
https://www.cosmos.esa.int/web/gaia/dpac/consortium
https://www.cosmos.esa.int/web/gaia/dpac/consortium
http://linker.aanda.org/10.1051/0004-6361/201936019/1
http://linker.aanda.org/10.1051/0004-6361/201936019/2
http://linker.aanda.org/10.1051/0004-6361/201936019/3
http://linker.aanda.org/10.1051/0004-6361/201936019/4
http://linker.aanda.org/10.1051/0004-6361/201936019/5
http://linker.aanda.org/10.1051/0004-6361/201936019/6
http://linker.aanda.org/10.1051/0004-6361/201936019/7
http://linker.aanda.org/10.1051/0004-6361/201936019/7
http://linker.aanda.org/10.1051/0004-6361/201936019/8
http://linker.aanda.org/10.1051/0004-6361/201936019/9
http://linker.aanda.org/10.1051/0004-6361/201936019/10

A&A 630, A80 (2019)

Gaia Collaboration (Brown, A. G. A., et al.) 2018b, A&A, 616, Al

Geier, S., Schaffenroth, V., Drechsel, H., et al. 2011, APJ, 731, L22

Geier, S., Raddi, R., Gentile Fusillo, N. P., & Marsh, T. R. 2019, A&A, 621,
A38

Gentile Fusillo, N. P., Ginsicke, B. T., & Greiss, S. 2015, MNRAS, 448, 2260

Gentile Fusillo, N. P., Tremblay, P.-E., Ginsicke, B. T., et al. 2019, MNRAS,
482, 4570

Han, Z., Podsiadlowski, P., Maxted, P. F. L., Marsh, T. R., & Ivanova, N. 2002,
MNRAS, 336, 449

Heber, U. 2009, ARA&A, 47,211

Heber, U. 2017, in Stripped Red Giants - Helium Core White Dwarf Progenitors
and their sdB Siblings (San Francisco: ASP), ASP Conf. Ser., 509, 85

Heber, U., Reid, I. N., & Werner, K. 2000, A&A, 363, 198

Hillwig, T. C., Frew, D. J., Reindl, N., et al. 2017, AJ, 153, 24

Hirsch, H. 2009, Phd Thesis, Friedrich Alexander Universitit Erlangen
Niirnberg, Germany

Jeffery, C. S., & Ramsay, G. 2014, MNRAS, 442, L61

Kupfer, T., Geier, S., Heber, U., et al. 2015, A&A, 576, A44

Lallement, R., Vergely, J.-L., Valette, B., et al. 2014, A&A, 561, A91

Lomb, N. R. 1976, Ap&SS, 39, 447

Maxted, P. F. L., Heber, U., Marsh, T. R., & North, R. C. 2001, MNRAS, 326,
1391

Miller Bertolami, M. M. 2016, A&A, 588, A25

Miszalski, B., Acker, A., Moffat, A. FE. J., Parker, Q. A., & Udalski, A. 2009,
VizieR Online Data Catalog: 349

Nelson, L., Schwab, J., Ristic, M., & Rappaport, S. 2018, ApJ, 866, 88

A80, page 14 of 29

Nie, J. D., Wood, P. R., & Nicholls, C. P. 2012, MNRAS, 423, 2764

Oomen, G.-M., Van Winckel, H., Pols, O., et al. 2018, A&A, 620, A85

Parsons, S. G., Marsh, T. R., Copperwheat, C. M., et al. 2010, MNRAS, 402,
2591

Parsons, S. G., Agurto-Gangas, C., Ginsicke, B. T., et al. 2015, MNRAS, 449,
2194

Pietrukowicz, P, Mréz, P., Soszynski, 1., et al. 2013, Acta Astron., 63,
115

Riello, M., De Angeli, F., Evans, D. W, et al. 2018, A&A, 616, A3

Scargle, J. D. 1982, AplJ, 263, 835

Schaffenroth, V., Geier, S., Drechsel, H., et al. 2013, A&A, 553, A18

Schaffenroth, V., Geier, S., Heber, U, et al. 2014a, A&A, 564, A98

Schaffenroth, V., Classen, L., Nagel, K., et al. 2014b, A&A, 570, A70

Schaffenroth, V., Barlow, B. N., Drechsel, H., & Dunlap, B. H. 2015, A&A, 576,
Al123

Schaffenroth, V., Geier, S., Heber, U, et al. 2018, A&A, 614, A77

Soker, N. 1998, AJ, 116, 1308

Soszynski, L., Stepien, K., Pilecki, B., et al. 2015, Acta Astron., 65, 39

Soszynski, I., Pawlak, M., Pietrukowicz, P, et al. 2016, Acta Astron., 66, 405

Tody, D. 1986, in Instrumentation in Astronomy VI, ed. D. L. Crawford, Proc
SPIE, 627, 733

Tonry, J. L., Denneau, L., Heinze, A. N., et al. 2018, PASP, 130, 064505

Udalski, A., Pont, F., Naef, D., et al. 2008, A&A, 482, 299

Udalski, A., Szymariski, M. K., & Szymariski, G. 2015, Acta Astron., 65, 1

Vos, J., Vuckovié, M., Chen, X., et al. 2019, MNRAS, 482, 4592

Wilson, R. E. 1990, ApJ, 356, 613


http://linker.aanda.org/10.1051/0004-6361/201936019/11
http://linker.aanda.org/10.1051/0004-6361/201936019/12
http://linker.aanda.org/10.1051/0004-6361/201936019/13
http://linker.aanda.org/10.1051/0004-6361/201936019/13
http://linker.aanda.org/10.1051/0004-6361/201936019/14
http://linker.aanda.org/10.1051/0004-6361/201936019/15
http://linker.aanda.org/10.1051/0004-6361/201936019/15
http://linker.aanda.org/10.1051/0004-6361/201936019/16
http://linker.aanda.org/10.1051/0004-6361/201936019/17
http://linker.aanda.org/10.1051/0004-6361/201936019/18
http://linker.aanda.org/10.1051/0004-6361/201936019/18
http://linker.aanda.org/10.1051/0004-6361/201936019/19
http://linker.aanda.org/10.1051/0004-6361/201936019/20
http://linker.aanda.org/10.1051/0004-6361/201936019/22
http://linker.aanda.org/10.1051/0004-6361/201936019/23
http://linker.aanda.org/10.1051/0004-6361/201936019/24
http://linker.aanda.org/10.1051/0004-6361/201936019/25
http://linker.aanda.org/10.1051/0004-6361/201936019/26
http://linker.aanda.org/10.1051/0004-6361/201936019/26
http://linker.aanda.org/10.1051/0004-6361/201936019/27
http://linker.aanda.org/10.1051/0004-6361/201936019/28
http://linker.aanda.org/10.1051/0004-6361/201936019/29
http://linker.aanda.org/10.1051/0004-6361/201936019/30
http://linker.aanda.org/10.1051/0004-6361/201936019/31
http://linker.aanda.org/10.1051/0004-6361/201936019/32
http://linker.aanda.org/10.1051/0004-6361/201936019/32
http://linker.aanda.org/10.1051/0004-6361/201936019/33
http://linker.aanda.org/10.1051/0004-6361/201936019/33
http://linker.aanda.org/10.1051/0004-6361/201936019/34
http://linker.aanda.org/10.1051/0004-6361/201936019/34
http://linker.aanda.org/10.1051/0004-6361/201936019/35
http://linker.aanda.org/10.1051/0004-6361/201936019/36
http://linker.aanda.org/10.1051/0004-6361/201936019/37
http://linker.aanda.org/10.1051/0004-6361/201936019/38
http://linker.aanda.org/10.1051/0004-6361/201936019/39
http://linker.aanda.org/10.1051/0004-6361/201936019/40
http://linker.aanda.org/10.1051/0004-6361/201936019/40
http://linker.aanda.org/10.1051/0004-6361/201936019/41
http://linker.aanda.org/10.1051/0004-6361/201936019/42
http://linker.aanda.org/10.1051/0004-6361/201936019/43
http://linker.aanda.org/10.1051/0004-6361/201936019/44
http://linker.aanda.org/10.1051/0004-6361/201936019/45
http://linker.aanda.org/10.1051/0004-6361/201936019/45
http://linker.aanda.org/10.1051/0004-6361/201936019/46
http://linker.aanda.org/10.1051/0004-6361/201936019/47
http://linker.aanda.org/10.1051/0004-6361/201936019/48
http://linker.aanda.org/10.1051/0004-6361/201936019/49
http://linker.aanda.org/10.1051/0004-6361/201936019/50

V. Schaffenroth et al.: The EREBOS project

Appendix A: Light curves, orbital parameters, magnitudes, Gaia parallaxes, and proper motions of all our
targets
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Fig. A.1. Phased light curves of all our HW Vir candidates from the OGLE survey.
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Fig. A.1. continued.
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Fig. A.2. Phased light curves of all our HW Vir candidates from the ATLAS survey.
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