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ABSTRACT  

Organic photovoltaic cell performance is limited in part by a short exciton diffusion length (LD). While state-of-the-art 
devices address this challenge using a morphology-optimized bulk heterojunction (BHJ), longer LD would relax domain-
size constraints and enable higher efficiency in simple bilayer architectures. One approach to increase LD is to exploit 
long-lived triplet excitons in fluorescent materials. Though these states do not absorb light, they can be populated using a 
host-guest triplet-sensitized architecture. Photogenerated host singlets undergo energy transfer to a guest, which rapidly 
forms triplets that are transferred back to the long-lived host triplet state. Previous efforts have been focused on Pt- and Ir-
based guests. Here, a host-guest pairing of metal-free phthalocyanine (H2Pc) and copper phthalocyanine (CuPc) is 
explored, advantageous as the guest also has strong and complementary optical absorption. In optimized devices (20 vol.% 
CuPc), the short-circuit current is enhanced by 20%. To probe the origin of the enhancement, the exciton LD is measured 
using a device-based methodology that relies on fitting ratios of donor-to-acceptor internal quantum efficiency as a 
function of layer thickness. Compared with the neat H2Pc, the LD of the 20 vol.% CuPc doped layer increases from (8.5 ± 
0.4) nm to (13.4 ± 1.6 nm), confirming the increased device current comes from enhanced exciton harvesting. 
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1. INTRODUCTION  
Organic semiconductors typically have a short exciton diffusion length (LD ~ 10 nm) in comparison to the long optical 
absorption length (LA ~ 100 nm), limiting the performance of planar heterojunction organic photovoltaic cells (OPVs). 
State-of-the-art devices address this challenge using a morphology-optimized bulk heterojunction (BHJ) to increase 
exciton harvesting.[1-10] Despite these achievements, a long  LD is desirable since it can relax domain-size constraints 
and enable higher efficiency in simple bilayer structures. One approach to enhance LD is to utilize long-lived triplet 
excitons.[11-16] The challenge in using triplets is that they are typically characterized by very low optical absorption,  
making them inaccessible under optical pumping. 

Prior works have overcome the challenge of optically pumping triplets by using a host-guest triplet-sensitized 
structure.[16-27] In such a structure, a guest molecule with a heavy metal permitting rapid singlet-triplet intersystem 
crossing is mixed with a fluorescent host. Under optical pumping, photogenerated host singlets can undergo energy transfer 
to the guest, which rapidly forms triplets and are subsequently transferred back to the long-lived host triplet state. Previous 
efforts have been focused on Pt- and Ir-based guests. For example, the incorporation of 5% tris[2-phenylpyridinato-
C2,N]iridium(III) (Ir(ppy)3) into N,N’-Bis(naphthalen-1-yl)-N,N’-bis(phenyl)benzidine (NPD) has been shown to increase 
LD from (6.5 ± 0.3) nm to (11.8 ± 0.6) nm.[18] Among several demonstrations based on a polymer host, the doping of 
phenyl-substituted poly(p-phenylene vinylene) (PPV) with 5% platinum octaethylporphyrin (PtOEP) leads to an increase 
in LD from (4 ± 1) nm to (9 ± 1) nm.[19, 20, 26] 

Previous work has shown that the presence of Cu in copper phthalocyanine (CuPc) leads to ultrafast singlet-triplet 
intersystem crossing in ~500 fs, making it a potential triplet sensitizer.[28] It is also advantageous due to strong optical 
absorption, which means its incorporation as a guest will not reduce donor layer absorbance. Here, a host-guest pairing of 
metal-free phthalocyanine (H2Pc) and CuPc is examined in OPVs, and also analyzed in terms of exciton transport. The 
relevant singlet and triplet exciton energy levels are shown in Fig. 1a, suggesting singlet transfer from H2Pc to CuPc and 
triplet transfer from  CuPc back to H2Pc.[29, 30] In this way, optical pumping of H2Pc singlets leads to the formation of 



 
 

 



 
 

 



 
 

 



 

 
 

 

H2Pc. The extracted C60 LD values are comparable to the previously reported values.[31] The significant increase in donor 
LD indicates the effect of triplet sensitizer and the contribution to the measured JSC. 

 

4. CONCLUSION 
Long-lived triplets are frequently inaccessible under optical pumping due to the spin conservation. A triplet sensitizer with 
ultrafast intersystem crossing and proper aligned energy levels can efficiently populate host triplets. A host-guest pairing 
consisting of H2Pc and CuPc is studied in this work, extending the concept of triplet-sensitization to more broadly 
absorbing active materials. Devices based on H2Pc:CuPc-C60 show an increase in short-circuit current density with doping 
of 20 vol.% CuPc relative to the case of a neat H2Pc donor layer. A plateau in current occurs at 20 vol.% CuPc, followed 
by a decrease and leveling off between 50 vol.% CuPc and neat CuPc. To elucidate the origin of the observed increase in 
current with addition of the sensitizer, the donor LD was probed for the neat H2Pc and 20 vol.% CuPc doped samples using 
a device-based method based on fitting ratios of donor-to-acceptor internal quantum efficiency as a function of layer 
thickness. The donor LD increases from (8.5 ± 0.4) nm to (13.4 ± 1.6 nm) with incorporation of 20 vol.% CuPc over the 
case of neat H2Pc. This significant increase suggests the observed improvement in device performance comes due to the 
inclusion of the triplet sensitizer. 
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