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Abstract

In this work, we study the properties of strongly magnetized white dwarfs (WDs), taking into account the electron
capture and pycnonuclear fusion reactions instabilities. The structure of WDs is obtained by solving the Einstein–
Maxwell equations with a poloidal magnetic field in a fully general relativistic treatment. The stellar fluid is
assumed to be composed of a regular crystal lattice made of carbon ions immersed in a degenerate relativistic
electron gas. The onset of electron capture reactions and pycnonuclear reactions are determined with and without
magnetic fields. We find that magnetized WDs significantly exceed the standard Chandrasekhar mass limit, even
when electron capture and pycnonuclear fusion reactions are present in the stellar interior. We obtain a maximum
white dwarf mass of around 2.14 Me for a central magnetic field of ∼3.85×1014 G, which indicates that
magnetized WDs may play a crucial role for the interpretation of superluminous type Ia supernovae. Furthermore,
we show that the critical density for pycnonuclear fusion reactions limits the central white dwarf density to
9.35×109 g cm−3. As a consequence, equatorial radii of WDs cannot be smaller than ∼1100 km. Another
interesting feature concerns the relationship between the central stellar density and the strength of the magnetic
field at the core of a magnetized white dwarf. For high magnetic fields, we find that the central density increases
(stellar radius decrease) with magnetic field strength, which makes highly magnetized WDs more compact. The
situation is reversed if the central magnetic field is less than ∼1013 G.
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1. Introduction

It is generally accepted that stars with masses below 10 solar
masses end their evolutions as white dwarfs (WDs) (Weber 1999;
Shapiro & Teukolsky 1983; Glendenning 2012). With a typical
composition mostly made of carbon, oxygen, or helium, WDs
possess central densities up to ∼1011 g cm−3. They can be fast-
rotating (Kepler et al. 2007; Kleinman et al. 2013; Ferrario et al.
2015) and strongly magnetized (Kepler et al. 2013; García-Berro
et al. 2016). The observed surface magnetic fields range from
106 G to 109; see, e.g., G Putney (1995), Schmidt & Smith
(1995), Reimers et al. (1996), Kemp et al. (1970), Angel (1978),
and Terada et al. (2008). The internal magnetic fields of white
dwarfs are not known, however, they are expected to be larger
than their surface magnetic fields. This is due to the fact that in
ideal magnetohydrodynamics, the magnetic field B is “frozen-in”
with the fluid and B∝ρ, with ρ being the local mass density (see,
e.g., Mestel 2012; Landau et al. 1958). A simple estimate of the
internal magnetic field strength follows from the virial theorem by
equating the magnetic field energy with the gravitational binding
energy, which leads to an upper limit for the surface magnetic
fields inside WDs of about∼1013 G. On the other hand, analytical
and numerical calculations, in the framework of both Newtonian
gravity and general relativity, show that WDs may have internal
magnetic fields as large as 1012−16 G (see, e.g., Angel 1978;
Shapiro & Teukolsky 1983; Das & Mukhopadhyay 2014a;
Franzon & Schramm 2015a, 2017; Das & Mukhopadhyay
2015; Bhattacharya et al. 2018; Chatterjee et al. 2017).

The relationship between the gravitational stellar mass, M,
and the radius, R, of non-magnetized white dwarfs was first
determined by Chandrasekhar (1939). Recently, mass–radius
relationships of magnetic white dwarfs have been explored in
different studies (see, e.g., Suh & Mathews 2000; Bera &
Bhattacharya 2014; Franzon & Schramm 2015a; Chatterjee
et al. 2017). These studies show that the masses of white
dwarfs increase in the presence of strong magnetic fields. This
is due to the Lorentz force, which acts against gravity, thereby
supporting stars with higher masses.
Based on recent observations of several superluminous type

Ia supernovae (SN 2006gz, SN 2007if, SN 2009dc, SN 2003fg)
in Howell et al. (2006), Hicken et al. (2007), Kepler et al.
(2007), Yamanaka et al. (2009), Scalzo et al. (2010), Silverman
et al. (2011), and Taubenberger et al. (2011), it has been
suggested that the progenitor masses of such supernovae
significantly exceed the Chandrasekhar mass limit of MCh∼1.
4Me (Ilkov & Soker 2012). Super-heavy progenitors were
studied as a result of mergers of two massive white dwarfs
(Ji et al. 2013; Moll et al. 2014; van Rossum et al. 2016).
Alternatively, the authors Liu et al. (2014) and Carvalho et al.
(2018a) obtained super-Chandrasekhar white dwarfs for
electrically charged stars and suggested that they may be
considered possible progenitors of supernovae, although there
is not yet strong evidence for the existence of high electric
fields in white dwarfs. In addition, super-Chandrasekhar white
dwarfs were investigated in the presence of strong magnetic
fields by Das & Mukhopadhyay (2014b). Adam (1986) and
Ostriker & Hartwick (1968) calculated WDs models with
magnetic fields in the framework of Newtonian physics. A

The Astrophysical Journal, 879:46 (9pp), 2019 July 1 https://doi.org/10.3847/1538-4357/ab24d1
© 2019. The American Astronomical Society. All rights reserved.

8 Deceased on 2019 April 15.

1

https://orcid.org/0000-0001-9929-5977
https://orcid.org/0000-0001-9929-5977
https://orcid.org/0000-0001-9929-5977
https://orcid.org/0000-0001-8718-6925
https://orcid.org/0000-0001-8718-6925
https://orcid.org/0000-0001-8718-6925
mailto:edson.otoniel@ufca.edu.br
https://doi.org/10.3847/1538-4357/ab24d1
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ab24d1&domain=pdf&date_stamp=2019-07-03
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ab24d1&domain=pdf&date_stamp=2019-07-03


recent study by Subramanian & Mukhopadhyay (2015) of
differentially rotating, magnetized white dwarfs has shown that
differential rotation might increase the maximum mass of
magnetized white dwarfs up to 3.1Me. Also, as shown by Bera
& Bhattacharya (2016), purely toroidal magnetic field
components can increase the masses of white dwarfs up
to 5Me.

According to Das & Mukhopadhyay (2012), the effects of an
extremely large and uniform magnetic field on the equation of
state (EoS) of a white dwarf could increase its critical mass up
to 2.58 Me. This mass limit is reached for extremely large
magnetic fields of ∼1018 G. Nevertheless, as already discussed
in the literature (Chamel et al. 2013; Coelho et al. 2014;
Liccardo et al. 2018), the breaking of spherical symmetry due
to magnetic fields and microphysical effects, such as electron
capture reactions and pycnonuclear reactions, can severely
limit the magnetic fields inside white dwarfs.

Franzon & Schramm (2015a) computed the mass–radius
relationship of highly magnetized white dwarfs using a pure
degenerate electron Fermi gas. However, according to Salpeter
(1961), many-body corrections modify the EoS and therefore
the mass–radius relationship of white dwarfs. The purpose of
our paper is twofold. First, we model the EoS of white dwarfs,
taking into account not only the electron Fermi gas contrib-
ution, but also the contribution from electron-ion interactions
(Chamel & Fantina 2015). Second, we perform a stability
analysis of the matter in the cores of white dwarfs against
electron capture and pycnonuclear fusion reactions. The
Landau energy levels of electrons are modified by relativistic
effects if the magnetic field strength is higher than the critical
QED magnetic field strength of Bcr=4.4×1013 G. However,
as already shown by Bera & Bhattacharya (2014), the global
properties of white dwarfs, such as masses and the radii, are
nearly independent of Landau quantization. For this reason, we
do not take into account magnetic field effects in the EoS when
calculating the global properties of WDs. Aside from the
importance of magnetic white dwarfs for superluminous type Ia
supernovae, they can also constitute rotation-powered pulsars
(Marsh et al. 2016; Mukhopadhyay et al. 2017).
Our paper is organized as follows. In Section 2, we discuss

the stellar interior of white dwarfs and the details of the EoS
used in our study. In Section 3, we briefly discuss the equations
that are being solved numerically to obtain the structure of
stationary magnetized white dwarfs. In Section 4 we introduce
the Einstein–Maxwell tensor and the metric tensor used to
solve Einstein’s field equations of general relativity. Our results
are presented in Section 5 and summarized in Section 6.

2. Stellar Interior

White dwarf matter is largely composed of atomic nuclei
immersed in a fully degenerate electron gas (Hamada &
Salpeter 1961; Salpeter 1961). In this work, the EoS of such
matter is determined for more recent atomic mass data (Audi
et al. 2012; Wang et al. 2012). Magnetic field effects on the
EoS of white dwarf matter are ignored. The model adopted for
the nuclear lattice in the outer crust of a neutron star is
described, for instance, in Shapiro & Teukolsky (1983). The
pressure in the cores of white dwarfs is produced by
degenerate electrons and the ionic lattice, leading to the total
pressure given by

= +P P P Z , 1e L ( ) ( )

where Pe denotes the electron pressure (determined in Salpeter
1961), and PL(Z) is the lattice pressure of ions, where Z is the
proton number of the ions. The lattice pressure can be written
in terms of the energy density of the ionic lattice (see Pearson
et al. (2011)),

= P Z
1

3
. 2L L( ) ( )

In this work we consider Z=12, which implies that the white
dwarf is composed of carbon ions.
The lattice pressure of ions arranged in a regular body-

centered-cubic (bcc) crystal does not depend on the magnetic
field, apart from a small contribution due to the quantum zero-
point motion of ions. In this case, the lattice energy density
reads as (Chamel et al. 2013)

= Ce n Z , 3L e
2 4 3 2 3 ( )

where the lattice constant is C=−1.444, for a body-centered-
cubic (bcc) structure, e is the electron charge, and ne is the
electron number density.
The total energy density  of the system consists of the

energy density of the ions, the degenerate electron energy
density, and the energy density of the ionic lattice, L,
according to

= - + n M Z A c n m c, , 4x e e L
2 2( ) ( )

where nx is the number density of atomic nuclei of mass
M(Z, A) and me denotes the electron mass.

3. Instabilities in Strongly Magnetized White Dwarfs

3.1. Inverse β Decay

In this section we describe the treatment of inverse β-decay
processes in white dwarf matter. Since these processes depend
much more strongly on the magnetic field than the bulk properties
of WDs, the magnetic field is taken into account in the calculation
of the inverse β-decay processes. As known from the work of
Gamow (1939; see also Shapiro & Teukolsky 1983), the matter
inside white dwarfs can experience instabilities due to inverse
β-decay processes,

n+  + - +-A N Z e A N Z, 1, 1 .e( ) ( )

Because of this reaction, atomic nuclei become more neutron-
rich and as a consequence the electron energy density and
pressure are reduced, leading to a softer EoS. Using the
thermodynamic relation (at zero temperature) m+ = P ne e e e,
the Gibbs free energy per nucleon, g, is obtained as

g m= + + - +


g A Z mc
M Z A c

A
m c

n
,

, 4

3
,

5

e e e
L

e

2
2

2
⎡
⎣⎢

⎤
⎦⎥( ) ( )

( )

where γe=Z/A is the ration between the proton number Z and
atomic number A, with m being the neutron mass and μe being
the electron chemical potential.
Inverse β-decay reactions are believed to occur in the cores

of white dwarfs if the condition (Chamel et al. 2014)

-g A Z g A Z, , 1 6( ) ( ) ( )

2
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is fulfilled, where g(A, Z) and g(A, Z−1) follow from
Equation (5).

From the inequality (6), we obtain the following relation
(Chamel & Fantina 2015):

m m+ - bCe n f Z Z, 1 , 7e e e
2 1 3 ( ) ( )

with the electron number density ne and mass density ρ of a
magnetized electron gas given, respectively, by

å
p l

n= - -
n

n

n


n
B

g x B
2

2
1 2 . 8e

e
F2 3 0
2

max

( )
( )

r
g

= mn
1

, 9
e

e ( )

where λe=ÿ/mec is the electron Compton wavelength. The
sum over ν is over all occupied energy levels. Moreover,
Bå=B/Bc with Bc=4.414×1013 G for the critical magnetic
field. The quantities xF in Equation (8) and mb

e in Equation (7)
are defined as ºx p m cF F e , where pF represents the Fermi
momentum, and

m º - - +b A Z M Z A c M Z A c m c, 1, , . 10e e
2 2 2( ) ( ) ( ) ( )

For an electron gas consisting of only one type of ion, we have

- = - - +f Z Z Z Z Z, 1 1
1

3
. 115 3 5 3 2 3( ) ( ) ( )

In the limit where only the ground state (ν=0) is fully
occupied by electrons, one has

= µ n n B ,e eB
2 3

where neB is the number density when the ground state is fully
occupied (see Haensel et al. (2007) for more details about neB).
The chemical potential of the electrons in this case is given by

m
p l

»


m c n

B

2
. 12e

e e eB
2 2 3

( )

Chamel et al. (2014)estimated that the maximum magnetic
field inside a white dwarf, before the onset of β-inverse
reactions, is given by

m

p
a

» + -b
b -

B
A Z

m c

C
f Z Z

1

2

,
1

4

3
, 1 , 13e

e
2

2 2 3 2

⎜ ⎟
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

( )
( ) ( )

where α=e2/(ÿc). We note that because of the second term
on the right side of Equation (13), which originates from lattice
contributions, the maximum value of b

B increases if lattice
contributions are taken into account.

In Figure 1 we show the numerical solution of (7) for white
dwarf matter made of only carbon ions immersed in a
magnetized electron gas. The oscillatory density behavior is
caused by the Landau level contributions to the number
density, given by Equation (8). For high values of B with only
the ground state occupied, the dependence of density on B
becomes linear, as can be seen in Figure 1.

3.2. Pycnonuclear Reaction

In this section, we will focus on nuclear fusion reactions
(pycnonuclear fusion reactions) among heavy atomic nuclei,
schematically expressed as +   Z

A
Z
A

Z
A
2
2 . An example of

such a reaction is carbon on carbon, +C C12 12 . Pycnonuclear
reactions have been found to occur over a significant range of
stellar densities (see Gasques et al. (2005)), including the
density range found in the interiors of white dwarfs (Chamel
et al. 2013, 2014). The nuclear fusion rates at which
pycnonuclear reactions proceed, however, are highly uncertain
because of some poorly constrained parameters (see Gasques
et al. (2005 and Yakovlev et al. 2006). We note that magnetic
fields affect the zero-point energy of ions and hence the
pycnonuclear reaction rates. This effect, however, is neglected
in this paper. The reaction rates have been calculated for
different models. According to Gasques et al. (2005), the
pycnonuclear reaction rates are defined as

=


R
n
S E

mZ e
P F

2
, 14x

pyc pk 2 2 pyc pyc( ) ( )

where S(Epk) is the astrophysical S-factor used by Gasques
et al. (2005) for the NL2 nuclear model parameterization.
Following Gasques et al. (2005), an analytic equation for the
S-factor is given by

= ´ - -
+ -

S E

E
E

e
5.15 10 exp 0.428

3

1
, 15

E

pk

16
pk

pk
0.308

0.613 8 pk

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

( )

( )( )

where S(Epk) is in units of MeV barn. The factors Ppyc and Fpyc

in Equation (14) are given by

= - LP Cexp , 16pyc exp( ) ( )

= LF C8 11.515 , 17C
pyc pyc pl ( )

with Cexp, Cpyc, and Cpl being dimensionless parameters for a
regular bcc-type crystal lattice (at zero temperature). Their
numerical values are listed in Table 1.

Figure 1. Mass-density thresholds for the onset of electron capture as a
function of magnetic field strength (in units of the critical magnetic field, Bc),
computed from Equation (7) for matter made of only carbon ions.

Table 1
Coefficients Cexp, Cpyc, and Cpl Related to Pycnonuclear Reaction Rates at
Zero Temperature, Computed for Nuclear Model NL2 (see Cândido Ribeiro

et al. 1997; Chamon et al. 1997)

Model Cexp Cpyc Cpl

bcc; static lattice 2.638 3.90 1.25

3
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The inverse-length parameter Λ in Equations (16) and (17)
has the form (Gasques et al. 2005; Yakovlev et al. 2006)

r

L =

=
´ -


mZ e

n

AZ A

X

2

1 1

1.3574 10 g cm
. 18

x

i

2

2 2

1 3

2 11 1

1 3

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟ ( )

For mass densities, ρ, less than the neutron drip density one
has Xi=1 (Gasques et al. 2005) and the pycnonuclear reaction
rates are given by

r= L

´ - L

-R AZ S E C

C

10

exp , 19

C
pyc

4
pk pyc

46 3

exp

pl( )

( ) ( )

with Rpyc given in units of cm−3s−1. The zero-point oscillation
energy, Epk, of

12C nuclei at ρ=1010 g cm−3 is given by
Shapiro & Teukolsky (1983)

w
p r

= = E
e Z

AM

4
. 20pk

2 2

2

1 2⎛
⎝⎜

⎞
⎠⎟ ( )

The time it takes for the complete fusion of atomic nuclei of
mass Am is obtained from (Gasques et al. 2005; Boshkayev
et al. 2013)

t
r

= =
n

R RAm
. 21x

pyc
pyc pyc

( )

As already mentioned above, the reaction rates are rather uncertain,
and the analytic astrophysical S-factor has an uncertainty of ∼3.5,
which considerably affects the density thresholds of pycnonuclear
reactions and their reaction times. In Figure 2 we show
pycnonuclear fusion reaction rates and pycnonuclear reaction
timescales for carbon burning at zero temperature as a function of
mass density. The bcc crystal lattice for nuclear model NL2 was
employed to produce Figure 2.

4. White Dwarfs with Axisymmetric Magnetic Fields

The numerical technique used in this work to study
axisymmetric magnetic fields was first applied to neutron stars
(Bonazzola et al. 1993; Bocquet et al. 1995), and more recently
(Franzon & Schramm 2015b; Franzon et al. 2016a, 2016b;

Chatterjee et al. 2017). The same formalism was used to study
rotating and magnetized white dwarfs by Franzon & Schramm
(2015a). Here we compute stellar equilibrium configurations by
solving the Einstein–Maxwell field equations in a fully general
relativistic treatment. It is worth noting that, although the
maximum mass is not affected by general relativistic effects,
the stellar radius can be very different; see, for instance,
Carvalho et al. (2018b). For more details about the theoretical
formalism and numerical procedure, see, for instance, Gour-
goulhon (2012). Below we show the basic electromagnetic
equations, combined with the gravitational equations, are
solved numerically by means of a spectral method (LOR-
ENE9). The stress-energy tensor Tαβ is composed of the matter
and the electromagnetic source term,

m

= + +

+ -

ab a b ab

am b
m

mn
mn

ab

T P u u Pg

F F F F
1 1

4
g . 22

0

⎜ ⎟⎛
⎝

⎞
⎠

( )

( )

Here Fαμ is the antisymmetric Maxwell tensor defined as
= ¶ - ¶am a m m aF A A , with Aμ denoting the electromagnetic

four-potential Aμ=(At, 0, 0, Af). The total energy density of
the system is  , the pressure is denoted by P, uα is the fluid
4-velocity, and the metric tensor is gαβ. The first term in
Equation (22) represents the isotropic (ideal) matter contrib-
ution to the energy momentum-tensor, while the second term is
the anisotropic electromagnetic field contribution.
The metric tensor in axisymmetric spherical-like coordinates
q fr, ,( ) can be read off from the line element

q f
l q

=- + Y -
+ +

fds N dt r d N dt

dr r d

sin

, 23

2 2 2 2 2 2 2

2 2 2 2

( )
( ) ( )

where N, Nf, Ψ, and λ are functions of the coordinates (r, θ)
(Bonazzola et al. 1993). The gravitational field is derived from
the integration of a coupled system of four elliptic partial
differential equations for the metric functions. The final system
of gravitational equations can be put in the form

q p l qD Y - = Y - q
qN r N r S S1 sin 8 sin , , 24r

r
2

2[( ) ] ( ) ( )

Figure 2. Left: pycnonuclear fusion reaction rates for carbon burning at zero temperature as a function of mass density, for the nuclear model NL2 and a bcc crystal
lattice. Right: pycnonuclear reaction timescales at zero temperature for C+C fusion as a function of mass density. The S-factor is given by Equation (15) and the
zero-point oscillation energy is Epk∼0.034 MeV.

9 http://www.lorene.obspm.fr
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l n pl
q

w w n nD + = +
Y

¶ ¶ - ¶ ¶f
fS

r

N
ln 8

3 sin

4
,

25

2
2

2 2 2

2
[ ]

( )

n pl
q

w n n nD = + +
Y

¶ - ¶ ¶ + YE S
r

N
4

sin

2
ln ,

26

3
2

2 2 2

2
( ) ( )

( )

q
p

l
q

q w n

D - = -
Y

´ ¶ ¶ - Y

f

r

N J

r
r

1

sin
16

sin
sin 3 ln , 27

3 2 2

2

2

⎡
⎣⎢

⎤
⎦⎥

( ) ( )

where we have introduced the definitions

q
D =

¶
¶

+
¶
¶

+
¶
¶r r r r

1 1
, 282

2

2 2

2

2
( )

q q q
D =

¶
¶

+
¶
¶

+
¶
¶

+
¶
¶r r r r r

2 1 1

tan
, 293

2

2 2

2

2 2
( )

n = Nln . 30( )

In addition, for the gravitational field equations (Equations
(24)–(27)), ∂ω∂ω is shorthand for

w w
w w w

q
w
q

¶ ¶ =
¶
¶

¶
¶

+
¶
¶

¶
¶r r r

1
, 31( )

and the total energy density, momentum density, and stress
tensors of the system are

= G + - +E P P E , 32EM2( ) ( )

l q= + Y +f fJ E P r U Jsin , 33EM2( ) ( )

= +S P S , 34r
r

r
EM r ( )

= +q
q

q
qS P S , 35EM ( )

= + + +f
f

f
fS P E P U S , 36EM2( ) ( )

where U represents the fluid velocity, and Γ is the Lorentz
factor, which connects the Eulerian and fluid co-moving
observers. Finally f q

qE J S S, , ,EM EM
r
EM r EM , and f

fSEM are the
electromagnetic contributions to the energy, momentum, and
the stress tensor of the system (for further details, see, e.g.,
Franzon & Schramm 2015b; Franzon et al. 2016a, 2016b).
As in Bonazzola et al. (1993), the equation of motion for a

star endowed with a magnetic field, reads

q n q q+ + =H r r M r, , , const, 37( ) ( ) ( ) ( )

where H(r, θ) is the heat function defined in terms of the baryon
number density n,

ò=
+

H
e n p n

dP

dn
n dn

1
. 38

n

0 1 1
1 1( ) ( )

( ) ( )

The quantity ν(r, θ) in Equation (37) is defined as in
Equation (26), and the magnetic potential M(r, θ) is given by

òq q= º -f
qf

M r M A r f x dx, , , 39
A r,

0
( ) ( ( )) ( ) ( )

( )

where f (x) denotes the current function. Magnetic stellar
models are obtained by assuming a constant value, f0, for the
latter (Franzon & Schramm 2015b). According to Bocquet
et al. (1995), other choices for f (x) are possible, but the general
conclusions presented in this work remain the same. The

constant current function is a standard way to self-consistently
generate a dipolar magnetic field throughout the star.

5. Results

In this section, we discuss the effects of strong magnetic
fields on the global properties of stationary white dwarfs,
taking into account instabilities due to inverse β-decay and
pycnonuclear fusion reactions in their cores. The instabilities
related to the microphysics are fundamental, as they put strong
constraints on the equilibrium configurations and also limit the
maximum magnetic fields that these stars can have (Chamel
et al. 2013). In addition to the magnetic profiles, which have
already been computed by Franzon & Schramm (2015a), we
also compute stellar models at constant magnetic dipole
moments μ. Franzon & Schramm (2015a) used a simple Fermi
gas to model the EoS of WDs, but the microphysical issues
were not addressed. In our study, the maximum white dwarf
mass for non-magnetized stars is smaller than that considered
in Franzon & Schramm (2015a), as the lattice contribution
softens the EoS. The density threshold at which the inverse
beta-decay sets in is taken to be ρ∼3×1010 g cm−3, which is
the minimum value at which the inverse beta-decay process
occurs (see Figure 1).
In Figure 3, we show the gravitational mass versus central

density of white dwarf sequences computed for different fixed
magnetic dipole moments, μ, and current functions, f0. The
magnetic dipole moment is defined as (see Bonazzola et al.
(1993))

m q
= ¥

r
B r

2 cos
, 40r3

( )∣ ( )

which is the radial (orthonormal) component of the magnetic
field of a magnetic dipole seen by an observer at infinity.
As can be seen in Figure 3, the masses of magnetized white

dwarfs, with fixed magnetic dipole moments, increase mono-
tonically with central density. This behavior is very different if the
value of the current function is kept constant, in which case non-
monotonic mass-density relationships are obtained. The cross-
hatched area in Figure 3 shows the density regime where
pycnonuclear fusion reactions become possible. The threshold
density (9.25×109 g cm−3) at which this reaction occurs is
marked with a solid black square in Figure 3. The pycnonuclear
reaction timescale considered to obtain the threshold density was
10Gyr. For a central white dwarf density of 1.59×1010 g cm−3

the fusion reaction timescale decreases to 0.1 Myr (see Figure 2),
which we considered an unstable configuration, because at this
density the pycnonuclear reactions may induce a supernova
outburst. White dwarfs subject to inverse β-decay reactions in
their cores are located in the yellow area (marked “β-inverse”) of
Figure 3. An overview of the density thresholds discussed above
is provided in Table 2 for white dwarfs with different magnetic
field values and magnetic dipole moments. To derive the
maximum stable masses the stability condition for non-magne-
tized white dwarfs, dM/dρc>0, is employed, because it is also
valid for sequences with constant magnetic dipole moment
(Sorkin 1982). The curves in Figure 3 with fixed μ respect the
stability condition, but the last point (point of maximum mass) on
each curve has dM/dρc<0. The most massive stable white dwarf
that is not subject to microscopic instability reactions and
dynamical instability (end point of the curve with μ=2×
1034 Am2) has a mass of ∼2.14 Me and an equatorial radius of
∼1096 km; see also Figure 4).

5

The Astrophysical Journal, 879:46 (9pp), 2019 July 1 Otoniel et al.



The mass–radius relationship of magnetized white dwarfs,
for different (fixed) magnetic dipole moments μ, is shown in
Figure 4. One can see that increasing values of μ lead to white
dwarfs with larger radii, because of the added magnetic field
energy. The strength of the magnetic field can be inferred from
Figure 5, which shows the gravitational mass as a function of
surface (Bs) and central (Bc) magnetic fields, the circumferential
equatorial radius (Rcirc), and the baryon number density (nb),
for two sample of magnetic dipole moments of μ=0.5×
1034 Am2 (red line) and μ=4.0×1034 Am2 (orange line).

In Figure 5 (top panels), the curves with μ=0.5×1034 Am2

and μ=4.0×1034 Am2 cross each other. This is due to
the fact that the magnetic field scales as ∼μ/r3, with r being the
stellar radius (see Equation (40)). The locations of stars with
fixed baryon masses of MB=1.00Me and MB=1.80Me are
shown in Figure 5 by dashed horizontal lines. According to
Equation (40), the magnetic field is determined by the size of the
star along the curves with constant μ. However, along the lines
with fixed baryon masses the strength of the magnetic field is a
combination of the magnetic dipole moment μ and the stellar
radius r.

Next, we discuss the behavior of the magnetic dipole
moments of white dwarfs whose magnetic fields are weaken-
ing. From theM versus Bs and M versus Bc relationships shown
in Figure 5 (top panels), two different scenarios are possible,
depending on the mass and the magnetic field strengths of
white dwarfs. If located above the crossing point of the
m = ´0.5 10 Am34 2 (red line) and μ=4.0×1034 Am2

(orange line) curves, white dwarfs with weakening magnetic
fields evolve from right to left in the two upper panels of
Figure 5, as shown (back arrow) for a white dwarf with a
constant baryon mass of MB=1.80Me. The magnetic dipole
moment of such white dwarfs increases from μ=0.5×
1034 Am2 to μ=4.0×1034 Am2. This is accompanied by an
increase of the stellar radius (see M versus R curve) and a
decrease of the central baryon density (see M versus nb curve).
The situation is reversed for white dwarfs located below the
crossing. For those white dwarfs, a reduction of the magnetic
field is accompanied by a decrease of the magnetic dipole

Figure 3. Gravitational mass as a function of central mass density for
magnetized white dwarfs, for different values for the current function, f0,
magnetic dipole moment, μ, and the lowest density of the inverse beta-decay
ρ∼3×1010 g cm−3. Stars located in the colored areas are subject to
pycnonuclear reactions and inverse β-decay. The threshold densities of these
reactions are shown in Table 2. The solid square and triangle mark the densities
at which pycnonuclear and inverse β-decay reactions set in, respectively.

Table 2
Thresholds of Inverse β-reactions and Pycnonuclear Fusion Reactions

(Pycnonuclear Reaction Time of 10 Gyr) in Carbon White Dwarfs for Different
Magnetic Fields, Bmax, and Magnetic Dipole Moments, μ

12
6 C μ (Am2) Bmax (G) ρpyc (g cm−3) ρβ ( g cm−3)

5.0×1033 4.27×1015 9.26×109 3.96×1010

1.0×1034 1.54×1015 9.21×109 4.06×1010

2.0×1034 3.85×1014 9.24×109 4.09×1010

3.0×1034 1.74×1014 9.25×109 4.09×1010

4.0×1034 8.83×1013 9.25×109 4.10×1010

Figure 4. Mass–radius relationship of magnetized white dwarfs for different
(fixed) magnetic dipole moments, μ. The black line represents the mass–radius
relationship of non-magnetic white dwarfs. The horizontal line represents the
Chandrasekhar mass limit for spherical stars. We also show the values of
central magnetic field Bmax (together with the corresponding magnetic dipole
moment μ) for the maximum mass stars of each curve (end points of each curve
with fixed μ). White dwarfs located in the colored (upper left) corner are
subject to pycnonuclear fusion (τpyc=10 Gyr) or inverse β-decay reactions.
The considered density threshold for inverse beta-decay is the minimum value
of Figure 1, i.e., ρ∼3×1010 g cm−3.

Figure 5. Global properties of magnetized white dwarfs for two different
(sample) magnetic dipole moments, μ=0.5×1034 Am2 (red line) and
μ=4.0×1034 Am2 (orange line). M denotes the gravitational mass, BS is the
magnetic field at the surface, Bc is the magnetic field at the center, R is the
equatorial radius, and nb is the baryon number density. The horizontal lines
represent white dwarfs with fixed baryon masses of MB=1.00 Me (bottom),
and MB=1.80 Me (top). The arrows indicate the paths of these white dwarfs
for the case of a magnetic field reduction (see the text for details).
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moment, as shown in Figure 5 for a sample white dwarf with a
constant baryon mass of MB=1.00Me (black arrows). In this
case, white dwarfs become smaller and therefore more dense at
the center (see M versus R and M versus nb curves shown in
Figure 5).

As discussed, in (Figure 5), the equatorial radii of white
dwarfs located above the crossing point increase as their
magnetic fields become smaller. This increase in radius (at a
fixed baryon mass) is due to the Lorentz force. However, the
stellar magnetic field scales as μ/r3, which means that for a star
with a mass of MB=1.80Me the increase in the magnetic
dipole moment is canceled by the increase in the radius, thus
reducing the magnetic field. This is the opposite of what is
expected for stars with lower masses. For example, a star with
MB=1.00Me decreases its magnetic dipole moment and its
radius. However, in this case, the decrease in radius is not
enough to cancel the reduction in μ. The net result is a decrease
of the magnetic field. This can be understood by looking at the
variation in the circular equatorial radius of the stars with
MB=1.80Me and MB=1.00Me. For the latter, the change
in radius is much smaller than the radial change of a star with
MB=1.80Me and a change in the magnetic dipole moment of
mD = ´3.5 1034∣ ∣ Am2.
In Figure 6, we compare the global properties of white

dwarfs with fixed baryon masses of MB=1.00Me and
MB=1.80Me. The top panels show the central baryon density
as a function of the central magnetic field (top left panel) and
the circular equatorial radius (top right panel) for a white dwarf
with MB=1.80Me. For such stars, as the magnetic field
decreases, the central baryon density becomes smaller due to
the fact that the radius is increasing. On the other hand, for
lighter white dwarfs, with a mass of MB=1.00Me, the central
baryon number density increases as the magnetic field
decreases, because the stellar radius becomes smaller.

6. Summary

In this work, we presented axisymmetric and stationary
models of magnetized white dwarfs obtained by solving the
Einstein–Maxwell equations self-consistently and taking into
account stability considerations related to neutronization, due

to electron capture reactions, as well as pycnonuclear fusion
reactions among carbon nuclei in the cores of white dwarfs.
We also investigated the influence of magnetic fields on the

structure of white dwarfs. This is an important problem,
because super-massive magnetized white dwarfs, whose
existence is partially supported by magnetic forces, could
simplify the explanation of observed ultra-luminous explosions
of type Ia supernovae. The Lorentz force induced by strong
magnetic fields breaks the spherical symmetry of stars and
increases their masses, as the force acts in the radial outward
direction against the inwardly directed gravitational pull.
In this paper, we employed the EoS for a degenerate electron

gas with electron-ion interactions (body-centered-cubic lattice
structure) to describe the matter inside white dwarfs. We
have shown that the EoS becomes softer if nuclear lattice
contributions are included in addition to the electron pressure.
This is due to the fact that the repulsive force between electrons
is smaller in the presence of an ionic lattice, causing a softening
of the EoS. We note that the density thresholds for pycno-
nuclear fusion reactions and inverse β-reactions are reduced
when magnetic fields are present in the stellar interior, as can
be seen in Table 2.
We have shown that the masses of white dwarfs can increase

up to M=2.14 Me (with a corresponding magnetic dipole
moment of μ=2.0×1034 Am2 (see, e.g., Figure 3) even
when microphysical instabilities are considered. In particular,
this white dwarf star has an equatorial radius of ∼1100 km
with magnetic fields of Bc=3.85×1014 G and Bs=7.21×
1013 G at the center and at the stellar surface, respectively. For
this white dwarf, the ratio between the magnetic pressure and
the matter pressure at the center is 0.789. Although the surface
magnetic fields obtained here are higher than the observed ones
for white dwarfs, these figures provide an idea of the maximum
possible magnetic field strength that can be reached inside of
these objects and may also be used to assess the effects of
strong magnetic fields on both the microphysics and the global
structure of magnetized white stars.
The maximum magnetic field found in this work is an order of

magnitude smaller than that established by Franzon & Schramm
(2015a). This is because we modeled the stellar interior with a
more realistic EoS than just a simple electron gas. In addition, the
magnetic field here is slightly larger than that found in Chatterjee
et al. 2017, as the pycnonuclear reaction rates have been calculated
using a different model. The pycnonuclear reaction rates are
defined using the astrophysical S-factor for the NL2 nuclear model
for the carbon element, while in Chatterjee et al. 2017 they
considered the mass-density thresholds for the onset of electron
capture by the daughter nuclei Z

A
2
2 , a difference that allowed us to

reach values of mass densities before instability larger than the
values used in Chatterjee et al. 2017, hence also yielding larger
masses. In addition, we considered the density threshold for
pycnonuclear fusion reactions for a 10Gyr fusion reaction
timescale, which restricts the central density of white dwarfs to
∼9.25×109 g cm−3 (see Table 2), thus limiting the stellar masses,
and therefore the radii, which, for very massive and magnetized
white dwarfs, cannot be smaller than R∼1100 km. However, it is
important to mention that the pycnonuclear reaction timescales are
somewhat uncertain. In our case we have a factor of uncertainty of
approximately 3.5 in the calculation of the astrophysical S-factor
(see (Gasques et al. 2005; Yakovlev et al. 2006)).
Our results show that the surface magnetic field, Bs, is about

one order of magnitude smaller than the magnetic field reached

Figure 6. Central baryon number density, nb, as a function of central magnetic
field strength, Bc, and equatorial radius, R, of magnetized white dwarfs with
fixed baryon masses ofMB=1.00 Me andMB=1.80 Me. The arrows refer to
changes in nb and R for weakening magnetic fields.
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at the stellar center, Bc. If the magnetic field weakens for
massive white dwarfs, we found that the magnetic dipole
moments of such stars may increase (Figure 5), which is due to
the fact that for a fixed baryon mass, the magnetic field is
determined by the interplay between the magnetic dipole
moment and the stellar radius. The situation is reversed for less
massive white dwarfs, for which smaller magnetic fields imply
smaller stellar magnetic dipole moments. The radii of massive
(light) white dwarfs are found to increase (decrease) for
decreasing central magnetic fields (Figure 6). This opens up the
possibility that massive white dwarfs, with central magnetic
fields greater than B∼1013 G, increase their magnetic fields
through continued compression. This phenomenology differs
from previous studies carried out for magnetic fields less than
∼1013 G (Ostriker & Hartwick 1968; Suh & Mathews 2000),
where an increase of the central magnetic field was found to
make stars less dense and therefore bigger in size.

We note that stellar configurations that contain only poloidal
magnetic fields (no toroidal component) are unstable (see, e.g.,
Braithwaite 2006; Armaza et al. 2015; Mitchell et al. 2015).
Moreover, according to Goldreich & Reisenegger (1992), many
different mechanisms can affect the magnetic fields and their
distributions inside of white dwarfs. In this work, in the
framework of a fully general relativistic treatment, we model
the properties of magnetized white dwarfs with purely poloidal
magnetic field components. Although this is not the most
general magnetic field profile and a dynamical stability of these
stars still needs to be addressed, magnetic fields considerably
increase the masses of white dwarfs, even when microphysical
instabilities are taken into account. As a consequence, such
white dwarfs should be considered possible candidates of
super-Chandrasekhar white dwarfs, thereby contributing to our
understanding of superluminous type Ia supernovae.

Lastly, we note that for a typical magnetic field value of
∼1014 G and a density of ∼109 g cm−3, one obtains an Alfvén
velocity of v=109 cm s−1, which, for a white dwarf with a
typical radius of R=1500 km, leads to an Alfvén crossing
time of ∼0.1 s (Durisen 1973; Yakovlev & Urpin 1980;
Cumming 2002). This is close to the hydrostatic equilibration
time of white dwarfs. As a consequence, although magnetized
white dwarfs seem to be short-lived stars, they might still be
supported by magnetic fields. Our results represent magneto-
static equilibrium conditions. The stability analysis of such
systems is beyond the scope of this study, which aims for a
more complete discussion of the possible existence of super-
Chandrasekhar white dwarfs. Studies that address those issues,
such as the role of different (poloidal and toroidal) magnetic
field configurations, stellar rotation, and different compositions
of the stellar cores, will be presented in a series of forthcoming
papers.
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