
Inexact proximal stochastic second-order methods for

nonconvex composite optimization ∗

Xiao Wang † Hongchao Zhang ‡

Abstract

In this paper, we propose a framework of Inexact Proximal Stochastic Second-order (IPSS)
methods for solving nonconvex optimization problems, whose objective function consists of an
average of finitely many, possibly weakly, smooth functions and a convex but possibly nonsmooth
function. At each iteration, IPSS inexactly solves a proximal subproblem constructed by us-
ing some positive definite matrix which could capture the second-order information of original
problem. Proper tolerances are given for the subproblem solution in order to maintain global
convergence and the desired overall complexity of the algorithm. Under mild conditions, we
analyze the computational complexity related to the evaluations on the component gradient of
the smooth function. We also investigate the number of evaluations of subgradient when using
an iterative subgradient method to solve the subproblem. In addition, based on IPSS, we pro-
pose a linearly convergent algorithm under the proximal Polyak- Lojasiewicz condition. Finally,
we extend the analysis to problems with weakly smooth function and obtain the computational
complexity accordingly.
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1 Introduction

In this paper, we consider the following nonconvex optimization problem:

min
x∈Rd

F (x) = f(x) + h(x). (1.1)

Here, h : Rd → R is a proper, convex function but possibly nonsmooth, function and f is an average
of many, but a finite number of, smooth component functions, i.e.,

f(x) =
1

n

n∑
i=1

fi(x), (1.2)

where fi : Rd → R, i = 1, . . . , n, is first-order continuously differentiable, but possibly nonconvex. We
will also consider the case that the component functions are only weakly smooth. We assume that
the optimal objective function value F ∗ of (1.1) is finite and the number n of component functions is
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very large or even huge such that it is very expensive or even impossible to evaluate the gradient of
f at each iteration. To deal with this challenge, stochastic methods, utilizing stochastic gradient to
approximate the exact gradient of f , have attracted more and more attention. There are mainly two
type of stochastic methods for solving (1.1): proximal stochastic first-order methods and proximal
stochastic second-order methods.

Proximal stochastic first-order methods, also known as proximal stochastic gradient methods,
normally solve the following type of subproblem based on stochastic gradient of f at each iteration:

min
x∈Rd

〈gk, x− xk〉+
1

2
‖x− xk‖22 + h(x)

where gk ∈ Rd is a stochastic gradient of f at xk. Xiao and Zhang [29] proposed a proximal SVRG
(Prox-SVRG) method for solving (1.1)-(1.2). Their method has O(n log(1/ε)) component gradient
complexity when f is strongly convex and (n + 1/ε)O(log(1/ε)) complexity when f is only convex.
Prox-SVRG extends the original SVRG method proposed for solving smooth problem by Johnson
and Zhang [11], where an unbiased stochastic gradient is constructed by combining the the exact
gradient of f at certain particularly chosen points. Later, [23] extends proximal SVRG method
to solve nonconvex problems, with complexity O(n + n2/3/ε). Other related works include Prox-
SAGA [23] and prox-SARAH [21], RSPG [25]. However, all the above algorithms need solving the
subproblems exactly at each iteration. Wang et al. [27] proposed an inexact proximal stochastic
gradient (IPSG) method for convex composite optimization. At each iteration, the subproblem is
solved up to some pre-given tolerance. Although the subproblems are solved inexactly, IPSG can still
keep global convergence with desirable computational complexity. Inspired by this work, in this paper
we propose an algorithm, which not only allows to solve the proximal subproblem inexactly but also
has the ability to explore the second-order information of the objective function of (1.1). Due to the
difference of proximal subproblems, we will generalize the original definition of inexact subproblem
solutions proposed in [27]. And more importantly, our method proposed in this paper is designed for
nonconvex composite optimization.

Proximal Second-order Method (PSM) is another type of popular methods for solving (1.1). At
each iteration of PSM, the following type of subproblem is solved to update its iterates:

min
x∈Rd

qk(x) := 〈gk, x− xk〉+
1

2
‖x− xk‖2Bk + h(x), (1.3)

where Bk ∈ Rd×d is a positive definite matrix often carrying some second-order information of f
at xk and gk ∈ Rd is still a stochastic gradient of f at xk. Literatures on deterministic proximal
second-order methods for solving (1.1) include [2,8,17,18]. For particular h with simple structure, e.g.
h(x) = λ‖x‖1, several proximal second-order methods were proposed to explore the problem structure,
such as [4,5,7,9,12]. However, all these previous work focuses on (1.1) when its objective is convex or
strongly convex. Recently, exploring the summation structure of f as (1.2), Wang et al. [28] proposed
a proximal stochastic quasi-Newton method for (1.1)-(1.2), where the subproblem (1.3) was solved
using Bk = (1/ηk)B, but with a fixed B, at each iteration. With proper choice of stepsize parameter
ηk, Wang et al. [28] proved the theoretical convergence as well as the computational complexity of
their proposed algorithm. However, each subproblem in [28] is also required be solved exactly, which
in many scenarios will be very time consuming or even theoretically impossible, for example, when h
is a general nonsmooth function and/or B is a complicated matrix such that there is no closed-form
subproblem solution. In this paper, we will extend this algorithm to an inexact proximal stochastic
second-order algorithm which allows to solve the subproblems inexactly and has more flexibilities for
choosing the matrix Bk.

In the literature, deterministic algorithms have been also proposed to solve problem (1.1) under
the assumption that ∇f : Rd → Rd is Hölder continuous, i.e. there exist γ > 0 and ν ∈ (0, 1]
such that ‖∇f(x) − ∇f(y)‖ ≤ 1

γ ‖x − y‖
ν
∗ for any x, y, where ‖ · ‖∗ is the dual norm of ‖ · ‖, such

as [1, 6, 10, 11, 16, 19, 20, 26]. When ν < 1, f is usually called weakly smooth. Recently, Ghadimi
[24] proposes a conditional gradient method for solving (1.1) under stochastic setting, where the
information of f is obtained through a stochastic oracle. However, the summation structure of f
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as (1.2) is not explored in [24]. Our IPSS algorithm proposed in this paper is based on stochastic
variance reduced gradient (SVRG) [11] by taking advantage of the summation structure of f . We will
also study the theoretical properties of IPSS for solving (1.1)-(1.2) when f is only weakly smooth.

Contributions

This paper proposes a framework of inexact proximal stochastic second-order (IPSS) algorithm for
solving general nonconvex composite optimization problems. Moreover, IPSS allows inexact solution
for each proximal subproblem and also allows to explore the second-order information of the objective
function. Wang et al. [27] first studied inexact proximal stochastic gradient method for solving convex
and strongly convex composite optimization by inexactly solving subproblems. But the algorithm pro-
posed in this paper differs from [27] in generalizing the definition of inexact subproblem solution, since
the subproblem of IPSS is in a more general setting for possibly using the second-order information.
More importantly, the new algorithm IPSS is designed for solving nonconvex composite optimization
(1.1) with function f being smooth or weakly smooth settings, while the algorithm in [27] can only
be applied for solving convex composite optimization.

We explore the theoretical properties of IPSS for solving (1.1) under different smooth assumptions
of the objective function. Although Wang et al. [28] studied proximal stochastic quasi-Newton methods
for nonconvex composite optimization, this paper differs and generalizes the analysis in [28] in the
following aspects. Firstly, IPSS allows to solve the subproblems inexactly which is often critical when
the subproblem becomes more difficult in the second-order methods. Secondly, the smoothness of
function f is more generally defined with respect to a symmetric positive definite matrix M (See
assumptions A1 and A3) and more general theoretical requirements on second-order approximation
matrix B are derived connected with this matrix M . Thirdly, for analyzing IPSS in this paper, we
propose a new operator G (defined in (2.11)) to measure the first-order optimality of the optimization
problem. This operator G also relies on the matrix M , which inherits the smooth information of
f . In addition, an iterative subgradient method is proposed to solve subproblems to the required
accuracy at each iteration and the complexity with respect to evaluations of subgradients of function
h is analyzed. Furthermore, based on IPSS, we propose a linearly convergent algorithm when the
objective function satisfies the so-called proximal Polyak- Lojasiewicz (PPL) inequality. Finally, we
explore theoretical properties of IPSS for solving optimization problems (1.1) when f is only weakly
smooth. Our analysis shows that under mild conditions the theoretical properties of IPSS for (1.1)
with smooth f can be properly extended to the case when f is weakly smooth.

Notations and Organizations

The gradient of f at a point x is denoted by ∇f(x) and ∂f(x) represents the subdifferential of f at
x when f is a proper convex function. Given x, y ∈ Rd, 〈x, y〉 = xTy is the standard Euclidean inner
product in Rn. Sd++ denotes the set of all d×d symmetric positive definite matrices. For two matrices
A,B ∈ Rd×d, A � B means A − B is positive semidefinite. Given B ∈ Sd++ and x ∈ Rd, ‖x‖2B is
defined to be xTBx. Given a real number a, bac means the largest integer less than or equal to a. For
a random variable or vector X, its expectation is denoted as E[X], while its expectation conditioned
on another random variable or vector Y is denoted as E[X|Y ].

The remainder of this paper is organized as follows. In Section 2, we propose the framework
of an inexact proximal stochastic second-order (IPSS) algorithm and give some preliminary results
and backgrounds. The Section 3 is divided to three subsections. In Subsection 3.1, we discuss the
convergence properties of IPSS in details for solving (1.1) with smooth f . In Subsection 3.2, we propose
a particular subgradient method to solve the subproblems of IPSS inexactly and discuss the overall
algorithm complexity. A linearly convergent algorithm, called PPL-IPSS, is proposed in Subsection 3.3
to solve (1.1) under the proximal PL-inequality. In Section 4, we analyze the convergence properties of
IPSS for solving (1.1) when f in the objective function is only weakly smooth. We finally summarizes
the paper in the last Section 5.
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2 Framework of IPSS algorithm

In this section, we propose a framework of inexact proximal stochastic second-order (IPSS) algorithm
to solve (1.1)-(1.2). The key subproblem to solve in each iteration is the following type of proximal
subproblem

min
x∈Rd

q(x) := h(x) +
1

2
‖x− w‖2B . (2.1)

Here, B ∈ Sd++ could be used to capture certain second-order curvature information of f . Due to
the introduction of B matrix and the existence of possibly nonsmooth function h, it might be too
expensive or impossible to find the exact solution of (2.1). Under this circumstance, inexact solutions
of (2.1) will be necessary in practice to solve the problem (1.1)-(1.2). In this paper, we will propose
proper criteria for inexact solutions of subproblem (2.1) while still maintain global convergence of the
algorithm with the desired computational complexity.

Before defining the inexact solution of (2.1), we first recall the concept of the ε-subdifferential of
a convex function [3].

Definition 2.1. Given a convex function φ : Rd → R, its ε-subdifferential at x, denoted as ∂εφ(x),
is defined as

∂εφ(x) = {z : φ(y)− φ(x) ≥ 〈z, y − x〉 − ε for all y ∈ Rd}.

We now give our definition of inexact solution of (2.1). Notice that this definition is a generalization
of that in [27], since the definition of inexact solution in [27] simply corresponds to the case that B is
an identify matrix.

Definition 2.2. Given ε̄ > 0 and ε̂ > 0, we call z to be an (ε̄, ε̂)-solution of the problem (2.1), if
there exists u ∈ Rd such that

‖u‖B ≤
√

2ε̄ and B(w − z − u) ∈ ∂ε̂h(z).

According to Definition 2.1, we can have the following lemma.

Lemma 2.1. Let l(x) := 1
2‖x− w‖

2
B where B ∈ Sd++. Given ε > 0,

∂εl(x) =
{
z : z = B(x− w + u) with 1

2‖u‖
2
B ≤ ε

}
.

Proof. Following from Definition 2.1, we have that z ∈ ∂εl(x) if and only if

ε ≥ 1

2
‖x− w‖2B −

1

2
‖w − y‖2B + 〈z, y − x〉, ∀y ∈ Rd. (2.2)

Notice that

1

2
‖w − y‖2B − 〈z, y − x〉 =

1

2
‖y‖2B − 〈y,Bw + z〉+

1

2
‖w‖2B + 〈z, x〉

=
1

2
‖y − (w +B−1z)‖2B −

1

2
‖w +B−1z‖2B +

1

2
‖w‖2B + 〈z, x〉.

Then, (2.2) is equivalent to

ε ≥ 1

2
‖x− (w +B−1z)‖2B −

1

2
‖y − (w +B−1z)‖2B , ∀y ∈ Rd.

Hence, we obtain

∂εl(x) =

{
z :

1

2
‖x− (w +B−1z)‖2B ≤ ε

}
=

{
z : z = B(x− w + u) with

1

2
‖u‖2B ≤ ε

}
.
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Algorithm 2.1 IPSS(x̃0, B
1
1 , ε̄, ε̂, S,m)

.

Input: Maximum outer iteration number S and inner iteration number m, batch sizes {bk}, inexact-
ness tolerances ε̄ = {ε̄kt }, ε̂ = {ε̂kt }, initial iterate x̃0 ∈ Rd and B1

1 ∈ Sd++; Randomly generate a
vector R = (Rk, Rt) according to certain probabilistic distribution P .

1: for k = 1, . . . , S do
2: Set xk0 = x̃k−1.
3: Calculate ṽ = ∇f(x̃k−1).
4: for t = 1, 2, . . . ,m do
5: If (k, t) = (Rk, Rt), stop the algorithm and return xR = xkt−1.
6: Randomly choose a sample set K ⊂ [1, 2, . . . , n] with size bk, such that the probability of each

index being picked is bk/n.
7: Calculate

vkt−1 = ∇fK(xkt−1)−∇fK(x̃k−1) + ṽ

with ∇fK(·) = 1
bk

∑
i∈K∇fi(·).

8: Compute (ε̄kt , ε̂
k
t )-solution xkt of subproblem

min
x∈Rd

qkt (x) = 〈vkt−1, x〉+
1

2
‖x− xkt−1‖2Bkt + h(x). (2.3)

9: Generate Bkt+1 ∈ Sd++.
10: end for
11: Set x̃k = xkm.
12: end for
Output: Return xR.

By Definition 2.2, given ε̄ > 0 and ε̂ > 0, if z is an (ε̄, ε̂)-solution of (2.1), it follows from Lemma
2.1 that

0 ∈ ∂ε̄l(z) + ∂ε̂h(z) ⊆ ∂ε̄+ε̂q(z)
which implies that for any x ∈ Rd we have

q(x)− q(z) ≥ 〈0, x− z〉 − (ε̄+ ε̂),

or equivalently, for any x ∈ Rd
q(z) ≤ q(x) + (ε̄+ ε̂). (2.4)

Now, supposing R = (Rk, Rt) is a random vector supported on {(k, t) : k = 1, . . . , S and t =
1, . . . ,m}, our IPSS algorithm is presented in Algorithm IPSS. One difference of IPSS from the
algorithm proposed by Wang et al. [28] is that the subproblem (2.3) is designed without introducing
another stepsize parameter ηk. The second difference is that the subproblem (2.3) is allowed to be
solved inexactly, which not only saves the computation for finding subproblem solution but also gives
more flexibility of choosing the matrix Bkt . To ensure global convergence, we only require Bkt satisfies
certain upper and lower bounds (See Assumptions A2 and A4). By specifying proper probabilistic
distribution P for returning the output iterate, we also analyze the theoretical performance of IPSS
when the objective function is only weakly smooth. The detailed analysis is given in Section 4.
We want to mention that similar sampling strategy for choosing sample sets K in Step 5 has been
also considered in the literature, such as Wang et al. [27] and Zhang et al. [31]. According to the
computation of the stochastic gradient vkt−1 in Step 6, one can obtain that

E[vkt−1|xkt−1] = ∇f(xkt−1), E[‖vkt−1 −∇f(xkt−1)‖2|xkt−1] ≤ 1

bk
E[‖∇fi(xkt−1)−∇fi(x̃k−1)|xkt−1‖2].

(Interested readers are referred to Lemma 2.1 in [27] for more details.) Moreover, since xkt is an
(ε̄kt , ε̂

k
t )-solution of subproblem (2.3), by Definition 2.2 there exists an ukt such that

‖ukt ‖Bkt ≤
√

2ε̄kt and Bkt (xkt−1 − xkt − ukt )− vkt−1 ∈ ∂ε̂kt h(xkt ).
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Let
εkt = ε̄kt + ε̂kt . (2.5)

Then, (2.4) indicates
qkt (xkt ) ≤ min qkt (x) + εkt . (2.6)

For the following analysis, let us define x̄kt be the exact solution of proximal full gradient step, namely,

x̄kt = arg min
y∈Rn
〈∇f(xkt−1), x〉+

1

2
‖x− xkt−1‖2Bkt + h(x). (2.7)

Then, the following lemma shows the relationship between xkt and x̄kt . The proof is a generalization
of that for Lemma 2.2 in [27].

Lemma 2.2. Let x̄kt be the exact solution of (2.7), i.e., the exact solution of (2.3) with vkt−1 replaced
by ∇f(xkt−1). Then

‖xkt − x̄kt ‖Bkt ≤
√

2εkt + ‖vkt−1 −∇f(xkt−1)‖(Bkt )−1 . (2.8)

Proof. Let x̂kt be the exact solution of (2.3). Then due to the strong convexity of qkt , we have

qkt (xkt )− qkt (x̂kt ) ≥ 1

2
‖xkt − x̂kt ‖2Bkt

which together with (2.6) yields that

‖xkt − x̂kt ‖Bkt ≤
√

2εkt . (2.9)

Note that x̄kt and x̂kt satisfy

Bkt (xkt−1 − x̄kt )−∇f(xkt−1) ∈ ∂h(x̄kt ) and Bkt (xkt−1 − x̂kt )− vkt−1 ∈ ∂h(x̂kt ),

which imply

h(x̂kt )− h(x̄kt ) ≥
〈
Bkt (xkt−1 − x̄kt )−∇f(xkt−1), x̂kt − x̄kt

〉
and

h(x̄kt )− h(x̂kt ) ≥
〈
Bkt (xkt−1 − x̂kt )− vkt−1, x̄

k
t − x̂kt

〉
.

Summing up the above two inequalities yields

0 ≥ 〈∇f(xkt−1)− vkt−1, x̄
k
t − x̂kt 〉+ 〈Bkt (x̄kt − x̂kt ), x̄kt − x̂kt 〉.

Then if follows that

‖x̄kt − x̂kt ‖2Bkt ≤ 〈v
k
t−1 −∇f(xkt−1), x̄kt − x̂kt 〉 ≤ ‖x̄kt − x̂kt ‖Bkt ‖v

k
t−1 −∇f(xkt−1)‖(Bkt )−1 ,

which indicates
‖x̄kt − x̂kt ‖Bkt ≤ ‖v

k
t−1 −∇f(xkt−1)‖(Bkt )−1 . (2.10)

Therefore, we obtain (2.8) by adding (2.9) and (2.10).

To characterize the computational complexity of IPSS in later analysis, we define the operator
Gh(·, g, B) by

Gh(x, g,B) = B(x− x̄), (2.11)

where

x̄ = arg min
y∈Rd

〈g, y − x〉+
1

2
‖y − x‖2B + h(y).

For the operator Gh, we first give an important lemma.
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Lemma 2.3. For any given B ∈ Sd++, x∗ is a stationary point of f + h if and only if

Gh(x∗,∇f(x∗), B) = 0.

Moreover, when h vanishes,
G0(x, g,B) = g, ∀g ∈ Rd.

Proof. On the one hand, if x∗ is a stationary point of f + h, there exists p∗ ∈ ∂h(x∗) such that
∇f(x∗) + p∗ = 0. Define x̄∗ by

x̄∗ := arg min
y∈Rd

〈∇f(x∗), y − x∗〉+
1

2
‖y − x∗‖2B + h(y). (2.12)

Then, we have

h(x∗) ≥ 〈∇f(x∗), x̄∗ − x∗〉+
1

2
‖x̄∗ − x∗‖2B + h(x̄∗).

By the convexity of h, we have

h(x̄∗) ≥ h(x∗) + 〈p∗, x̄∗ − x∗〉.

Summing up above two inequalities yields ‖x̄∗ − x∗‖B = 0, which by the positive definiteness of B
implies x̄∗ = x∗. Hence, Gh(x∗,∇f(x∗), B) = B(x∗ − x̄∗) = 0.

On the other hand, if Gh(x∗,∇f(x∗), B) = B(x∗ − x̄∗) = 0, we have x∗ = x̄∗, where x̄∗ is defined
by (2.12). Then, we have from the first-order optimality condition that

0 ∈ ∇f(x∗) +B(x̄∗ − x∗) + ∂h(x̄∗) = ∇f(x∗) + ∂h(x∗),

which indicates that x∗ is a stationary point of f + h.
Moreover, it is straightforward to verify that when h vanishes G0(x, g,B) = g for any g ∈ Rd.

For notation simplicity, in the following we simply use G(xkt−1) to denote Gh(xkt−1,∇f(xkt−1), Bkt ).
By Lemma 2.3 and the Lipschitz continuity assumption of ∇f , it is appropriate to use ‖G(·)‖2M−1

as an operator to measure the first-order optimality condition at the iterate, where M ∈ Sd++ is the
matrix associated with the smoothness assumption of f (see assumptions A1 and A3.) Given ε > 0
and xR returned through a random process, we call xR an ε-solution of (1.1)-(1.2), if

E[‖G(xR)‖2M−1 ] < ε,

where the expectation is taken with respect to all the random variables generated in this random
process. To discuss the computational complexity, we use SFO and PO complexity to mean the
maximum number of component gradients of f and proximal subproblem solutions need to be com-
puted by the algorithm, respectively, to obtain an ε-solution.

In the following two sections, we will analyze theoretical properties of IPSS in two cases separately.
In the first case we consider (1.1)-(1.2) when each fi is smooth, while in the second case we consider
the case that fi is only weakly smooth.

3 IPSS for solving (1.1)-(1.2) with smooth f

In this section, we investigate the convergence properties of IPSS under the assumption that that fi,
i = 1, . . . , n, is smooth. To continue, we first give two assumptions that will be used throughout this
section.

A1 The function fi, i = 1, . . . , n, is 1/γ-smooth with respect to a matrix M ∈ Sd++, that is,
fi ∈ C1(Rd)1 and ∇fi satisfies

‖∇fi(x)−∇fi(y)‖M−1 ≤ 1

γ
‖x− y‖M , ∀x, y ∈ Rd.

1f ∈ C1(Rd) means that f : Rd → R is continuously differentiable.
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A2 There exist two positive constants κ and κ̄ such that

κ̄I �M− 1
2BktM

− 1
2 � κI

for all k = 1, . . . , S and t = 1, . . . ,m, where M is the matrix in A1.

Notice that under the assumption A1, we have

f(x) ≤ f(y) + 〈∇f(y), x− y〉+
1

2γ
‖x− y‖2M ∀x, y ∈ Rd. (3.1)

Under assumption A2, it is easy to obtain that

κ−1I �M 1
2 (Bkt )−1M

1
2 � κ̄−1I and κ−1I � (Bkt )−

1
2M(Bkt )−

1
2 � κ̄−1I.

Furthermore, it implies that for any x ∈ Rd, we have

‖x‖2M ≤ κ−1‖x‖2Bkt and ‖x‖2(Bkt )−1 ≤ κ−1‖x‖2M−1 .

3.1 Theoretical properties

In this subsection, we discuss the convergence properties of IPSS. We denote in the following analysis
that

Rkt = E[F (xkt ) + ckt ‖xkt − x̃k−1‖2M ]

for k = 1, . . . , S and t = 1, . . . ,m, where the expectation is taken with respect to all the random
variables generated by IPSS. The following Lemma 3.2 provides recursive relationship between Rkt
and Rkt−1, which plays a key role in our convergence analysis. To prepare it, we first introduce the
following operator:

Dh(x, g,B, α) = −2α min
y∈Rd

{
〈g, y − x〉+

α

2
‖y − x‖2B + h(y)− h(x)

}
, ∀α > 0. (3.2)

This operator was first given in [13,14]. The lemma below shows its two important properties [28].

Lemma 3.1. (Lemma 3 in [28]) The following properties hold.

(a) For any fixed B ∈ Sd++, we have

Dh(x, g,B, α) ≥ α2‖x− x̄‖2B , ∀x ∈ Rd, α > 0,

where x̄ = arg miny〈g, y − x〉+ α
2 ‖y − x‖

2
B + h(y).

(b) For any fixed x, g and B ∈ Sd++, Dh(·, α) is non-decreasing with respect to α > 0, i.e.,

Dh(x, g,B, α2) ≥ Dh(x, g,B, α1), ∀α2 ≥ α1 > 0.

Lemma 3.2. Suppose that assumptions A1 and A2 hold. By setting ckm = 0, we have

Rkt ≤ Rkt−1 +

(
1

2γ
+ ckt

(
1 +

1

β

))
E[‖xkt − xkt−1‖2M ]− 1

2
E[‖xkt − xkt−1‖2Bkt ]

−
(

1

2
− 1

γκ

)
Dh(xkt−1,∇f(xkt−1), Bkt , 1) + εkt + 2

√
εkt ε̄

k
t

(3.3)

for any k = 1, . . . , S and t = 1, . . . ,m, where ckt−1 = 1
κγ2bk

+ ckt (1 + β) and β > 0 is any constant.
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Proof. By Definition 2.2, we have that for any z ∈ Rd,

h(z) +
1

2
‖z − xkt−1‖2Bkt

≥h(xkt ) +
〈
Bkt (xkt−1 − xkt − ukt )− vkt−1, z − xkt

〉
− ε̂kt +

1

2
‖z − xkt−1‖2Bkt

=h(xkt )− 〈Bkt ukt , z − xkt 〉 − 〈vkt−1, z − xkt 〉 − ε̂kt +
1

2
‖z − xkt ‖2Bkt +

1

2
‖xkt − xkt−1‖2Bkt ,

which implies that

h(xkt ) ≤ h(z) + 〈Bkt ukt , z − xkt 〉+ 〈vkt−1, z − xkt 〉+
1

2
‖z − xkt−1‖2Bkt

− 1

2
‖z − xkt ‖2Bkt −

1

2
‖xkt − xkt−1‖2Bkt + ε̂kt .

(3.4)

By (3.1), we have

f(xkt ) ≤ f(xkt−1) + 〈∇f(xkt−1), xkt − xkt−1〉+
1

2γ
‖xkt − xkt−1‖2M

and for any z ∈ Rd,

f(xkt−1) ≤ f(z) + 〈∇f(xkt−1), xkt−1 − z〉+
1

2γ
‖xkt−1 − z‖2M .

Summing up above two inequalities yields that

f(xkt ) ≤ f(z) + 〈∇f(xkt−1), xkt − z〉+
1

2γ
‖xkt − xkt−1‖2M +

1

2γ
‖xkt−1 − z‖2M . (3.5)

Summing up (3.4) and (3.5) gives

F (xkt ) ≤ F (z) + 〈xkt − z,∇f(xkt−1)− vkt−1〉+
1

2γ
‖xkt − xkt−1‖2M −

1

2
‖xkt − xkt−1‖2Bkt

+
1

2γ
‖xkt−1 − z‖2M +

1

2
‖z − xkt−1‖2Bkt −

1

2
‖z − xkt ‖2Bkt + 〈Bkt ukt , z − xkt 〉+ ε̂kt .

Setting z = x̄kt with x̄kt being defined in (2.7), we have

F (xkt ) ≤ F (x̄kt ) + 〈xkt − x̄kt ,∇f(xkt−1)− vkt−1〉+
1

2γ
‖xkt − xkt−1‖2M −

1

2
‖xkt − xkt−1‖2Bkt

+
1

2γ
‖xkt−1 − x̄kt ‖2M +

1

2
‖xkt−1 − x̄kt ‖2Bkt −

1

2
‖x̄kt − xkt ‖2Bkt + 〈Bkt ukt , x̄kt − xkt 〉+ ε̂kt .

(3.6)

Now, according to the definition of x̄kt and smooth property (3.1), we have

F (x̄kt ) = f(x̄kt ) + h(x̄kt )

≤ F (xkt−1) + 〈∇f(xkt−1), x̄kt − xkt−1〉+
1

2γ
‖x̄kt − xkt−1‖2M + h(x̄kt )− h(xkt−1)

≤ F (xkt−1) + 〈∇f(xkt−1), x̄kt − xkt−1〉+
1

2
‖x̄kt − xkt−1‖2Bkt + h(x̄kt )− h(xkt−1)

+
1

2γ
‖x̄kt − xkt−1‖2M −

1

2
‖x̄kt − xkt−1‖2Bkt

= F (xkt−1)− 1

2
Dh(xkt−1,∇f(xkt−1), Bkt , 1) +

1

2γ
‖x̄kt − xkt−1‖2M −

1

2
‖x̄kt − xkt−1‖2Bkt ,
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which together with (3.6) gives that

F (xkt ) ≤ F (xkt−1) + T1 + T2 +
1

2γ
‖xkt − xkt−1‖2M −

1

2
‖xkt − xkt−1‖2Bkt +

1

γ
‖xkt−1 − x̄kt ‖2M

− 1

2
Dh(xkt−1,∇f(xkt−1), Bkt , 1)− 1

2
‖x̄kt − xkt ‖2Bkt + ε̂kt ,

where
T1 = 〈xkt − x̄kt ,∇f(xkt−1)− vkt−1〉 and T2 = 〈Bkt ukt , x̄kt − xkt 〉. (3.7)

Notice that

T1 = 〈xkt − x̄kt ,∇f(xkt−1)− vkt−1〉
≤ ‖xkt − x̄kt ‖Bkt ‖∇f(xkt−1)− vkt−1‖(Bkt )−1

≤ 1

2
‖xkt − x̄kt ‖2Bkt +

1

2
‖∇f(xkt−1)− vkt−1‖2(Bkt )−1 .

And by Lemma 2.2 and ‖ukt ‖Bkt ≤
√

2ε̄kt , we have

T2 = 〈Bkt ukt , x̄kt − xkt 〉
≤ ‖ukt ‖Bkt ‖x̄

k
t − xkt ‖Bkt

≤ ‖ukt ‖Bkt ‖v
k
t−1 −∇f(xkt−1)‖(Bkt )−1 +

√
2εkt ‖ukt ‖Bkt

≤
‖ukt ‖2Bkt

2
+

1

2
‖vkt−1 −∇f(xkt−1)‖2(Bkt )−1 +

√
2εkt ‖ukt ‖Bkt

≤ 1

2
‖vkt−1 −∇f(xkt−1)‖2(Bkt )−1 + ε̄kt + 2

√
εkt ε̄

k
t .

Then, we can derive

T1 + T2 ≤
1

2
‖xkt − x̄kt ‖2Bkt + ‖∇f(xkt−1)− vkt−1‖2(Bkt )−1 + ε̄kt + 2

√
εkt ε̄

k
t .

In addition, it follows from A1 and Lemma 3.1 that

1

γ
‖xkt−1 − x̄kt ‖2M ≤

1

γκ
‖xkt−1 − x̄kt ‖2Bkt ≤

1

γκ
Dh(xkt−1,∇f(xkt−1), Bkt , 1). (3.8)

It thus follows from (3.7) that

F (xkt ) ≤ F (xkt−1) + ‖∇f(xkt−1)− vkt−1‖2(Bkt )−1 +
1

2γ
‖xkt − xkt−1‖2M −

1

2
‖xkt − xkt−1‖2Bkt

+
1

γ
‖xkt−1 − x̄kt ‖2M −

1

2
Dh(xkt−1,∇f(xkt−1), Bkt , 1) + εkt + 2

√
εkt ε̄

k
t

≤ F (xkt−1) + ‖∇f(xkt−1)− vkt−1‖2(Bkt )−1 +
1

2γ
‖xkt − xkt−1‖2M −

1

2
‖xkt − xkt−1‖2Bkt

−
(

1

2
− 1

γκ

)
Dh(xkt−1,∇f(xkt−1), Bkt , 1) + εkt + 2

√
εkt ε̄

k
t ,

where the second inequality is due to (3.8). Consequently, it follows from

‖xkt − x̃k−1‖2M ≤ (1 + β)‖xkt−1 − x̃k−1‖2M +

(
1 +

1

β

)
‖xkt − xkt−1‖2M ,

where β > 0 is any constant, and

E[‖vkt−1 −∇f(xkt−1)‖2(Bkt )−1 ] =
1

bk
E[‖∇fi(xkt−1)−∇fi(x̃k−1)‖2(Bkt )−1 ]

≤ 1

κbk
E[‖∇fi(xkt−1)−∇fi(x̃k−1)‖2M−1 ]

≤ 1

κγ2bk
E[‖xkt−1 − x̃k−1‖2M ]
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that

Rkt = E[F (xkt ) + ckt ‖xkt − x̃k−1‖2M ]

≤ E[F (xkt−1)] +

(
1

κγ2bk
+ ckt (1 + β)

)
E[‖xkt−1 − x̃k−1‖2M ]

+

(
1

2γ
+ ckt

(
1 +

1

β

))
E[‖xkt − xkt−1‖2M ]]− 1

2
E[‖xkt − xkt−1‖2Bkt

−
(

1

2
− 1

γκ

)
E[Dh(xkt−1,∇f(xkt−1), Bkt , 1)] + εkt + 2

√
εkt ε̄

k
t ,

which completes the proof by the definition of Rkt and the relation of ckt−1 with ckt .

We are now ready to state the main theorem of this subsection as follows.

Theorem 3.1. Under the conditions in Lemma 3.2, if P has a uniform distribution, that is

Prob(Rk = k and Rt = t) =
1

T
,

where T = mS, bk = b for any k, and γκ ≥ max{4, 1 + 2m/
√
b}, then

E[‖G(xR)‖2M−1 ] ≤ 4κ̄2

κ

F (x̃0)− F ∗ +
∑(S,m)

(k=1,t=1)(ε
k
t + 2

√
εkt ε̄

k
t )

T
. (3.9)

Proof. Recall that ckt−1 = 1
κγ2b + ckt (1 + β) and ckm = 0. Then it is easy to obtain

ckt =
1

κγ2b

(1 + β)m−t − 1

β
≤ m(e− 1)

κγ2b

with β = 1
m . Then, by γκ ≥ 4 and(

1

2γ
+ ckt

(
1 +

1

β

))
E[‖xkt − xkt−1‖2M ]]− 1

2
E[‖xkt − xkt−1‖2Bkt ≤ 0,

we have from (3.3) that

1

4
E[Dh(xkt−1,∇f(xkt−1), Bkt , 1)] ≤ Rkt−1 −Rkt + εkt + 2

√
εkt ε̄

k
t . (3.10)

By Lemma 3.1, we have

‖Gh(xkt−1,∇f(xkt−1), Bkt )‖2M−1 = (xkt−1 − x̄kt )TBktM
−1Bkt (xkt−1 − x̄kt )

≤ ‖M− 1
2BM−

1
2 ‖2‖xkt−1 − x̄kt ‖2M

≤ κ̄2

κ
‖xkt−1 − x̄kt ‖2Bkt (3.11)

≤ κ̄2

κ
Dh(xkt−1,∇f(xkt−1), Bkt , 1).

Hence, we have from (3.10) that

E[‖Gh(xkt−1,∇f(xkt−1), Bkt )‖2M−1 ] ≤ 4κ̄2

κ

(
Rkt−1 −Rkt + εkt + 2

√
εkt ε̄

k
t

)
.

So, by summation of the above inequality for k = 1, . . . , S and t = 1, . . . ,m, we have

1

T

(S,m)∑
(k=1,t=1)

E[‖Gh(xkt−1,∇f(xkt−1), Bkt )‖2M−1 ] ≤ 4κ̄2

κ

F (x̃0)− F ∗ +
∑(S,m)

(k=1,t=1)(ε
k
t + 2

√
εkt ε̄

k
t )

T
.

Then, (3.9) follows from the uniform distribution of P .
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The corollary bellow shows the complexity property of IPSS to achieve an ε-solution xR, i.e.
E[‖G(xR)‖2M−1 ] < ε.

Corollary 3.2. Under the conditions of Theorem 3.1, if we choose b = bn 2
3 c, m = bn 1

3 c and∑(S,m)
(k=1,t=1) ε

k
t < +∞, then to achieve an ε-solution, the SFO and PO complexity of IPSS is of

order

O
(
n+

κ̄2n2/3

κε

)
and O

(
κ̄2

κε

)
, (3.12)

respectively.

Proof. Since κ > 4/γ, by Theorem 3.1 and εkt being summable, we have

E[‖G(xR)‖2M−1 ] ≤ 4κ̄2

κ

F (x̃0)− F ∗ + 3τ

T
, (3.13)

where τ =
∑(S,m)

(k=1,t=1) ε
k
t < +∞. Hence, to achieve an ε-solution, we need T to be large enough such

that

T >
4κ̄2

κ

F (x̃0)− F ∗ + 3τ

ε
.

Thus the total maximum number of component gradients and proximal subproblem solutions com-
puted, i.e., the SFO and PO complexity, are n+ (b+ n/m)T and T , respectively, which are of order
(3.12).

Remark 3.1. Besides summable tolerances εkt , we could also obtain the complexity property related
with some nonsummable εkt . For example, it follows from Theorem 3.1 that

E[‖G(xR)‖2M−1 ] =

O
(
κ̄2

κT δ

)
, if εkt = 1

((k−1)m+t)δ
with 0 < δ < 1,

O
(
κ̄2

κ
log T
T

)
, if εkt = 1

(k−1)m+t .

Then, similar to the analysis in Corollary 3.2, to achieve ε-solution, we have that the SFO complexity
is of order 

O
(
n+ κ̄2

κ n
2
3 /ε

1
δ

)
, if εkt = 1

((k−1)m+t)δ
with 0 < δ < 1,

O
(
n+ κ̄2n

2
3

κε log(1/ε)

)
, if εkt = 1

(k−1)m+t ;

and the PO complexity is of orderO
(
κ̄2

κ /ε
1
δ

)
, if εkt = 1

((k−1)m+t)δ
with 0 < δ < 1,

O
(
κ̄2

κε log(1/ε)
)
, if εkt = 1

(k−1)m+t .

3.2 Subgradient method for solving subproblem (2.3)

There is often a tradeoff between using the matrix B and the difficulty of solving subproblem (2.3).
We expect the matrix B to capture some second-order curvature information of function f . But,
introduction of a complicated matrix B other than using an identity matrix in (2.3) may increase the
difficulty of solving subproblem (2.3). Depending on the specific structures of matrix B and function
h, there may exist highly efficient algorithms to solve the subproblem (2.3) to the required accuracy.
One practical example on the CUR-like factorization optimization can be found in [27], where the
function h is complicated so that subproblem (2.3) does not have a closed form solution. In this
subsection, we would like to introduce an iterative subgradient method for solving the subproblem
(2.3) in its general form ignoring the problem structures.
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From (3.9) we can see that the computational complexity of Algorithm 2.1 depends very much on
the subproblem tolerance εkt . As a matter of fact, for q defined in (2.1) and ε > 0, following from
Theorem 2.8.7 in [30], we have

∂εq(z) =
⋃{

∂ε̄

{
1

2
‖x− w‖2B

} ∣∣∣∣
x=z

+ ∂ε̂h(z) : ε̄, ε̂ ≥ 0, ε̄+ ε̂ = ε

}
.

Therefore, in particular if 0 ∈ ∂εq(z), there exist ε̄, ε̂ > 0 such that ε = ε̄+ ε̂ and

0 ∈ ∂ε̄
{

1

2
‖x− w‖2B

} ∣∣∣∣
x=z

+ ∂ε̂h(z).

So, we do not specify the choice of ε̄kt and ε̂kt . It suffices to obtain an inexact solution xkt of (2.3)
satisfying

qkt (xkt ) ≤ min
x
qkt (x) + εkt , (3.14)

where εkt is given in (2.5). We now state a subgradient method as follows to solve (2.3).

Algorithm 3.1 Subgradient method for solving (2.3)
.

Input: T kt , y0, αi
1: for i = 1, . . . , T kt do
2: yi = yi−1 + αi(v

k
t−1 +Bkt (yi−1 − xkt−1) + pi−1), where pi−1 ∈ ∂h(yi−1),

3: end for
Output: 2

Tkt (Tkt +1)

∑Tkt −1
i=0 yi.

Notice that under assumption A2, it is easy to obtain that ‖Bkt ‖2 ≥ κ/‖M−1‖2. So, qkt is strongly
convex with modulus no smaller than κ/‖M−1‖2. Hence, we can have the following theorem, from
which an explicit bound on the number of iterations by Algorithm 3.1 to achieve (3.14) can be derived.
For detailed proof of this algorithm, one may refer to Section 3.2 in [15].

Theorem 3.3. Suppose that assumption A2 holds and Algorithm 3.1 is applied to solve subproblem

(2.3). If there exists a χ > 0 such that ‖pi−1‖ ≤ χ for any i = 1, . . . , T kt , by choosing αi = 2‖M−1‖2
κ(i+1) ,

we have

qkt

 2

T kt (T kt + 1)

Tkt −1∑
i=0

yi

−min
x
qkt (x) ≤ 2χ2‖M−1‖2

κ(T kt + 1)
.

Hence, to achieve (3.14), by Theorem 3.3 we can set xkt as

xkt =
2

T kt (T kt + 1)

Tkt −1∑
i=0

yi,

and choose T kt large enough such that

2χ2‖M−1‖2
κ(T kt + 1)

≤ εkt ,

which equivalently requires

T kt ≥
2χ2‖M−1‖2

κεkt
.
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Therefore, under same conditions as Theorem 3.1, with particular settings of εkt , the total number of

subgradient evaluations of h, that is
∑(S,m)

(k=1,t=1) T
k
t , is of order

O(T 1+δ) =



O
((

κ̄2

κ /ε
)1+δ

)
, if εkt = 1

((k−1)m+t)δ
with δ > 1,

O
((

κ̄2

κ /ε
1
δ

)1+δ
)
, if εkt = 1

((k−1)m+t)δ
with 0 < δ < 1,

O
((

κ̄2

κε log(1/ε)
)1+δ

)
, if εkt = 1

(k−1)m+t .

3.3 Complexity under PPL inequality

In this subsection, we propose a globally linearly convergent algorithm to solve a class of noncon-
vex composite optimization problems satisfying the proximal Polyak- Lojasiewicz inequality. Polyak-
 Lojasiewicz inequality was first proposed by Polyak [22] to show the linear convergence rate of gradient
methods for solving unconstrained smooth optimization problems. For a continuously differentiable
function f with f∗ as its minimum value, it is called to satisfy the Polyak- Lojasiewicz inequality if
there exists µ > 0 such that

1

2
‖∇f(x)‖2 ≥ µ(f(x)− f(x∗)).

For nonsmooth problems, in order to analyze proximal-type algorithms, a generalization of Polyak-
 Lojasiewicz inequality, called proximal Polyak- Lojasiewicz inequality with definition given below, was
studied in [12, 13], where relevant examples satisfying this inequality are also discussed. Interested
readers are referred to these two papers for details.

Definition 3.1. Consider (1.1) with f satisfying assumption A1. We say F satisfies proximal
Polyak- Lojasiewicz (PPL) inequality if there exists µ > 0 such that

1

2
Dh(x,∇f(x),M, 1/γ) ≥ µ(F (x)− F ∗)

where Dh is defined in (3.2) and F ∗ is the optimal objective function value of (1.1).

We now present our PPL-IPSS algorithm and analyze its convergent properties.

Algorithm 3.2 PPL-IPSS algorithm
.

Input: Initial point x0 ∈ Rd, initial matrix B0 ∈ Sd++, inexact tolerances ε̄, ε̂, parameters S and m
1: for s = 1, . . . , N do
2: xs = IPSS(xs−1, Bs−1, ε̄s−1, ε̂s−1, S,m);
3: end for

Output: xN .

In this subsection, to emphasize the relationship of the inexactness tolerance εkt in Step 2 of
Algorithm 3.2 with iteration index s, we refer εkt as εkt,s and ε̄kt as εkt,s.

Theorem 3.4. Under the conditions of Theorem 3.1, if the PPL-inequality holds for the objective
function F , then

E[F (xs)− F ∗] ≤ 2κ̄

µT
E[F (xs−1)− F ∗] +

2κ̄

µT
As, s = 1, . . . , N, (3.15)

where T = Sm and As =
∑(S,m)

(k=1,t=1) ε
k
t,s + 2

√
εkt,sε̄

k
t,s.
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Proof. In the s-th iteration of PPL-IPSS, it follows from Lemma 3.1(b) that

Dh(xkt−1,∇f(xkt−1), Bkt , 1) ≥ −2 min
y

{
〈∇f(xkt−1), y〉+

κ̄

2
‖y − x‖2M + h(y)− h(x)

}
=

1

κ̄
Dh(xkt−1,∇f(xkt−1),M, κ̄)

≥ 1

κ̄
Dh(xkt−1,∇f(xkt−1),M,

1

γ
)

≥ 2µ

κ̄
(F (xkt−1)− F ∗).

Hence, it implies from (3.10) that

µ

2κ̄
E[F (xkt−1)− F ∗] ≤ Rkt−1 −Rkt + εkt,s + 2

√
εkt,sε̄

k
t,s.

Summing up the above inequality for t = 1, . . . ,m and k = 1, . . . , S yields

µ

2κ̄

(S,m)∑
(k=1,t=1)

E[F (xkt−1)− F ∗] ≤
(S,m)∑

(k=1,t=1)

(Rkt−1 −Rkt ) +As.

Notice that
Rk0 = E[F (xk0)] = E[F (x̃k−1)], and Rkm = E[F (xkm)] = E[F (x̃k)],

where the second equality is due to ckm = 0. Therefore, by Algorithm 3.2, it yields that

µ

2κ̄

(S,m)∑
(k=1,t=1)

(F (xkt−1)− F ∗) ≤ E[F (x̃0)]− F ∗ +As.

Thus, from F (x̃0) = F (xs−1) we have

E[F (xs)− F ∗] ≤ 2κ̄

µT
E[F (xs−1)− F ∗] +

2κ̄

µT
As.

Hence, (3.15) holds.

We now analyze the computational complexity of PPL-IPSS. Given an ε > 0, in the following we
study the total number of gradient evaluations of f as well as the number of subgradient evaluations
of h to obtain xN such that E[F (xN ) − F ∗] < ε. Since the computational complexity relies on the
settings of inexactness tolerance εkt,s, we next classify the analysis into several cases with different

specifications of εkt,s.
Case 1. In this case, we set

εkt,s = α(1+θ)s · 1

((k − 1)m+ t)δ
, θ > 0, δ > 0, 1 > α > 0.

Depending on the value of δ, we further specify the analysis into three subcases.

Subcase 1. δ > 1. Then

As ≤ 3

(S,m)∑
(k=1,t=1)

εkt,s ≤
3

δ − 1
α(1+θ)s,

which yields

E[F (xs)− F ∗] ≤ 2κ̄

µT
E[F (xs−1)− F ∗] +

6κ̄

µ(δ − 1)T
α(1+θ)s.
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Subcase 2. δ = 1. Then

As ≤ 3

(S,m)∑
(k=1,t=1)

εkt,s ≤ 3α(1+θ)s log T,

which yields

E[F (xs)− F ∗] ≤ 2κ̄

µT
E[F (xs−1)− F ∗] +

6κ̄ log T

µT
α(1+θ)s.

Subcase 3. δ < 1. Then

As ≤ 3

(S,m)∑
(k=1,t=1)

εkt,s ≤
3T 1−δ

1− δ
α(1+θ)s,

which yields

E[F (xs)− F ∗] ≤ 2κ̄

µT
E[F (xs−1)− F ∗] +

6κ̄T 1−δ

µ(1− δ)T
α(1+θ)s.

In all the above three subcases, we can always choose T sufficiently large such that

E[F (xs)− F ∗] ≤ αE[F (xs−1)− F ∗] + αα(1+θ)s ≤ Bα · αs,

where Bα is a positive constant depending on α. Hence E[F (xs) − F ∗] converges to zero linearly.
Therefore, to achieve E[F (xN ) − F ∗] < ε, the outer iteration number N should satisfy that αN < ε,
namely,

N = O(log(1/ε)).

Hence, the SFO complexity is in the order of O(N(n + n2/3T )), same as O((n + n2/3T ) log(1/ε)),
where T = mS.

We now consider the total number of subgradient evaluations of h when Algorithm 3.1 is applied to
solve the subproblem (2.3). Notice that in the s-th iteration of applying IPSS algorithm in Algorithm
3.2, we have the total number of subgradient evaluations of h is

T kt,s =
1

εkt,s
=

((k − 1)m+ t)δ

α(1+θ)s
.

Consequently, the total number of subgradient evaluations of h is

N∑
s=1

(S,m)∑
(k=1,t=1)

T kt,s =

N∑
s=1

α−(1+θ)s

(S,m)∑
(k=1,t=1)

((k − 1)m+ t)δ = O(T 1+δα−(1+θ)N ) = O(T 1+δ/ε1+θ).

Noticing that T = O(1). Therefore, we obtain the number of component gradient evaluations of
f and the number of subgradient evaluations of h are in the order of

O(n log(1/ε)) and O(1/ε1+θ),

respectively.
Case 2. In this case, we set

εkt,s = αs · 1

((k − 1)m+ t)δ
, δ > 0, 1 > α > 0,

then similar to Case 1, we can choose T sufficiently large such that

E[F (xs)− F ∗] ≤ αE[F (xs−1)− F ∗] + αAs ≤ Bα · sαs.

Hence, to achieve E[F (xN ) − F ∗] < ε, it should have NαN = O(ε). By defining ρ = α−N , we have
N = log ρ and ρ−1 log ρ = O(ε). Then it is sufficient to require ρ = O

(
ε−1 log(1/ε)

)
, which yields

N = O(log(1/ε) + log log(1/ε)).

Hence, the SFO complexity and the total number of subgradient evaluations of h are in the order of

O (n log (1/ε) + n log log (1/ε)) and O
(
ε−1 log(1/ε)

)
,

respectively.
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4 IPSS for (1.1)-(1.2) with weakly smooth f

In this section, we assume that fi, i = 1, . . . , n, is only weakly smooth and study the theoretical
properties of IPSS in this case. To be clear, we first make the following assumptions.

A3 The function fi, i = 1, . . . , n, is 1/γ-weakly smooth with respect to a matrix M ∈ Sd++, that is
fi ∈ C1(Rd) and ∇fi satisfies

‖∇fi(x)−∇fi(y)‖M−1 ≤ 1

γ
‖x− y‖νM , ∀x, y ∈ Rd,

where ν ∈ (0, 1).

A4 There exist two positive constants κkt and κ̄kt such that

κ̄kt I �M−
1
2BktM

− 1
2 � κkt I

for all k = 1, . . . , S and t = 1, . . . ,m, where M is the matrix in A3.

It follows from assumption A3 that for any x and y,

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
1

γ(1 + ν)
‖y − x‖1+ν

M .

Notice that different from the assumption A2, A4 assumes that the lower and upper bounds vary
along with k and t.

We now give the main theorem in this section.

Theorem 4.1. Suppose assumptions A3 and A4 hold, bk = b for any k, there exists a constant C
such that κ̄kt ≤ Cκkt with

κkt= max

{
4

γ
(skt )1−ν ,

1

γ
(skt )1−ν +

2ν

γ2b
m(m+ 1)(e− 1)

}
, (4.1)

where skt = (k+(1−ν)S−1)m+t and e is the Euler’s number, and P has the probabilistic distribution

Prob(Rk = k and Rt = t) =
(κkt )−1∑(S,m)

(k=1,t=1)(κ
k
t )−1

.

Then, we have

E[‖G(xR)‖2M−1 ] ≤

C̃ + 12C2

(S,m)∑
(k=1,t=1)

εkt

(16

γ
T−ν +

4νm2

γ2b
T−1

)
, (4.2)

where C̃ = 4C2(F (x̃0)− F ∗) + 4C2(1−ν)
γ2b log 2−ν

1−ν + 6C2(1−ν)
γν .

Proof. Similar to (3.5), we have

f(xkt ) ≤ f(z) + 〈∇f(xkt−1), xkt − z〉+
1

γ(1 + ν)
‖xkt − xkt−1‖1+ν

M +
1

γ(1 + ν)
‖xkt−1 − z‖1+ν

M . (4.3)

Then, summing up (4.3) and (3.4) with z = x̄kt provides that

F (xkt ) ≤ F (x̄kt ) + 〈xkt − x̄kt ,∇f(xkt−1)− vkt−1〉+
1

γ(1 + ν)
‖xkt − xkt−1‖1+ν

M − 1

2
‖xkt − xkt−1‖2Bkt

+
1

γ(1 + ν)
‖xkt−1 − x̄kt ‖1+ν

M +
1

2
‖xkt−1 − x̄kt ‖2Bkt −

1

2
‖x̄kt − xkt ‖2Bkt + 〈Bkt ukt , x̄kt − xkt 〉+ ε̂kt .

(4.4)
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Following from the definition of x̄kt , we have that

F (x̄kt ) ≤ F (xkt−1) +
1

γ(1 + ν)
‖x̄kt − xkt−1‖1+ν

M − 1

2
‖x̄kt − xkt−1‖2Bkt −

1

2
‖x̄kt − xkt−1‖2Bkt . (4.5)

So, summing up (4.5) with (4.4) gives that

F (xkt ) ≤ F (xkt−1) + T1 + T2 +
1

γ(1 + ν)
‖xkt − xkt−1‖1+ν

M − 1

2
‖xkt − xkt−1‖2Bkt

+
2

γ(1 + ν)
‖xkt−1 − x̄kt ‖1+ν

M − 1

2
‖xkt−1 − x̄kt ‖2Bkt −

1

2
‖x̄kt − xkt ‖2Bkt + ε̂kt ,

where T1 and T2 are defined in (3.7). Then, it follows from the bounds on T1 and T2 right after (3.7)
that

F (xkt ) ≤ F (xkt−1) + ‖vkt−1 −∇f(xkt−1)‖2(Bkt )−1 +
1

γ(1 + ν)
‖xkt − xkt−1‖1+ν

M − 1

2
‖xkt − xkt−1‖2Bkt

+
2

γ(1 + ν)
‖xkt−1 − x̄kt ‖1+ν

M − 1

2
‖xkt−1 − x̄kt ‖2Bkt + εkt + 2

√
εkt ε̄

k
t .

(4.6)

Taking expectation on both sides of (4.6) yields that

E[F (xkt )] ≤ E[F (xkt−1)] + E[‖vkt−1 −∇f(xkt−1)‖2(Bkt )−1 ] +
1

γ(1 + ν)
E[‖xkt − xkt−1‖1+ν

M ]− 1

2
E[‖xkt − xkt−1‖2Bkt ]

+
2

γ(1 + ν)
E[‖xkt−1 − x̄kt ‖1+ν

M ]− 1

2
E[‖xkt−1 − x̄kt ‖2Bkt ] + εkt + 2

√
εkt ε̄

k
t .

Since

E[‖vkt−1 −∇f(xkt−1)‖]2(Bkt )−1 ≤
1

γ2κkt bk
‖xkt−1 − x̃k−1‖2νM =

1

γ2κkt b
‖xkt−1 − x̃k−1‖2νM ,

we have

E[F (xkt )] ≤ E[F (xkt−1)] +
1

γ2κkt b
E[‖xkt−1 − x̃k−1‖2νM ] +

1

γ(1 + ν)
E[‖xkt − xkt−1‖1+ν

M ]− 1

2
E[‖xkt − xkt−1‖2Bkt ]

+
2

γ(1 + ν)
E[‖xkt−1 − x̄kt ‖1+ν

M ]− 1

2
E[‖xkt−1 − x̄kt ‖2Bkt ] + εkt + 2

√
εkt ε̄

k
t .

By the inequality ab ≤ ap/p + bq/q with p = 2
1+ν , q = 2

1−ν , a = ‖xkt − xkt−1‖1+ν
M (skt )

(1+ν)(1−ν)
2 and

b = (skt )−
(1+ν)(1−ν)

2 , we have

‖xkt − xkt−1‖1+ν
M ≤ ‖xkt − xkt−1‖2M · (skt )

1−ν · 1 + ν

2
+ (skt )

−(1+ν) · 1− ν
2

and

‖xkt−1 − x̄kt ‖1+ν
M ≤ ‖xkt−1 − x̄kt ‖2M · (skt )

1−ν · 1 + ν

2
+ (skt )

−(1+ν) · 1− ν
2

.

Similarly, from ab ≤ ap/p+ bq/q with p = 1
v , q = 1

1−v , a = ‖xkt−1 − x̃k−1‖2νM (κkt )ν and b = (κkt )−
ν

1−ν ,
it yields that

‖xkt−1 − x̃k−1‖2νM ≤ ‖xkt−1 − x̃k−1‖2M · κkt ν + (κkt )
− ν

1−ν · (1− ν).

Then, we have

E[F (xkt )] ≤ E[F (xkt−1)] +
1

γ2b
νE[xkt − x̃k−1‖2M ] +

1− ν
γ2b

(κkt )−
1

1−ν

+
1

2γ
‖xkt − xkt−1‖2M (skt )

1−ν
+

1− ν
2γ(1 + ν)

(skt )−(1+ν) − 1

2
E[‖xkt − xkt−1‖2Bkt ]

+
1

γ
‖xkt−1 − x̄kt ‖2M (skt )

1−ν
+

1− ν
γ(1 + ν)

(skt )−(1+ν) − 1

2
E[‖xkt−1 − x̄kt ‖2Bkt ]

+ εkt + 2
√
εkt ε̄

k
t .
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Therefore,

Rkt = E[F (xkt ) + ckt ‖xkt − x̃k−1‖2M ]

≤ E[F (xkt )] + ckt

(
1 +

1

β

)
E[‖xkt − xkt−1‖2M ] + ckt (1 + β)E[‖xkt−1 − x̃k−1‖2M ]

≤ E[F (xkt−1)] +

(
ν

γ2b
+ ckt (1 + β)

)
E[xkt − x̃k−1‖2M ]

+

(
1

2γ
(skt )

1−ν
+ ckt

(
1 +

1

β

))
‖xkt − xkt−1‖2M −

1

2
E[‖xkt − xkt−1‖2Bkt ]

+
1

γ
(skt )

1−ν‖xkt−1 − x̄kt ‖2M −
1

2
E[‖xkt−1 − x̄kt ‖2Bkt ]

+
1− ν
γ2b

(κkt )−
1

1−ν +
3(1− ν)

2γ(1 + ν)
(skt )−(1+ν) + εkt + 2

√
εkt ε̄

k
t .

Let
ckt−1 =

ν

γ2b
+ ckt (1 + β).

By setting ckm = 0, we obtain that

ckt ≤ ckt−1 ≤ ck0 =
ν

γ2b

(1 + β)m − 1

β
.

Furthermore, by setting β = 1/m, we have

ckt ≤
ν

γ2b
m(e− 1).

It thus yields (
1

2γ
(skt )

1−ν
+ ckt

(
1 +

1

β

))
‖xkt − xkt−1‖2M <

1

2
E[‖xkt − xkt−1‖2Bkt ]

and
1

γ
(skt )

1−ν‖xkt−1 − x̄kt ‖2M −
1

2
E[‖xkt−1 − x̄kt ‖2Bkt ] < −1

4
E[‖xt−1 − x̄kt ‖2Bkt ].

So, we have

1

4
E[‖xkt−1 − x̄kt ‖2Bkt ] ≤ Rkt−1 −Rkt +

1− ν
γ2b

(κkt )−
1

1−ν +
3(1− ν)

2γ(1 + ν)
(skt )−(1+ν) + 3εkt .

Following from (3.11) and the condition that κ̄kt ≤ Cκkt , we have

(κkt )−1E[‖Gh(xkt−1,∇f(xkt−1), Bkt )‖2M−1 ] ≤ C2E[‖xkt−1 − x̄kt ‖2Bkt ].

Now, summing up the above inequality for t = 1, . . . ,m and k = 1, . . . , S yields that

(S,m)∑
(k=1,t=1)

(κkt )−1E[‖Gh(xkt−1,∇f(xkt−1), Bkt )‖2M−1 ]

≤ 4C2(F (x̃0)− F ∗) + 4C2 1− ν
γ2b

(S,m)∑
(k=1,t=1)

(κkt )−
1

1−ν +
6C2(1− ν)

γ(1 + ν)

(S,m)∑
(k=1,t=1)

(skt )−(1+ν) + 12C2

(S,m)∑
(k=1,t=1)

εkt

≤ 4C2(F (x̃0)− F ∗) +
4C2(1− ν)

γ2b

(S,m)∑
(k=1,t=1)

(skt )−1 +
6C2(1− ν)

γν
+ 12C2

(S,m)∑
(k=1,t=1)

εkt

≤ C̃ + 12C2

(S,m)∑
(k=1,t=1)

εkt , (4.7)
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where the last inequality follows from

(S,m)∑
(k=1,t=1)

(skt )−1 ≤
((2−ν)S,m)∑

(k=(1−ν)S,t=1)

(km+ t)−1 ≤ log
2− ν
1− ν

.

Notice that by the IPSS algorithm and the probability distribution of P, we have

Prob(xR = xkt−1) =
(κkt )−1∑(S,m)

(k=1,t=1)(κ
k
t )−1

for all t = 1, . . . ,m; and k = 1, . . . , N. Hence, we have

(S,m)∑
(k=1,t=1)

(κkt )−1E[‖GR‖2] =

(S,m)∑
(k=1,t=1)

(κkt )−1E[‖Gh(xkt−1,∇f(xkt−1), Bkt )‖2M−1 ]. (4.8)

Notice that
(S,m)∑

(k=1,t=1)

(κkt )−1E[‖GR‖2M−1 ] ≥ T 2∑(S,m)
(k=1,t=1) κ

k
t

E[‖G(xR)‖2M−1 ]. (4.9)

It is easy to obtain from (4.1) that

κkt ≤
4

γ
(skt )1−ν +

4νm2

γ2b
.

Hence,
(S,m)∑

(k=1,t=1)

κkt ≤
4(2− ν)2−ν

γ
T 2−ν +

4νm2

γ2b
T ≤ 16

γ
T 2−ν +

4νm2

γ2b
T. (4.10)

By combining the inequalities (4.7)-(4.10), we have (4.2).

Corollary 4.2. Under the same assumptions as Theorem 4.1, if εkt is summable, m = b(n/ν)
1

2+ν c
and b = bn/mc, then to achieve an ε-solution of (1.1)-(1.2), the SFO and PO complexity of IPSS
are

O
(
n+ n

1+ν
2+ν /ε

1
ν

)
and O

(
1/ε

1
ν

)
, (4.11)

respectively.

Proof. It is easy to obtain from the setting of m that bT−ν ≥ νm2T−1, which together with (4.2)
gives

E[‖G(xR)‖2M−1 ] ≤
(

16

γ
+

4

γ2

)C̃ + 12C2

(S,m)∑
(k=1,t=1)

εkt

T−ν .

Therefore, to achieve an ε-solution, we have T = O(1/ε
1
ν ) if εkt is summable, which implies that the

SFO and PO complexity are those given in (4.11), respectively.

Remark 4.1. We would like to compare the complexity proved in Theorem 4.1 with that given in
[24]. With the same settings as those in our paper, when f is nonconvex and h is convex, the PO
computational complexity given in [24] is O(1/ε

1+3ν
ν ), while in our paper it is only O(1/ε

1
ν ) when εkt

is summable.
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5 Summary

In this paper, we proposed a framework and studied the theoretical properties of an inexact prox-
imal stochastic second-order (IPSS) algorithm for solving nonconvex composite optimization. The
objective function of such an optimization problem consists of an average of many, possibly weakly,
smooth nonconvex functions and a possibly nonsmooth convex function. This IPSS algorithm allows
to incorporate second-order information through a positive-definite matrix in the proximal subprob-
lem to accelerate the convergence. In addition, IPSS allows to solve the subproblem inexactly while
still keeping desired computational complexity. We also give an iterative subgradient method to solve
the subproblem to the required accuracy and discuss its overall computational complexity. When the
objective function satisfies the PL inequality, based on the IPSS algorithm, we propose an algorithm,
called PPL-IPSS, which has been shown to have linear convergence rate. Furthermore, we have inves-
tigated the convergence properties of IPSS when f in the objective function is only weakly smooth. In
this paper, we have focused on the theoretical properties of a framework of IPSS algorithm. Extensive
numerical experiments will be performed in the following work to verify the practical performance of
IPSS by investigating proper strategies of setting the algorithm parameters.
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