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ABSTRACT
We propose a new stepsize for the gradient method. It is shown that this new step-
size will converge to the reciprocal of the largest eigenvalue of the Hessian, when
Dai/Yang’s asymptotic optimal gradient method (Computational Optimization and
Applications, 2006, 33(1): 73-88) is applied for minimizing quadratic objective func-
tions. Based on this spectral property, we develop a monotone gradient method
that takes a certain number of steps using the asymptotically optimal stepsize by
Dai/Yang, and then follows by some short steps associated with this new stepsize. By
employing one step retard of the asymptotic optimal stepsize, a nonmonotone vari-
ant of this method is also proposed. Under mild conditions, R-linear convergence of
the proposed methods is established for minimizing quadratic functions. In addition,
by combining gradient projection techniques and adaptive nonmonotone line search,
we further extend those methods for general bound constrained optimization. Two
variants of gradient projection methods combining with the Barzilai-Borwein step-
sizes are also proposed. Our numerical experiments on both quadratic and bound
constrained optimization indicate that the new proposed strategies and methods are
very effective.
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1. Introduction

We consider the problem of minimizing a convex quadratic function

min f(x) =
1

2
xTAx− bTx (1)

and its extensions on bound constrained optimization, where b ∈ Rn and A ∈ Rn×n
is symmetric positive definite with eigenvalues 0 < λ1 ≤ λ2 ≤ . . . ≤ λn and condition
number κ = λn

λ1
. This problem (1) is one of the simplest non-trivial non-linear program-

ming problems and efficiently solving (1) is usually a pre-requisite for a method to be
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generalized for solving more general optimization. In addition, various optimization
problems arising in many applications including machine learning [6], sparse recon-
struction [20], nonnegative matrix factorization [29, 31] can be formulated as the form
of (1), possibly with the addition of regularization or bound constraints.

The simplest and easily implemented method for solving (1) is the gradient method,
which updates the iterates by

xk+1 = xk − αkgk, (2)

where gk = ∇f(xk) and αk > 0 is the stepsize determined by different strategies.
The classic steepest descent (SD) method for solving (1) can be dated back to

Cauchy [5], who suggested to compute the stepsize by exact line search:

αSDk = arg min
α∈R

f(xk − αgk) =
gTk gk

gTk Agk
. (3)

It has been shown that the method converges linearly [1] with Q-linear rate κ−1
κ+1 . Thus,

the SD method can be very slow especially when the condition number is large. Further
analysis shows that the gradients will asymptotically perform zigzag between two
orthogonal directions in the subspace spanned by the two eigenvectors corresponding
to λ1 and λn, see [22, 33] for more details.

In 1988, from the view of quasi-Newton method, Barzilai and Borwein [2] designed
a method, called BB method, using the following two ingenious stepsizes that signifi-
cantly improve the performance of gradient methods:

αBB1
k =

sTk−1sk−1

sTk−1yk−1
, and αBB2

k =
sTk−1yk−1

yTk−1yk−1
, (4)

where sk−1 = xk − xk−1 and yk−1 = gk − gk−1. The BB method was shown to be
globally convergent for minimizing general n-dimensional strictly convex quadratics
[34] with R-linear convergence rate [11]. Recently, the BB method and its variants
have been successfully extended to general unconstrained problems [35], to constrained
optimization problems [3, 28] and to various applications [29, 30, 32]. One may see
[4, 10, 17, 21, 37] and the references therein.

Let {ξ1, ξ2, . . . , ξn} be the orthonormal eigenvectors associated with the eigenvalues.
Denote the components of gk along the eigenvectors ξi by µki , i = 1, . . . , n, i.e.,

gk =

n∑
i=1

µki ξi.

The above decomposition of gradient gk together with the update rule (2) give

gk+1 = gk − αkAgk =

k∏
j=1

(I − αjA)g1 =

n∑
i=1

µk+1
i ξi,
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where

µk+1
i = µki (1− αkλi) = µ1

i

k∏
j=1

(1− αjλi).

This relation implies that the closer αk to 1
λi

, the smaller |µk+1
i | would be. In addition,

if µki = 0, the corresponding component will vanish at all subsequent iterations.
Since the SD method will asymptotically zigzag between ξ1 and ξn, a natural way

to break the zigzagging pattern is to eliminate the component µk1 or µkn, which can be
achieved by employing a stepsize approximating 1

λ1
or 1

λn
. One seminal work in this

line of research is due to Yuan [14, 36], who derived the following stepsize by imposing
finite termination for minimizing two-dimensional convex quadratics:

αYk =
2√

(1/αSDk−1 − 1/αSDk )2 + 4‖gk‖2/(αSDk−1‖gk−1‖)2 + (1/αSDk−1 + 1/αSDk )
. (5)

Based on (5), Dai and Yuan [14] further suggested a new gradient method whose
stepsize is given by

αDYk =

{
αSDk , if mod(k,4)< 2;
αYk , otherwise.

(6)

The DY method (6) keeps monotonicity and appears better than the nonmonotone BB
method [14]. It is shown by De Asmundis et al. [16] that the stepsize αYk converges to 1

λn

if the SD method is applied to solve problem (1). That is, occasionally employing the
stepsize αYk along the SD method will enhance the elimination of the component µn.
Recently, Gonzaga and Schneider [25] suggest a monotone method with all stepsizes of
the form (3). Their method approximates 1

λn
by a short stepsize calculated by replacing

gk in (3) with g̃ = (I − ηA)gk for some large scalar η.
Nonmonotone gradient methods exploiting spectral properties have been developed

as well. Frassoldati et al. [23] developed a new short stepsize by maximizing the next
SD stepsize αSDk+1. They further suggested a method, called ABBmin 2, which tries

to enforce BB1 stepsizes close to 1
λ1

by using short stepsizes to eliminate gradient
components associated with large eigenvalues. More recently, based on the favorable
property of αYk , De Asmundis et al. [16] suggested to reuse it in a cyclic fashion after a
certain number of SD steps. Precisely, their approach, referred to as the SDC method,
employs the stepsize

αSDCk =

{
αSDk , if mod(k, h+ s) < h;
αYt , otherwise, with t = max{i ≤ k : mod(i, h+ s) = h}, (7)

where h ≥ 2 and s ≥ 1. They also proposed a monotone version of (7) by imposing
safeguards on the stepsizes.

One common character of the aforementioned methods is making use of spectral
properties of the stepsizes. The recent study [17] points out that gradient methods
using long and short stepsizes that attempt to exploit the spectral properties have
generally better numerical performance for minimizing both quadratic and general
nonlinear objective functions. For more works on gradient methods, see [7, 9, 16, 17,
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23, 25, 37, 39]. In [12], Dai and Yang introduced a gradient method with a new stepsize
that possesses similar spectral property as αYk . More specifically, their stepsize is given
by

αAOPTk =
‖gk‖
‖Agk‖

, (8)

which asymptotically converges to 2
λ1+λn

, that is in some sense an optimal stepsize

since it minimizes ‖I−αA‖ over the stepsize α [12, 19]. Since αAOPTk ≤ αSDk , the Dai-
Yang method (8) is monotone but without using exact line searches. In addition, the
method converges Q-linearly with the same rate as the SD method. More importantly,
by applying this method it is possible to recover the eigenvectors ξ1 and ξn.

In this paper, based on the Dai-Yang method (8), we propose a new stepsize to
exploit the spectral property. Particularly, our new stepsize is given by

ᾱk =
dTk dk

dTkAdk
, (9)

where

dk =
gk−1

‖gk−1‖
− gk
‖gk‖

. (10)

We show that the stepsize ᾱk asymptotically converges to 1
λn

if the Dai-Yang method
(8) is applied to problem (1). Therefore, the stepsize ᾱk is helpful in eliminating the
gradient component µn. Thanks to this desired property, we are able to develop a new
efficient gradient method by taking a certain number of steps using the asymptotically
optimal stepsize αAOPTk followed by some short steps, which are determined by the
smaller one of αAOPTk and ᾱk−1. Thus, this method is a monotone method without us-
ing exact line searches. We also construct a nonmonotone variant of the method which
simply use the stepsize αAOPTk with one step retard. R-linear convergence of the pro-
posed methods is established for minimizing strongly convex quadratic functions. In
addition, by combining gradient projection techniques and the adaptive nonmonotone
line search in [15], we further to extend those proposed methods for general bound
constrained optimization. Two variants of gradient projection methods combining with
the BB stepsizes are also proposed. Our numerical comparisons with DY (6), ABBmin 2

[23] and SDC (7) methods on minimizing quadratic functions indicate the proposed
strategies and methods are very effective. Moreover, our numerical comparisons with
the spectral projected gradient (SPG) method [3, 4] on solving bound constrained
optimization problems from the CUTEst collection [26] also highly suggest the poten-
tial benefits of extending the strategies and methods in the paper for more general
large-scale bound constrained optimization.

The paper is organized as follows. In Section 2, we analyze the asymptotic spectral
property of the new stepsize ᾱk and propose our new methods based on this spectral
property. In Section 3, we show that the new proposed methods have R-linear conver-
gence for minimizing strongly convex quadratic functions. We generalize the proposed
ideas and methods for bound constrained optimization in Section 4. Some numerical
comparisons of our new methods on solving both quadratic and bound constrained
optimization problems are shown in Section 5. Finally, in Section 6 we give some
concluding remarks.
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2. Method for quadratics

In this section we first analyze the spectral property of the stepsize ᾱk and then propose
our new gradient methods.

2.1. Spectral property of ᾱk

We first recall some important properties of the Dai-Yang method (8).

Lemma 2.1. [12] For any starting point x1 satisfying

µ1
1 6= 0, µ1

n 6= 0,

let {xk} be the iterations generated by the method (8). Then we have that

lim
k→∞

αAOPTk =
2

λ1 + λn
.

Furthermore,

lim
k→∞

µ2k−1
i√∑n

j=1(µ2k−1
j )2

=

 sign(µ1
1)
√
c1, if i = 1;

0, if i = 2, . . . , n− 1;
sign(µ1

n)
√
c2, if i = n,

and

lim
k→∞

µ2k
i√∑n

j=1(µ2k
j )2

=

 sign(µ1
1)
√
c1, if i = 1;

0, if i = 2, . . . , n− 1;
−sign(µ1

n)
√
c2, if i = n,

which indicates that

lim
k→∞

gk−1

‖gk−1‖
+

gk
‖gk‖

= 2sign(µ1
1)
√

c1ξ1

and

lim
k→∞

gk−1

‖gk−1‖
− gk
‖gk‖

= ±2
√
c2ξn,

where

c1 =
λ1 + 3λn

4(λ1 + λn)
, c2 =

3λ1 + λn
4(λ1 + λn)

.

Lemma 2.1 indicates that the method (8) asymptotically conducts its searches in
the two-dimensional subspace spanned by ξ1 and ξn. So, in order to accelerate the
convergence, we could employ some stepsizes approximating 1

λ1
or 1

λn
to eliminate

the component µk1 or µkn. Note that the vector dk given in (10) tends to align in the
direction of the eigenvector ξn. Hence, if we take some consecutive gradient steps with
stepsize αAOPTk so that dk ≈ ±2

√
c2ξn, the stepsize ᾱk will be an approximation of

1
λn

. The next theorem provides theoretical justification for this strategy.
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Theorem 2.2. Under the conditions in Lemma 2.1, let {gk} be the sequence generated
by applying the method (8) to problem (1). Then we have

lim
k→∞

ᾱk =
1

λn
.

Proof. From the definition (10) of dk, we have

dTk dk = 2− 2
gTk−1gk

‖gk−1‖‖gk‖
(11)

and

dTkAdk =
gTk−1Agk−1

‖gk−1‖2
+
gTk Agk
‖gk‖2

− 2
gTk−1Agk

‖gk−1‖‖gk‖
, (12)

which indicate that

lim
k→∞

dTk dk = 2− 2 lim
k→∞

n∑
j=1

µ2k−1
i√∑n

j=1(µ2k−1
j )2

µ2k
i√∑n

j=1(µ2k
j )2

= 2− 2(c1 − c2) (13)

and

lim
k→∞

dTkAdk = lim
k→∞

∑n
j=1 λi(µ

2k−1
i )2∑n

j=1(µ2k−1
j )2

+

∑n
j=1 λi(µ

2k
i )2∑n

j=1(µ2k
j )2

− 2

n∑
j=1

λi
µ2k−1
i√∑n

j=1(µ2k−1
j )2

µ2k
i√∑n

j=1(µ2k
j )2

= 2(λ1c1 + λnc2)− 2(λ1c1 − λnc2)

= 4λnc2. (14)

It follows from (13), (14) and the definition (9) of ᾱk that

lim
k→∞

ᾱk = lim
k→∞

dTk dk

dTkAdk
=

2− 2(c1 − c2)

4λnc2

=
4(λ1 + λn)− (2λn − 2λ1)

2λn(3λ1 + λn)
=

1

λn
.

This completes the proof.

Using the same argument as those in Theorem 2.2, we can also get the following
result.

Theorem 2.3. Under the conditions in Lemma 2.1, let {gk} be the sequence generated
by applying the method (8) to problem (1), we have

lim
k→∞

α̂k =
1

λ1
,
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where

α̂k =
d̂Tk d̂k

d̂TkAd̂k

with

d̂k =
gk−1

‖gk−1‖
+

gk
‖gk‖

.

2.2. The algorithm

Theorems 2.2 and 2.3 in the former subsection provide us the possibility of employing
the two stepsizes α̂k and ᾱk to significantly reduce the gradient components µk1 and µkn.
However, the following example shows some negative aspects of using α̂k. Particularly,
we applied the method (8) to a problem of (1) with

A = diag{a1, a2, . . . , an} and b = 0, (15)

where a1 = 1, an = n and ai is randomly generated in (1, n), i = 2, . . . , n− 1. Figure
1 presents the result of an instance with n = 1, 000. We can see that ᾱk approximates
1
λn

with satisfactory accuracy in a few iterations. However, α̂k converges to 1
λ1

very
slowly in the first few hundreds of iterations. although we did observe that after 1,000
iterations the value of |α̂k − 1

λ1
| is reduced by a factor of 0.01.

0 10 20 30 40 50 60 70 80 90 100

 iterations

10-6

10-4

10-2

100

102

kgkk
j,̂k ! 1=61j
j7,k ! 1=6nj

Figure 1. Problem (15): convergence history of the sequence {α̂k} and {ᾱk} for the first 100 iterations of
the method (8).

Now we would like to give a rough explanation of the above phenomenon. Since the
gradient norm decreases very slowly, by the update rule (2), we have

g
(i)
k

‖gk‖
= (1− αkλi)

g
(i)
k−1

‖gk−1‖
‖gk−1‖
‖gk‖

≈ (1− αkλi)
g

(i)
k−1

‖gk−1‖
.
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Suppose that αk satisfies |1−αkλi| ≤ 1 for all i = 1, 2, . . . , n and k is sufficiently large.
This will be true since αAOPTk approximates 2

λ1+λn
as the iteration process goes on.

Let d
(i)
k be the i-th component of dk, i.e.,

d
(i)
k =

g
(i)
k

‖gk‖
−

g
(i)
k−1

‖gk−1‖
.

We consider the following cases:
Case 1. |1− αkλi| ≤ 0.6.

By trivial computation we know that after five steps the value of
|g(i)k |
‖gk‖ is less than

8% of its initial value and keeps small at all subsequent iterations Thus, d
(i)
k can be

neglected.
Case 2. |1− αkλi| > 0.6.

(i) If 1 − αkλi ≥ 0.9, the value of
g
(i)
k

‖gk‖ will not change much and thus, d
(i)
k may

not affect the value of ᾱk too much, which indicates that the component can be also
neglected.

(ii) If 0.6 < 1 − αkλi < 0.9, then 0.1 < αkλi < 0.4, which implies that d
(i)
k will be

small in a few iterations and is safe to be abandoned.

(iii) If 1 − αkλi < −0.6, the value of
g
(i)
k

‖gk‖ changes signs and hence, |d(i)
k | may get

significant increase.
The above analysis shows that ᾱk will be mostly determined by the components

corresponding to those eigenvalues in (iii) of Case 2. Notice that the required inequal-

ity in (iii) implies that λi >
4(λ1+λn)

5 . If A has many large eigenvalues satisfying this
condition, ᾱk will be an estimation of the reciprocal of certain average of large eigen-
values. When A has few such large eigenvalues, ᾱk will be mostly determined by the
gradient components corresponding to the these few largest eigenvalues, which would
yield a good estimation of 1

λn
. So, ᾱk will approximate 1

λn
with satisfactory accuracy

in small number of iterations. This coincides with our observation in Figure 1.

For the stepsize α̂k, when 1−αkλi > 0, the value of
g
(i)
k

‖gk‖ +
g
(i)
k−1

‖gk−1‖ may increase even

when 1 − αkλi ≤ 0.1. So, most of the components of the gradient corresponding to
those eigenvalues less than 1

αk
will affect the value of α̂k. Thus, α̂k would not be a good

approximation of 1
λ1

until those components become very small. Moreover, a rough

estimation of 1
λ1

may yield a large step which will increase most of the components
of the gradient. As a result, it is impractical to use α̂k for eliminating the gradient
component µk1.

Based on the above observations, our method would combine the stepsizes ᾱk and
αAOPTk . In particular, our method takes h steps with αAOPTk to drive ᾱk towards a
good approximation of 1

λn
and then takes s short steps in the hope of eliminating the

corresponding component µn. As ᾱk is expected to be short, we resort to αAOPTk if ᾱk
is relatively large. Hence, more precisely, we take

αk =

{
αAOPTk , if mod(k, h+ s) < h;

min{αAOPTk , ᾱk}, otherwise.
(16)

Notice that, for quadratics, the BB1 stepsize αBB1
k is just the former SD stepsize (3).

As we know, the BB method performs much better than the SD method [21, 37]. And
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gradient methods with retard stepsizes often have better performances [24]. Moreover,
it can be seen from Figure 1 that ᾱk−1 is also a good approximation of 1

λn
after about

10 to 20 iterations. Thus, we also consider to use the retard stepsize ᾱk−1, i.e.,

αk =

{
αAOPTk , if mod(k, h+ s) < h;

min{αAOPTk , ᾱk−1}, otherwise.
(17)

Numerical comparisons between the methods (16) and (17) in Table 1 show the benefits
of using the one stepsize delay. Table 1 lists the averaged iterations of these two
methods on solving 10 instances of problem (15), where the condition number of A is
κ = 104 with a1 = 1, an = κ, and other diagonal elements are randomly generated in
(1, κ). The iteration was stopped once the gradient norm is less than an ε factor of its
initial value. We can see that the performance of the method (17) dominates that of
(16) for most of the instances. Another advantage of using the retard stepsize ᾱk−1 is
that it can be easily extended to more general problems. This will be more clear in
Section 4.

Table 1. Number of averaged iterations of the methods (16) and (17).

method ε
(h, s) for the method

(10, 20) (10, 30) (10, 50) (10, 80) (10, 100) (20, 20) (20, 30) (20, 50) (20, 80) (20, 100)

(16)
10−6 298.9 287.3 308.7 321.4 336.9 306.5 333.5 331.2 342.5 371.7
10−9 711.5 636.3 650.2 606.0 602.9 785.7 680.3 582.5 545.7 655.0
10−12 1048.0 893.1 1013.7 910.3 816.3 1225.8 989.8 904.1 773.8 892.4

(17)
10−6 318.8 312.7 311.5 350.9 333.7 341.0 337.1 342.0 362.2 349.2
10−9 642.6 581.3 566.0 561.0 525.3 650.6 655.0 636.5 539.6 571.3
10−12 957.6 789.9 772.0 771.0 752.5 952.6 881.1 839.3 755.3 766.4

Remark 1. Although our method (17) looks like the SDC method (7), they differ
in the following ways: (i) the method (17) does not use exact line searches which are
necessary for the SDC method; (ii) the method (17) does not reuse any stepsize while
the SDC method uses the same Yuan’s stepsize αYk for s steps; (iii) the method (17) is
monotone while the SDC method is nonmonotone and its monotone version is obtained
by using a safeguard with 2αSDk .

The analysis at the beginning of this subsection indicates that a small ᾱk will be
generated once its value is mostly determined by the first few largest eigenvalues. This
can be achieved by using short stepsizes such that |1 − αkλi| ≤ 1 hold for all i =
1, 2, . . . , n and several subsequent iterations. In addition, if there exist subsequences
{αki} approximate 1

λi
for all but the first few largest eigenvalues, ᾱk would be also

small. Notice that the retard stepsize αAOPTk−1 is an approximation of some 1
λi

and

also short in the sense that αAOPTk−1 ≤ αSDk−1. In fact, we can see from Figure 2 that,

when the gradient method with αAOPTk−1 is applied to problem (15), the stepsize ᾱk
approximates 1

λn
with high accuracy if its value is small. Moreover, some promising

numerical results of applying αAOPTk−1 are given in [8]. So, motivated by the above
observation and analysis, we also suggest the following nonmonotone variant of (17):

αk =

{
αAOPTk−1 , if mod(k, h+ s) < h;

min{αAOPTk−1 , ᾱk−1}, otherwise.
(18)

9
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 iterations

10-7

10-6

10-5

10-4

10-3

10-2

,AOPT
k!1

7,k

j7,k ! 1=6nj

Figure 2. Problem (15): history of the sequence {ᾱk} for the first 100 iterations of the gradient method with

αAOPTk−1 .

3. Convergence

In this section, we establish the R-linear convergence of the method (17) and its
nonmonotone variant (18) for minimizing strongly convex quadratic function. Since
the gradient method (2) is invariant under translations and rotations when applying
to problem (1), we make the following assumption throughout the analysis.

Assumption 1. The matrix A is diagonal, i.e.,

A = diag{λ1, λ2, · · · , λn}, (19)

with 0 < λ1 < λ2 < · · · < λn.
In order to give a unified analysis of the methods (17) and (18), we recall the

following property given by Dai [7].
Property (A) [7]. Suppose that there exist an integer m and positive constants
M1 ≥ λ1 and M2 such that

(i) λ1 ≤ α−1
k ≤M1;

(ii) for any integer l ∈ [1, n − 1] and ε > 0, if G(k − j, l) ≤ ε and (g
(l+1)
k−j )2 ≥ M2ε

hold for j ∈ [0,min{k,m} − 1], then α−1
k ≥

2
3λl+1.

Here,

G(k, l) =

l∑
i=1

(g
(i)
k )2.

Dai [7] has proved that if A has the form (19) with 1 = λ1 ≤ λ2 ≤ · · · ≤ λn and
the stepsizes of gradient method (2) have the Property (A), then either gk = 0 for
some finite k or the sequence {‖gk‖} converges to zero R-linearly. Therefore, in order
to establish R-linear convergence of the methods (17) and (18), we only need to show
these methods satisfy Property (A).
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Theorem 3.1. Suppose that the sequence {‖gk‖} is generated by any of the method
(17) or (18) applied to solve problem (1) with the matrix A having the form (19) and
1 = λ1 < λ2 < · · · < λn. Then either gk = 0 for some finite k or the sequence {‖gk‖}
converges to zero R-linearly.

Proof. We show that the stepsize αk has Property (A) with m = 2, M1 = λn and
M2 = 2.

Clearly, λ1 ≤ α−1
k ≤ λn for all k ≥ 1. Thus, (i) of Property (A) holds with M1 = λn.

Notice that αAOPTk ≤ αSDk . For the method (18), we have that

α−1
k ≥ (αAOPTk−1 )−1 ≥ (αSDk−1)−1. (20)

Suppose that G(k − j, l) ≤ ε and (g
(l+1)
k−j )2 ≥ 2ε hold for j ∈ [0,min{k,m} − 1]. It

follows from (20) and the definition of αSDk that

α−1
k ≥ (αSDk−1)−1 =

∑n
i=1 λi(g

(i)
k−1)2∑n

i=1(g
(i)
k−1)2

≥
λl+1

∑n
i=l+1(g

(i)
k−1)2

G(k − 1, l) +
∑n

i=l+1(g
(i)
k−1)2

≥ λl+1

ε/2ε+ 1
≥ 2

3
λl+1,

where the first inequality in the second line is due to the assumption and k − 1 ∈
{max{k− 1, 0}, . . . , k}. Thus, (ii) holds for method the (18). For the method (17), we
obtain the desired inequality by replacing k − 1 with k in the above analysis. This
completes the proof.

4. Extension to bound constrained optimization

In this section, we would like to extend the strategies and the stepsize (9) discussed
in previous sections for the bound constrained optimization.

min
x∈Ω

f(x), (21)

where f is a Lipschitz continuously differentiable function defined on the set Ω =
{x ∈ Rn| l ≤ x ≤ u}. Here, l ≤ x ≤ u means componentwise li ≤ xi ≤ ui for all
i = 1, . . . , n. Clearly, when li = −∞ and ui = +∞ for all i, problem (21) reduces to
an unconstrained problem.

Our algorithm belongs to the class of projected gradient methods, which update the
iterates as

xk+1 = xk + λkdk,

where λk is a step length determined by some line searches and dk is the search
direction given by

dk = PΩ(xk − αkgk)− xk. (22)

Here, PΩ(·) is the Euclidean projection onto Ω and αk is our proposed stepsize.

11



For a general objective function, both αAOPTk−1 in (8) and ᾱk−1 in (9) can not be
computed as in Section 2 because the Hessian is usually difficult to obtain. Hence, we
replace αAOPTk−1 by the following positive stepsize suggested by Dai et al. [8]:

αPk =
‖sk−1‖
‖yk−1‖

. (23)

It is easy to see this stepsize is the geometrical mean of the two BB stepsizes in (4)
and it will reduce to αAOPTk−1 when the objective function is quadratic. One may see [8]

for details about αPk . Note that by applying gradient projection methods for bound
constrained optimization, the variables which are at the boundary usually changes
during early iterations and often become unchanged at the end. So, the algorithm
usually eventually solves an unconstrained problem in the subspace corresponding to
free variables. Hence, for bound constrained optimization, we modify the stepsize (23)
as the following:

ᾱPk =
‖sk−1‖
‖ȳk−1‖

, (24)

where

ȳ
(i)
k−1 =

{
0, if s

(i)
k−1 = 0;

g
(i)
k − g

(i)
k−1, otherwise.

(25)

We now reformulate the stepsize ᾱk−1 in (9) for general functions. In fact, for
quadratics, by the update rule (2) we have

gTk−1gk = ‖gk−1‖2 − αk−1g
T
k−1Agk−1 = gTk−1Agk−1(αSDk−1 − αk−1)

and

gTk−1Agk = gTk−1Agk−1 − αk−1g
T
k−1A

2gk−1 = gTk−1A
2gk−1(αMG

k−1 − αk−1),

which together with (9), (11) and (12) give

ᾱk =
2− 2

gTk−1gk
‖gk−1‖‖gk‖

1
αSD

k−1
+ 1

αSD
k
− 2

gTk−1Agk
‖gk−1‖‖gk‖

=
2− 2‖gk−1‖

‖gk‖
1

αBB1
k

(αBB1
k − αk−1)

1
αBB1

k
+ 1

αSD
k
− 2‖gk−1‖

‖gk‖
1

αBB1
k αBB2

k
(αBB2

k − αk−1)
.

Similarly as before, we would modify the BB stepsizes in the above formula, and
replace αBB1

k and αBB2
k by

ᾱBB1
k =

sTk−1sk−1

sTk−1ȳk−1
and ᾱBB2

k =
sTk−1ȳk−1

ȳTk−1ȳk−1
, (26)

respectively, where ȳk−1 is given in (25). Note that in fact αBB1
k automatically takes

care of the changes of free variables since αBB1
k = ᾱBB1

k . Then, by replacing the

12



iteration number k with k − 1, we have

ᾱk−1 =
2− 2‖gk−2‖

‖gk−1‖
1

ᾱBB1
k−1

(ᾱBB1
k−1 − αk−2)

1
ᾱBB1

k−1
+ 1

ᾱBB1
k
− 2‖gk−2‖

‖gk−1‖
1

ᾱBB1
k−1 ᾱ

BB2
k−1

(ᾱBB2
k−1 − αk−2)

. (27)

To ensure global convergence and achieve good performance, nonmonotone line
searches [15, 27, 38] are usually employed for BB-like methods. Here, we prefer to
use the adaptive nonmonotone line search proposed by Dai and Zhang [15], which is
designed to accept BB stepsizes as frequently as possible. Particularly, the step length
λk = 1 is accepted if

f(xk + dk) ≤ fr + σgTk dk, (28)

where fr is the so-called reference function value adaptively updated by the rules given
in [15] and σ ∈ (0, 1) is a line search parameter. However, when (28) is not accepted, an
Armijo-type back tracking line search is performed to find the step length λk satisfying
a relatively more strict condition

f(xk + λkdk) ≤ min{fmax, fr}+ σλkg
T
k dk, (29)

where fmax is the maximal function value in recent M iterations, i.e.,

fmax = max
0≤i≤min{k,M−1}

f(xk−i).

It has been observed that such an nonmonotone line search is specially suitable for
BB-like methods [15].

Our specific gradient projection algorithm combining with the above nonmonotone
line search is stated as Algorithm 1. It is proved in [15] that when the objective function
is Lipschitz continuously differentiable, Algorithm 1 ensures convergence in the sense
that

lim inf
k→∞

‖gk‖ = 0.

For Algorithm 1, we have the following additional comments.

Remark 2. When sTk yk ≤ 0, both ᾱBB1
k+1 and ᾱBB2

k+1 are not well-defined. In this case, we
simply take the stepsize αk+1 = 1/‖gk+1‖. Moreover, when the stepsize ᾱk is negative,
we would like to take the shorter stepsize ᾱBB2

k+1 , since ᾱBB2
k+1 = min{ᾱPk+1, ᾱ

BB1
k+1 , ᾱ

BB2
k+1 }.

Here, 0 < αmin << αmax serves as the stepsize safeguards.

We would also propose two variants of Algorithm 1. As mentioned in Section 2, a
small ᾱk will be generated if there are subsequences {αki} approximating 1

λi
for all

but the first a few largest eigenvalues. It has been pointed out in [14, 37] that the BB
method reduces the gradient components more or less at the same asymptotic rate.
In other words, the BB stepsize will approximate all the reciprocals of eigenvalues
during the iteration process. Similar observations have been presented in [23]. Thus,
for quadratic problem (1) we may consider the following two variants of (18), which

13



Algorithm 1 Gradient method for bound constrained minimization

1: Initialization: x1 ∈ Rn, ε, σ ∈ (0, 1), M,h, s ∈ N, α1 ∈ [αmin, αmax].
2: while ‖gk‖ > ε do
3: Compute the search direction dk by (22);
4: Determine λk by nonmonotone line search (28) and (29);
5: xk+1 = xk + λkdk;
6: if sTk yk > 0 then
7: if mod(k, h+ s) ≥ h then
8: Compute ᾱk by (27);
9: if ᾱk > 0 then

10: α̃k+1 = min{ᾱk, ᾱPk+1};
11: else
12: α̃k+1 = ᾱBB2

k+1 ;
13: end if
14: else
15: α̃k+1 = ᾱPk+1;
16: end if
17: αk+1 = max{αmin,min{α̃k+1, αmax}};
18: else
19: αk+1 = 1/‖gk+1‖;
20: end if
21: end while

combine BB stepsizes with the new stepsize (9):

αk =

{
αBB1
k , if mod(k, h+ s) < h;

min{αBB1
k , ᾱk−1}, otherwise,

(30)

and

αk =

{
αBB2
k , if mod(k, h+ s) < h;

min{αBB2
k , ᾱk−1}, otherwise.

(31)

In fact, we have also found reasonably good numerical performances of the methods
(30) and (31) for minimizing quadratic functions. To generalize the methods (30) and
(31) for bound constrained optimization, we can replace ᾱPk+1 in lines 10 and 15 by

ᾱBB1
k+1 and ᾱBB2

k+1 , respectively. In what follows, we refer to Algorithm 1 using ᾱPk+1,

αBB1
k+1 and ᾱBB2

k+1 in lines 10 and 15 as A1, A1-BB1 and A1-BB2, respectively.

5. Numerical results

In this section, we do numerical experiments of the proposed methods for solving both
quadratic and bound constrained optimization problems. All our codes were written
in Matlab.

14



5.1. Quadratic problems

Firstly, we compare our methods (17) and (18) with the DY method (6) in [14], the
ABBmin 2 method in [23], and the SDC method (7) in [16] for minimizing quadratic
problems. Note that the SDC method has been shown performing better than its
monotone variants [16]. For all the comparison methods, the iteration stops when

‖gk‖ ≤ ε‖g1‖, (32)

where ε > 0 is a given tolerance, or the iteration number exceeds 20,000. Based on the
observation from Figures 1 and 2, we tested h with values 10 and 20 for our methods.
As in [23], the parameter τ of the ABBmin 2 method was set to 0.9 for all the problems.

Our first set of test problems are quadratic problems (1) from [10, 13, 24, 39], whose
Hessian have different spectral distributions. In particular, the objective function has
Hessian A = QV QT with

Q = (I − 2w3w
T
3 )(I − 2w2w

T
2 )(I − 2w1w

T
1 ),

where w1, w2, and w3 are unitary random vectors, V = diag(v1, . . . , vn) is a diagonal
matrix with v1 = 1 and vn = κ, and vj , j = 2, . . . , n − 1, being randomly generated
between 1 and κ. The vector b were randomly generated with components between
−10 and 10. Five sets of different spectral distributions of the test problems are given
in Table 2 and the problem dimension is set as n = 1000. For each problem set, three
different values of condition number κ and tolerances ε are tested. For each value of κ
or ε, 10 problem instances were randomly generated. Tables 3 and 4 show the average
number of iterations over those instances with the starting point x1 = (1, . . . , 1)T ,
where the parameter pair (h, s) used for the SDC method was set to (8, 6) which is
more efficient than other choices for this test set.

Table 2. Distributions of vj .

Problem Spectrum
1 {v2, . . . , vn−1} ⊂ (1, κ)

2
{v2, . . . , vn/5} ⊂ (1, 100)
{vn/5+1, . . . , vn−1} ⊂ (κ

2
, κ)

3
{v2, . . . , vn/2} ⊂ (1, 100)
{vn/2+1, . . . , vn−1} ⊂ (κ

2
, κ)

4
{v2, . . . , v4n/5} ⊂ (1, 100)
{v4n/5+1, . . . , vn−1} ⊂ (κ

2
, κ)

5
{v2, . . . , vn/5} ⊂ (1, 100)

{vn/5+1, . . . , v4n/5} ⊂ (100, κ
2

)
{v4n/5+1, . . . , vn−1} ⊂ (κ

2
, κ)

We can see from Table 3 that, our method (17) is competitive with the DY, ABBmin 2

and SDC methods. For a fixed h, larger values of s seem to be preferable for the method
(17). In addition, different settings of s lead to comparable results, with differences
of less than 10% in the number of iterations for most of the test problems. For the
first problem set, our method (17) outperforms the DY and SDC methods, although
the ABBmin 2 method seems surprisingly efficient for this first problem set among the
compared methods. Particularly, when a high accuracy is required, the method (17)
with (h, s) = (20, 100) often takes less than 1

6 and 1
4 number of iterations needed by

the DY and SDC methods, respectively. As for the second to fourth problem sets,
the method (17) with different settings performs better than the DY and ABBmin 2

methods and also peforms better than the SDC method if proper h and s are selected.
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Table 3. Number of averaged iterations of the method (17), DY, ABBmin 2 and SDC on problems in Table 2.

problem ε
(h, s) for the method (17)

DY ABBmin 2 SDC
(10, 20) (10, 30) (10, 50) (10, 80) (10, 100) (20, 20) (20, 30) (20, 50) (20, 80) (20, 100)

1
10−6 332.9 317.7 317.1 327.6 340.1 360.3 326.6 321.8 324.0 327.7 439.0 249.3 382.7
10−9 2325.4 1298.7 1176.3 875.2 931.3 1509.2 1326.9 1030.9 789.6 754.9 3979.5 489.1 2970.0
10−12 4332.8 2379.9 2028.7 1349.0 1345.6 2795.3 2114.3 1651.0 1291.8 1111.0 7419.6 629.6 5113.0

2
10−6 243.2 227.8 236.2 260.9 281.5 278.4 243.9 226.9 237.0 244.2 342.5 394.0 228.5
10−9 895.7 823.7 845.7 906.7 966.3 873.8 803.0 825.7 869.3 854.6 1584.3 1504.7 891.9
10−12 1537.0 1387.5 1372.0 1390.5 1446.0 1419.8 1284.3 1257.4 1359.0 1359.3 2748.1 2362.4 1410.0

3
10−6 315.0 291.4 315.1 333.6 357.2 345.4 303.3 272.5 306.5 311.4 473.4 471.4 293.5
10−9 977.9 938.0 938.3 970.4 1025.0 1005.8 869.2 870.0 910.2 998.7 1766.6 1674.4 860.8
10−12 1577.8 1510.6 1515.0 1556.8 1587.9 1636.8 1363.8 1351.3 1434.6 1529.0 2846.7 2533.5 1397.7

4
10−6 366.1 346.9 393.1 393.6 413.0 405.8 360.0 334.7 382.0 375.9 585.0 670.4 369.2
10−9 1069.5 988.7 996.2 1039.7 1063.1 1077.5 904.1 954.3 982.5 1029.1 1991.4 1644.8 977.2
10−12 1658.8 1508.7 1517.8 1620.1 1656.5 1658.3 1421.0 1392.1 1492.0 1565.5 3072.5 2559.2 1484.2

5
10−6 826.3 797.6 845.9 856.3 909.4 895.5 876.1 885.7 877.7 899.1 878.8 1041.9 934.2
10−9 3500.9 3427.6 3388.3 3374.9 3432.8 3383.2 3466.1 3225.5 3234.4 3156.2 4275.8 3293.9 4117.5
10−12 5667.2 5428.9 5424.8 5303.5 5540.9 5868.5 5956.5 5484.2 5228.4 5153.8 7661.2 5310.5 6465.7

total
10−6 2083.5 1981.4 2107.4 2172.0 2301.2 2285.4 2109.9 2041.6 2127.2 2158.3 2718.7 2827.0 2208.1
10−9 8769.4 7476.7 7344.8 7166.9 7418.5 7849.5 7369.3 6906.4 6786.0 6793.5 13597.6 8606.9 9817.4
10−12 14773.6 12215.6 11858.3 11219.9 11576.9 13378.7 12139.9 11136.0 10805.8 10718.6 23748.1 13395.2 15870.6

Table 4. Number of averaged iterations of the method (18), DY, ABBmin 2 and SDC on problems in Table 2.

problem ε
(h, s) for the method (18)

DY ABBmin 2 SDC
(10, 20) (10, 30) (10, 50) (10, 80) (10, 100) (20, 20) (20, 30) (20, 50) (20, 80) (20, 100)

1
10−6 345.2 338.9 351.7 330.9 344.4 354.6 335.1 329.0 336.2 336.0 439.0 249.3 382.7
10−9 1833.5 1537.8 1408.0 989.7 826.0 1602.5 1147.4 966.2 932.7 812.8 3979.5 489.1 2970.0
10−12 3569.5 2340.2 2249.1 1405.7 1124.8 2293.7 2169.0 1630.1 1304.4 1068.6 7419.6 629.6 5113.0

2
10−6 220.4 218.7 222.7 224.9 234.4 278.0 263.2 244.6 242.6 255.8 342.5 394.0 228.5
10−9 821.9 815.7 760.9 740.7 807.4 956.5 910.4 828.9 818.4 862.3 1584.3 1504.7 891.9
10−12 1277.2 1247.4 1214.4 1216.1 1216.3 1544.0 1466.5 1344.9 1307.5 1364.2 2748.1 2362.4 1410.0

3
10−6 272.8 275.9 284.6 291.7 309.0 353.6 333.0 305.4 303.8 320.3 473.4 471.4 293.5
10−9 842.9 848.6 844.4 889.3 863.5 1028.9 964.7 946.7 929.0 938.3 1766.6 1674.4 860.8
10−12 1367.1 1356.7 1312.8 1350.1 1305.4 1644.4 1511.1 1472.4 1446.4 1368.2 2846.7 2533.5 1397.7

4
10−6 337.3 348.8 363.8 344.2 333.9 413.9 395.4 400.2 388.6 392.4 585.0 670.4 369.2
10−9 894.3 895.2 869.1 872.3 874.8 1101.8 1029.6 1014.8 989.3 977.1 1991.4 1644.8 977.2
10−12 1389.2 1385.7 1364.3 1344.2 1393.1 1676.0 1591.9 1554.4 1440.7 1438.8 3072.5 2559.2 1484.2

5
10−6 794.0 802.7 811.9 831.9 876.0 843.1 832.3 822.3 805.9 853.5 878.8 1041.9 934.2
10−9 3415.2 3252.1 3081.2 3262.6 2995.6 3150.4 3259.6 2990.9 2980.3 3045.4 4275.8 3293.9 4117.5
10−12 5492.1 5272.7 5102.2 5102.0 4982.8 4861.3 5150.9 4700.0 5035.7 4808.7 7661.2 5310.5 6465.7

total
10−6 1969.7 1985.0 2034.7 2023.6 2097.7 2243.2 2159.0 2101.5 2077.1 2158.0 2718.7 2827.0 2208.1
10−9 7807.8 7349.4 6963.6 6754.6 6367.3 7840.1 7311.7 6747.5 6649.7 6635.9 13597.6 8606.9 9817.4
10−12 13095.1 11602.7 11242.8 10418.1 10022.4 12019.4 11889.4 10701.8 10534.7 10048.5 23748.1 13395.2 15870.6

The method (17) also performs better than the DY and SDC methods on the last
problem set. From the total number of iterations, we can see the overall performance
of the method (17) is quite good. Here, we want to point out that our method (17)
and the DY method are monotone, while the ABBmin 2 and SDC methods are not.

Table 4 shows the averaged number of iterations of our method (18) for the first
set of test problems. For comparison purposes, the results of the DY, ABBmin 2 and
SDC methods are also listed here. Similar performance as the method (17) can be
observed. In particular, for each accuracy level, our method (18) takes around 30%
less total iterations than the ABBmin 2 method and also much less total iterations than
the DY and SDC methods. Notice that problems of the last set are difficult for the
compared methods since more iterations are needed than other four sets. However,
the method (18) always dominates the compared three methods except with the pair
(h, s) = (10, 20). As compared with the method (17), the retard strategy used in the
method (18) tends to improve the performance when h = 10. For the case h = 20, the
method (18) is also comparable to and better than (17) in terms of total number of
iterations.

16



Our second set of quadratic test problems are the two large-scale real problems
Laplace1(a) and Laplace1(b) described in [21]. Both of the problems require the solu-
tion of a system of linear equations derived from a 3D Laplacian on a box, discretized
using a standard 7-point finite difference stencil. The solution is fixed by a Gaussian
function whose center is (α, β, γ), multiplied by x(x−1). A parameter σ is used to con-
trol the rate of decay of the Gaussian. Both Laplace1(a) and Laplace1(b) have n = N3

variables, where N is the interior nodes taken in each coordinate direction, and have
a highly sparse Hessian matrix with condition number 103.61. We refer the readers to
[21] for more details on these problems. In our tests, the associated parameters are set
as follows:

(a) σ = 20, α = β = γ = 0.5;

(b) σ = 50, α = 0.4, β = 0.7, γ = 0.5.

We use the null vector as the starting point. The number of iterations required by
the compared methods for solving the two problems Laplace1(a) and Laplace1(b) are
listed in Tables 5 and 6, respectively.

Table 5. Number of iterations of the method (17), DY, ABBmin 2 and SDC on the 3D Laplacian problem.

n ε
(h, s) for the method (17)

DY ABBmin 2 SDC
(10, 20) (10, 30) (10, 50) (10, 80) (10, 100) (20, 20) (20, 30) (20, 50) (20, 80) (20, 100)

Problem Laplace1(a)

603
10−6 271 241 243 197 331 321 247 211 211 241 249 192 213
10−9 348 257 421 357 334 521 351 281 303 331 373 329 393
10−12 451 394 437 452 441 523 401 351 459 482 546 401 529

803
10−6 315 441 362 303 331 395 426 351 301 361 383 289 297
10−9 436 480 481 510 349 521 525 420 402 407 570 430 553
10−12 602 548 601 631 451 762 677 561 526 601 789 608 705

1003
10−6 500 482 301 371 441 441 351 421 401 361 427 351 513
10−9 691 639 541 527 565 562 453 556 457 601 651 485 609
10−12 826 900 649 808 771 881 734 701 602 721 918 687 825

total
10−6 1086 1164 906 871 1103 1157 1024 983 913 963 1059 832 1023
10−9 1475 1376 1443 1394 1248 1604 1329 1257 1162 1339 1594 1244 1555
10−12 1879 1842 1687 1891 1663 2166 1812 1613 1587 1804 2253 1696 2059

Problem Laplace1(b)

603
10−6 327 241 241 271 331 281 351 211 245 241 236 217 213
10−9 361 361 361 320 367 521 351 352 401 361 399 365 437
10−12 509 482 481 451 442 641 451 585 502 507 532 502 555

803
10−6 319 361 421 361 387 321 351 281 401 295 454 294 309
10−9 511 561 468 448 551 549 477 561 502 506 567 433 485
10−12 751 702 653 658 652 801 638 739 601 669 794 634 766

1003
10−6 393 401 396 361 532 402 393 421 425 361 371 369 379
10−9 632 635 602 631 662 801 752 701 701 707 700 585 653
10−12 931 961 902 901 991 961 1001 937 802 1024 1038 880 965

total
10−6 1039 1003 1058 993 1250 1004 1095 913 1071 897 1061 880 901
10−9 1504 1557 1431 1399 1580 1871 1580 1614 1604 1574 1666 1383 1575
10−12 2191 2145 2036 2010 2085 2403 2090 2261 1905 2200 2364 2016 2286

From Table 5 we can see that, for the problem Laplace1(a), our method (17) with
a large s outperforms the DY and SDC methods when the accuracy level is high.
Moreover, with proper (h, s), it performs better than the ABBmin 2 method, which
dominates the DY and SDC methods. For the problem Laplace1(b), our method (17)
is also competitive with the compared methods. Table 6 shows similar results as the
former one. However, for the problem Laplace1(b), our method (18) clearly outper-
forms the DY and SDC methods especially when high accurate solutions are needed.
Moreover, the method (18) is very competitive with the ABBmin 2 method in terms of
total number of iterations.
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Table 6. Number of iterations of the method (18), DY, ABBmin 2 and SDC on the 3D Laplacian problem.

n ε
(h, s) for the method (18)

DY ABBmin 2 SDC
(10, 20) (10, 30) (10, 50) (10, 80) (10, 100) (20, 20) (20, 30) (20, 50) (20, 80) (20, 100)

Problem Laplace1(a)

603
10−6 279 208 241 209 283 241 201 212 247 241 249 192 213
10−9 421 361 308 326 331 320 301 357 301 241 373 329 393
10−12 486 424 342 380 361 363 396 427 322 367 546 401 529

803
10−6 301 335 271 290 303 303 278 367 308 361 383 289 297
10−9 489 490 421 376 450 359 384 561 499 481 570 430 553
10−12 676 681 552 596 551 524 585 636 515 495 789 608 705

1003
10−6 474 361 361 541 397 441 451 421 416 361 427 351 513
10−9 721 441 439 576 561 681 536 529 601 481 651 485 609
10−12 811 761 612 740 771 786 701 644 756 601 918 687 825

total
10−6 1054 904 873 1040 983 985 930 1000 971 963 1059 832 1023
10−9 1631 1292 1168 1278 1342 1360 1221 1447 1401 1203 1594 1244 1555
10−12 1973 1866 1506 1716 1683 1673 1682 1707 1593 1463 2253 1696 2059

Problem Laplace1(b)

603
10−6 229 241 241 271 258 249 277 281 305 241 236 217 213
10−9 364 361 385 335 344 396 411 334 399 368 399 365 437
10−12 546 451 541 467 551 561 443 413 505 496 532 502 555

803
10−6 309 278 312 271 361 292 289 363 363 460 454 294 309
10−9 521 521 547 528 551 443 507 491 501 601 567 433 485
10−12 684 692 721 619 614 681 642 631 679 721 794 634 766

1003
10−6 391 450 355 361 402 361 385 351 362 362 371 369 379
10−9 565 657 630 707 771 561 644 491 701 650 700 585 653
10−12 731 904 972 921 771 880 911 841 814 881 1038 880 965

total
10−6 929 969 908 903 1021 902 951 995 1030 1063 1061 880 901
10−9 1450 1539 1562 1570 1666 1400 1562 1316 1601 1619 1666 1383 1575
10−12 1961 2047 2234 2007 1936 2122 1996 1885 1998 2098 2364 2016 2286

5.2. Bound constrained problems

This subsection compares our methods A1, A1-BB1 and A1-BB2 with the spectral
projected gradient (SPG) method [3, 4], which is a nonmonotone projected gradient
method using the Barzilai-Borwein stepsize.

For our methods, the parameter values are set as the following:

αmin = 10−30, αmax = 1030, h = 10, s = 4, M = 8, σ = 10−4.

Default parameters were used for SPG [4]. The stopping condition for all methods is

‖PΩ(xk − gk)− xk‖∞ ≤ 10−6.

Our test problem set consists of all bound constrained problems from the CUTEst
collection [26] with dimension more than 50. There are 3 problems for which none
of these comparison algorithms can solve. Hence, we simply delete them and only 47
problems are left for our test.

We compare all these algorithms by using the performance profiles of Dolan and
Moré [18] on different metric. In these performance profiles, the vertical axis shows the
percentage of the problems the method solves within the factor τ of the metric used by
the most effective method in this comparison. Figure 3 shows the performance profiles
on the number of iterations. It can be observed that our methods A1, A1-BB1 and
A1-BB2 clearly outperform SPG in terms of iteration numbers. We can also see from
Figure 4 that the performance gap is even larger in terms of the number of function
evaluations. Moreover, Figure 5 shows that our methods are also better than SPG in
terms of the overall CPU time.
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Figure 3. Performance profiles, iteration metric, 47 CUTEst bound constrained problems.

6. Conclusions

Based on the asymptotic optimal stepsize, we have proposed a new monotone gradient
method, which employs a new stepsize that converges to the reciprocal of the largest
eigenvalue of the Hessian of the objective function. A nonmonotone variant of this
method has been proposed as well. R-linear convergence of the proposed methods has
been established for minimizing strongly convex quadratic functions. Our numerical
experiments on minimizing quadratic functions show that the proposed methods are
very effective with other recent successful gradient methods.

By making use of projected gradient strategy and the Dai-Zhang nonmonotone line
search [15], the proposed methods are extended for solving general bound constrained
optimization. In addition, we have also proposed two variants of those methods based
on the Barzilai-Borwein stepsizes. Numerical comparisons with the spectral projected
gradient (SPG) method [3, 4] on bound constrained problems from the CUTEst col-
lection show that these new methods are very promising for solving bound constrained
optimization.
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