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Abstract

An increasing number of software applications incorporate

runtime Deep Neural Networks (DNNs) to process sensor data

and return inference results to humans. Effective deployment

of DNNs in these interactive scenarios requires meeting

latency and accuracy constraints while minimizing energy, a

problem exacerbated by common system dynamics.

Prior approaches handle dynamics through either (1)

system-oblivious DNN adaptation, which adjusts DNN

latency/accuracy tradeoffs, or (2) application-oblivious

system adaptation, which adjusts resources to change

latency/energy tradeoffs. In contrast, this paper improves

on the state-of-the-art by coordinating application- and

system-level adaptation. ALERT, our runtime scheduler,

uses a probabilistic model to detect environmental volatility

and then simultaneously select both a DNN and a system

resource configuration to meet latency, accuracy, and energy

constraints. We evaluate ALERT on CPU and GPU platforms

for image and speech tasks in dynamic environments.

ALERT’s holistic approach achieves more than 13% energy

reduction, and 27% error reduction over prior approaches that

adapt solely at the application or system level. Furthermore,

ALERT incurs only 3% more energy consumption and 2%

higher DNN-inference error than an oracle scheme with

perfect application and system knowledge.

1 Introduction

1.1 Motivation

Deep neural networks (DNNs) have become a key workload

for many computing systems due to their high inference

accuracy. This accuracy, however, comes at a cost of

long latency, high energy usage, or both. Successful DNN

deployment requires meeting a variety of user-defined,

application-specific goals for latency, accuracy, and often

energy in unpredictable, dynamic environments.

Latency constraints naturally arise with DNN deployments

when inference interacts with the real world as a consumer—

processing data streamed from a sensor—or a producer—

returning a series of answers to a human. For example,

in motion tracking, a frame must be processed at camera

speed [40]; in simultaneous interpretation, translation must be

provided every 2–4 seconds [56]. Violating these deadlines

may lead to severe consequences: if a self-driving vehicle

cannot act within a small time budget, life threatening

accidents could follow [53].

Accuracy and energy requirements are also common and

may vary for different applications in different operating

environments. On one hand, low inference accuracy can lead

to software failures [67,80]. On the other hand, it is beneficial

to minimize DNN energy or resource usage to extend mobile-

battery time or reduce server-operation cost [41].

These requirements are also highly dynamic. For example,

the latency requirement for a job could vary dynamically

depending on how much time has already been consumed by

related jobs before it [53]; the power budget and the accuracy

requirement for a job may switch among different settings

depending on what type of events are currently sensed [1].

Additionally, the latency requirement may change based on

the computing system’s current context; e.g., in robotic vision

systems the latency requirement can change based on the

robot’s latency and distance from perceived pedestrians [18].

Satisfying all these requirements in a dynamic computing

environment where the inference job may compete

for resources against unpredictable, co-located jobs is

challenging. Although prior work addresses these problems

at either the application level or system level separately, each

approach by itself lacks critical information that could be used

to produce better results.

At the application level, different DNN designs—with

different depths, widths, and numeric precisions—provide

various latency-accuracy trade-offs for the same inference

task [26, 39, 42, 77, 85]. Even more dynamic schemes have

been proposed that adapt the DNN by dynamically changing

its structure at the beginning of [22, 61, 84, 89] or during

[34, 35, 49, 52, 82, 86, 88] every inference tasks.

Although helpful, these techniques are sub-optimal
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Figure 2: Tradeoffs for 42 DNNs (CPU2).

settings, ALERT meets constraints while achieving within

93–99% of optimal energy saving or accuracy optimization.

Compared to approaches that adapt at application-level or

system-level only ALERT achieves more than 13% energy

reduction, and 27% error reduction (Section 5).

2 Understanding Deployment Challenges

We conduct an empirical study to examine the large trade-off

space offered by different DNN designs and system settings

(Sec. 2.1), and the timing variability of inference (Sec. 2.2).

Embedded CPU1 CPU2 GPU

CPU

ARM

Cortex A-15

@2.0 GHz

Core-i7

@2.2 GHz

Xeon(R)

Gold 6126

@2.60GHz

Core-i7

@2.2 GHz

GPU none none none RTX 2080

Memory DDR3 2G DDR4 16G DDR4 16G*12 DDR4 16G

LLC 2MB 9MB 19.25MB 9MB

Table 1: Hardware platforms used in our experiments

ID Task DNN Models Datasets

IMG1 Image VGG16 [78] ILSVRC2012

IMG2 Classification ResNet50 [29] (ImageNet)

NLP1 Sentence Prediction RNN Penn Treebank [59]

NLP2 Question Bert [17] Stanford Q&A

Answering Dataset (SQuAD) [71]

Table 2: ML tasks and benchmark datasets in our experiments

We use two canonical machine learning tasks, with

state-of-the-art networks and common data-sets (see Table

2) on a diverse set of hardware platforms, representing

embedded systems, laptops (CPU1), CPU servers (CPU2),

and GPU platforms (see Table 1). The two tasks, image

classification and natural language processing (NLP), are

often deployed with deadlines—e.g., for motion tracking [40]

and simultaneous interpretation [56]—and both have received

wide attention leading to a diverse set of DNN models.

2.1 Understanding the Tradeoffs

Tradeoffs from DNNs We run all 42 image classification

models provided by the Tensorflow website [76] on the
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Figure 3: Tradeoffs for ResNet50 at different power settings

(CPU2). (Numbers inside circles are power limit settings.)

50000 images from ImageNet [16], and measure their average

latency, accuracy (error rate), and energy consumption. The

results from CPU2 are shown in Figure 2. We can clearly see

two trends from the figure, which hold on other machines.

First, different DNN models offer a wide spectrum of

accuracy (error rate in figure), latency, and energy. As shown

in the figure, the fastest model runs almost 18× faster than

the slowest one and the most accurate model has about 7.8×
lower error rate than the least accurate. These models also

consume a wide range—more than 20×—of energy usage.

Second, there is no magic DNN that offers both the best

accuracy and the lowest latency, confirming the intuition that

there exists a tradeoff between DNN accuracy and resource

usage. Of course, some DNNs offer better tradeoffs than

others. In Figure 2, all the networks sitting above the lower-

convex-hull curve represent sub-optimal tradeoffs.

Tradeoffs from system settings We run ResNet50 under

31 power settings from 40–100W on CPU2. We consider a

sensor processing scenario with periodic inputs, setting the

period to the latency under 40W cap. We then plot the average

energy consumed for the whole period (run-time plus idle

energy) and the average inference latency in Figure 3.

The results reflect two trends, which hold on other

machines. First, a large latency/energy space is available by

changing system settings. The fastest setting (100W) is more

than 2× faster than the slowest setting (40W). The most

energy-hungry setting (64W) uses 1.3× more energy than

the least (40W). Second, there is no easy way to choose the

best setting. For example, 40W offers the lowest energy, but

highest latency. Furthermore, most of these points are sub-

optimal in terms of energy and latency tradeoffs. For example,

84W should be chosen for extremely low latency deadlines,

but all other nearby points (from 52–100) will harm latency,

energy or both. Additionally, when deadlines change or when

there is resource contention, the energy-latency curve also

changes and different points become optimal.

Summary: DNN models and system-resource settings

offer a huge trade-off space. The energy/latency tradeoff

space is not smooth (when accounting for deadlines and

idle power) and optimal operating points cannot be found

with simple gradient-based heuristics. Thus, there is a great
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Figure 4: Latency variance across inputs for different tasks

and hardware (Most tasks have 3 boxplots for 3 hardware

platforms, CPU1-2, GPU from left to right; NLP1 has an

extra boxplot for Embedded; other tasks run out of memory

on Embedded; every box shows the 25th–75th percentile;

points beyond the whiskers are >90th or <10th).

opportunity and also a great challenge in picking different

DNN models and system-resource settings to satisfy inference

latency, accuracy, and energy requirements.

2.2 Understanding Variability

To understand how DNN-inference varies across inputs,

platforms, and run-time environment and hence how (not)

helpful is off-line profiling, we run a set of experiments below,

where we feed the network one input at a time and use 1/10

of the total data for warm up, to emulate real-world scenarios.

We plot the inference latency without and with co-located

jobs in Figure 4 and 5, and we see several trends.

First, deadline violation is a realistic concern. Image

classification on video has deadlines ranging from 1 second

to the camera latency (e.g., 1/60 seconds) [40]; the two NLP

tasks, have deadlines around 1 second [64]. There is clearly no

single inference task that meets all deadlines on all hardware.

Second, the inference variation among inputs is relatively

small particularly when there are no co-located jobs (Fig. 4),

except for that in NLP1, where this large variance is mainly

caused by different input lengths. For other tasks, outlier

inputs exist but are rare.

Third, the latency and its variation across inputs are both

greatly affected by resource contention. Comparing Figure 5

with Figure 4, we can see that the co-located job has increased

both the median latency, the tail inference, and the difference

between these two for all tasks on all platforms. This trend

also applies to other contention cases.

While the discussion above is about latency, similar

conclusions apply to inference accuracy and energy: the

accuracy typically drops to close to 0 when the inference time

exceeds the latency requirement, and the energy consumption

naturally changes with inference time.
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Figure 5: Latency variance with co-located jobs (the memory-

intensive STREAM benchmark [60] co-located on Embedded,

CPU1-2; GPU-intensive Backprop [8] co-located on GPU)

Summary: Deadline violations are realistic concerns and

inference latency varies greatly across platforms, under

contention, and sometimes across inputs. Clearly, sticking to

one static DNN design across platforms and workloads leads

to an unpleasant trade-off: always meeting the deadline by

sacrificing accuracy or energy in most settings, or achieving

a high accuracy some times but exceeding the deadline in

others. Furthermore, it is also sub-optimal to make run-time

decisions based solely on off-line profiling, considering the

variation caused by run-time contention.

2.3 Understanding Potential Solutions

We now show how confining adaptation to a single layer (just

application or system) is insufficient. We run the ImageNet

classification on CPU1. We examine a range of latency

(0.1s-0.7s) and accuracy constraints (85%-95%), and try

meeting those constraints while minimizing energy by either

(1) configuring just the DNN (selecting a DNN from a

family, like that in Figure 2) or (2) configuring just the

system (by selecting resources to control energy–latency

tradeoffs as in Figure 3). We compare these single-layer

approaches to one that simultaneously picks the DNN and

system configuration. As we are concerned with the ideal

case, we create oracles by running 90 inputs in all possible

DNN and system configurations, from which we find the best

configuration for each input. The App-level oracle uses the

default system setting. The Sys-level oracle uses the default

(highest accuracy) DNN.

Figure 6 shows the results. As we have a three dimensional

problem—meeting accuracy and latency constraints with

minimal energy—we linearize the constraints and show them

on the x-axis (accuracy is faster changing, with latency slower,

so each latency bin contains all accuracy goals). There

are several important conclusions here. First, the App-only

approach meets all possible accuracy and latency constraints,

while the Sys-only approach cannot meet any constraints

below 0.3s. Second, across the entire constraint range, App-
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Figure 6: Minimize energy task with latency and accuracy

constraint @ CPU1. (∞ means unable to meet the constraints)

only consumes significantly more energy than Combined

(60% more on average). The intuition behind Combined’s

superiority is that there are discrete choices for DNNs; so

when one is selected, there are almost always energy saving

opportunities by tailoring resource usage to that DNN’s needs.

Summary: Combining DNN and system level approaches

achieves better outcomes. If left solely to the application,

energy will be wasted. If left solely to the system, many

achievable constraints will not be met.

3 ALERT Run-time Inference Management

ALERT’s runtime system navigates the large tradeoff space

created by combining DNN-level and system-level adaptation.

ALERT meets user-specified latency, accuracy, and energy

constraints and optimization goals while accounting for run-

time variations in environment or the goals themselves.

3.1 Inputs & Outputs of ALERT

ALERT’s inputs are specifications about (1) the adaption

options, including a set of DNN models D= {di | i = 1 · · ·K}
and a set of system-resource settings, expressed as different

power-caps P= {Pj | j = 1 · · ·L}; and (2) the user-specified

requirements on latency, accuracy, and energy usage, which

can take the form of meeting constraints in any two of these

three dimensions while optimizing the third. ALERT’s output

is the DNN model di ∈ D and the system-resource setting

p j ∈ P for the next inference-task input.

Formally, ALERT selects a DNN di and a system-resource

setting p j to fulfill either of these user-specified goals.

Maximizing inference accuracy q (minimizing error) for

an energy budget Egoal and inference deadline Tgoal:

argmax
i, j

qi, j s.t. ei, j ≤ Egoal ∧ ti, j ≤ Tgoal (1)

Minimizing the energy use e for an accuracy goal Qgoal

and inference deadline Tgoal:

argmin
i, j

ei, j s.t. qi, j ≥ Qgoal ∧ ti, j ≤ Tgoal (2)

We omit the discussion of meeting energy and accuracy

constraints while minimizing latency as it is a trivial extension

of the discussed techniques and we believe it to be the least

practically useful. We also omit the problem of optimizing

all three dimensions, as it creates a feasibility problem,

leaving nothing for optimization—lowest latency and highest

accuracy are impractical to achieve simultaneously.

Generality Along the DNN-adaptation side, the input DNN

set can consist of any DNNs that offer different accuracy,

latency, and energy tradeoffs; e.g., those in Figure 3. In

particular, ALERT can work with either or both of the broad

classes of DNN adaptation approaches that have arisen

recently, including: (1) traditional DNNs where the adaptation

option should be selected prior to starting an inference task

[20,22,61,84,89] and (2) anytime DNNs that produce a series

of outputs as they execute [34, 35, 49, 52, 82, 86, 88]. These

two classes are similar in that they both vary things like the

network depth or width to create latency/accuracy tradeoffs.

On the system-resource side, ALERT uses a power cap

as the proxy to system resource usage. Since both hardware

[13] and software resource managers [33, 72, 90] can convert

power budgets into optimal performance resource allocations,

ALERT is compatible with many different schemes from both

commercial products and the research literature.

3.2 ALERT Workflow

ALERT works as a feedback controller. It follows four steps

to pick the DNN and resource settings for each input n:

1) Measurement. ALERT records the processing time,

energy usage, and computes inference accuracy for n−1.

2) Goal adjustment. ALERT updates the time goal Tgoal

if necessary, considering the potential latency-requirement

variation across inputs. In some inference tasks, a set of inputs

share one combined requirement (e.g., in the NLP1 task in

Table 2, all the words in a sentence are processed by a DNN

one by one and share one sentence-wise deadline) and hence

delays in previous input processing could greatly shorten the

available time for the next input [1,47]. Additionally, ALERT

sets the goal latency to compensate for its own, worst-case

overhead so that ALERT itself will not cause violations.

3) Feedback-based estimation. ALERT computes the

expected latency, accuracy, and energy consumption for every

combination of DNN model and power setting.

4) Picking a configuration. ALERT feeds all the updated

estimations of latency, accuracy, and energy into Eqs. 1 and 2,

and gets the desired DNN model and power-cap setting for n.

The key task is step 3: the estimation needs to be accurate

and fast. In the remainder of this section, we discuss key ideas

and the exact algorithm of our feedback-based estimation.
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3.3 Key Ideas of ALERT Estimation

Strawman Solving Eqs. 1 and 2 would be trivially easy

if the deployment environment is guaranteed to match the

training and profiling environment: we could estimate ti, j to

be the average (or worst case, etc) inference time t
prof
i, j over

a set of profiling inputs under model di and power setting

p j. However, this approach does not work given the dynamic

input, contention, and requirement variation.

Next, we present the key ideas behind how ALERT

estimates the inference latency, accuracy, and energy

consumption under model di and power setting p j.

How to estimate the inference latency ti, j? To handle the

run-time variation, a potential solution is to apply an estimator,

like a Kalman filter [55], to make dynamic predictions based

on recent history about inferences under model di and power

p j. The problem is that most models and power settings

will not have been picked recently and hence would have

no recent history to feed into the estimator. This problem is a

direct example of the challenge imposed by the large space

of combined application and system options.

Idea 1: Handle the large selection space with a single

scalar value. To make effective online estimation for

all combinations of models and power settings, ALERT

introduces a global slow-down factor ξ to capture how the

current environment differs from the profiled environment

(e.g., due to co-running processes, input variation, or other

changes). Such an environmental slow-down factor is

independent from individual model or power selection. It

can fully leverage execution history, no matter which models

and power settings were recently used; it can then be used to

estimate ti, j based on t
prof
i, j for all di and p j combinations.

Applying a global slowdown factor for all combinations

of application and system-level settings is crucial for ALERT

to make quick decisions for every inference task. Although

it is possible that some perturbations may lead to different

slowdowns for different configurations, the slight loss of

accuracy here is out-weighed by the benefit of having a simple

mechanism that allows prediction even for configurations that

have not been used recently.

This idea is also novel for ALERT, as previous cross-stack

management systems all use much more complicated models

to estimate and select different setting combinations (e.g.,

using model predictive control to estimate combinations of

settings [57]). ALERT’s global slowdown factor is based

on several unique features of DNN families that accomplish

the same task with different accurarcy/latency tradeoffs. We

categorize these features as: (1) similarity of code paths

and (2) proportionality of structure. The first is based on

the observation that DNNs do not have complex conditional

code dependences, so we do not need to worry about the

case where different inputs would exercise very different

code paths. Thus, what ALERT learns about latency, accuracy,

and energy for one input will always inform it about future

inputs. The second feature refers to the fact that as DNNs in a

family scale in latency, the proportion of different operations

tend to be similar, so what ALERT learns about one DNN

in the family generally applies to other DNNs in the same

family. These properties of DNNs do not hold for many

other types of software, where different inputs or additional

functionality can invoke entirely different code paths, with

different resource requirements or responses.

How to estimate the accuracy under a deadline? Given

a deadline Tgoal, the inference accuracy delivered by model

di and power setting p j is determined by three factors, as

shown in Eq. 3: (1) whether the inference result, which takes

time ti, j, can be generated before the deadline Tgoal; (2) if yes,

the accuracy is determined by the model di;
2 (3) if not, the

accuracy drops to that offered by a backup result qfail. For

traditional DNN models, without any output at the deadline, a

random guess will be used and qfail will be much worse than

qi. For anytime DNN models that output multiple results as

they are ready, the backup result is the latest output [34, 35,

49, 52, 82, 86, 88], which we discuss more in Section 3.5.

qi, j[Tgoal] =

{

qi , if ti, j ≤ Tgoal

qfail , otherwise
(3)

A potential solution to estimate accuracy qi, j at the deadline

Tgoal is to simply feed the estimated ti, j into Eq. 3. However,

this simple approach fails to account for two issues. First,

while DNNs are generally well-behaved, significant tail

effects are possible (see Figure 4). Second, Eq. 3 is not linear,

and is best understood as a step function, where a failure

to complete inference by the deadline results in a worthless

inference output (q f ail). Combined, these two issues mean

that for tail inputs, inference will produce a worthless result;

i.e., accuracy is not proportional to latency, but can easily fall

to zero for tail inputs. The tail will, of course, be increased if

there is any unexpected resource contention. Therefore, the

simple approach of using the mean latency prediction fails to

account for the non-linear affects of latency on accuracy.

Idea 2: handle the runtime variation and account for

tail behavior To handle the run-time variability mentioned in

Section 1, ALERT treats the execution time ti, j and the global

slow-down factor ξ as random variables drawn from a normal

distribution. ALERT uses a recently proposed extension to the

Kalman filter to adaptively update the noise covariance [2].

While this extension was originally proposed to produce better

estimates of the mean, a novel approach in ALERT is using

this covariance estimate as a measure of system volatility.

ALERT uses this Kalman filter extension to predict not just

the mean accuracy, but also the likelihood of meeting the

accuracy requirements in the current operating environment.

Section 5.3 shows the advantages of our extensions.

2Since it could be infeasible to calculate the exact inference accuracy at

run time, ALERT uses the average training accuracy of the selected DNN

model di, denoted as qi, as the inference accuracy, as long as the inference

computation finishes before the specified deadline.
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How to minimize energy or satisfy energy constraints?

Minimizing energy or satisfying energy constraints is

complicated, as the energy is related to, but cannot be easily

calculated by, the complexity of the selected model di and

the power cap p j. As discussed in Section 2.2, the energy

consumption includes both that used during the inference

under a given model di and that used during the inference-

idle period, waiting for the next input. Consequently, it is not

straightforward to decide which power setting to use.

Idea 3. ALERT leverages insights from previous research,

which shows that energy for latency-constrained systems

can be efficiently expressed as a mathematical optimization

problem [7,48,50,62]. These frameworks optimize energy by

scheduling available configurations in time. Time is assigned

to configurations so that the average performance hits the

desired latency target and the overall energy (including idle

energy) is minimal. The key is that while the configuration

space is large, the number of constraints is small (typically just

two). Thus, the number of configurations assigned a non-zero

time is also small (equal to the number of constraints) [48].

Given this structure, the optimization problem can be solved

using a binary search over available configurations, or even

more efficiently with a hash table [62].

The only difficulty applying prior work to ALERT is that

prior work assumed there was only a single job running

at a time, while ALERT assumes that other applications

might contend for resources. Thus, ALERT cannot assume

that there is a single system-idle state that will be used

whenever the DNN is not executing. To address this challenge,

ALERT continually estimates the system power when DNN

inference is idle (but other non-inference tasks might be

active), pDNNidle, transforming Eq. 1 is transformed into:

argmax
i, j

qi, j[Tgoal] s.t. pi, j· ti, j + pDNNidle· tDNNidle ≤ Egoal

(4)

3.4 ALERT Estimation Algorithm

Global Slow-down Factor ξ. As discussed in Idea-1, ALERT

uses ξ to reflect how the run-time environment differs from

the profiling environment. Conceptually, if the inference

task under model di and power-cap p j took time ti, j at run

time and took t
prof
i, j on average to finish during profiling, the

corresponding ξ would be ti, j/t
pro f
i, j . ALERT estimates ξ using

recent execution history under any model or power setting.

Specifically, after an input n−1, ALERT computes ξ(n−1)

as the ratio of the observed time t
(n−1)
i, j to the profiled time

t
prof
i, j , and then uses a Kalman Filter3 to estimate the mean µ(n)

and variance (σ(n))2 of ξ(n) at input n. ALERT’s formulation

is defined in Eq. 5, where K(n) is the Kalman gain variable;

3A Kalman Filter is an optimal estimator that assumes a normal

distribution and estimates a varying quantity based on multiple potentially

noisy observations [55].

R is a constant reflecting the measurement noise; Q(n) is the

process noise capped with Q(0). We set a forgetting factor of

process variance α = 0.3 [2]. ALERT initially sets K(0) = 0.5,

R = 0.001, Q(0) = 0.1, µ(0) = 1, (σ(0))2 = 0.1, following the

standard convention [55].









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


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






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
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

Q(n) = max{Q(0),αQ(n−1)+(1-α)(K(n−1)y(n−1))2}

K(n) =
(1−K(n−1))(σ(n−1))2 +Q(n)

(1−K(n−1))(σ(n−1))2 +Q(n)+R

y(n) = t
(n−1)
i, j /t

prof
i, j −µ(n−1)

µ(n) = µ(n−1)+K(n)y(n)

(σ(n))2 = (1−K(n−1))(σ(n−1))2 +Q(n)

(5)
Then, using ξ(n), ALERT estimates the inference time of

input n under any model di and power cap p j: t
(n)
i, j = ξ(n) ∗ t

prof
i, j .

Probability of meeting the deadline. Given the Kalman

Filter estimation for the global slowdown factor, we can

calculate Pri, j , the probability that the inference completes

before the deadline Tgoal . ALERT computes this value using

a cumulative distribution function (CDF) based on the normal

distribution of ξ(n) estimated by the Kalman Filter:

Pri, j = Pr[ξ(n)· tprof
i, j ≤ Tgoal ] =CDF(ξ(n)· tprof

i, j ,Tgoal)

=CDF(µ(n)· tprof
i, j ,σ(n),Tgoal)

(6)

Accuracy. As discussed in Idea-2, ALERT computes the

estimated inference accuracy q̂i, j[Tgoal] by considering ti, j as

a random variable that follows normal distribution with its

mean and variance computed based on that of ξ. Here qi, j

represents the inference accuracy when the DNN inference

finishes before the deadline, and q f ail is the accuracy of a

random guess:

q̂i, j[Tgoal ] =E(qi, j[Tgoal ] | t
(n)
i, j )

=E(qi, j[Tgoal ] | ξ(n)· tprof
i, j )

=Pri, j·qi, j +(1−Pri, j)·q f ail

ξ(n) ∼N (µ(n), (σ(n))2)

(7)

Energy. As discussed in Idea-3, ALERT predicts energy

consumption by separately estimating energy during (1) DNN

execution: estimated by multiplying the power limit by the

estimated latency and (2) between inference inputs: estimated

based on the recent history of inference idle power using

the Kalman Filter in Eq. 8. φ(n) is the predicted DNN-idle

power ratio, M(n) is process variance, S is process noise, V

is measurement noise, and W (n) is the Kalman Filter gain.

ALERT initially sets M(0) = 0.01, S = 0.0001, V = 0.001.






















W (n) =
M(n−1)+S

M(n−1)+S+V

M(n) = (1−W (n))(M(n−1)+S)

φ(n) = φ(n−1)+W (n)(pidle/p
(n−1)
i, j −φ(n−1))

(8)
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ALERT then predicts the energy by Eq. 9. Unlike Eq. 7 that

uses probabilistic estimates, energy estimation is calculated

without the notion of probability. The inference power is the

same no matter the inference misses or meets the deadline, as

ALERT sets power limits. Therefore it is safe to estimate the

energy by its mean without considering the distribution of its

possible latency. See our extended report [87] on estimating

energy by its worst case latency percentile.

e
(n)
i, j = pi, j·ξ

(n)· tprof
i, j +φ(n)· pi, j·(Tgoal − (ξ(n)· tprof

i, j )) (9)

3.5 Integrating ALERT with Anytime DNNs

An anytime DNN is an inference model that outputs a series of

increasingly accurate inference results—o1, o2, ... ok, with ot

more reliable than ot−1. A variety of recent works [35, 49, 52,

82,86,88] have proposed DNNs supporting anytime inference,

covering a variety of problem domains. ALERT easily works

with not only traditional DNNs but also Anytime DNNs. The

only change is that qfail in Eq. 3 no longer corresponds to a

random guess. That is, when the inference could not generate

its final result ok by the deadline Tgoal, an earlier result ox can

be used with a much better accuracy than that of a random

guess. The updated accuracy equation is below:

q., j =



















qk , if tk, j ≤ tgoal

qk−1 , if tk−1, j ≤ tgoal < tk, j

· · ·

qfail , otherwise

(10)

Existing anytime DNNs consider latency but not energy

constraints—an anytime DNN will keep running until the

latency deadline arrives and the last output will be delivered

to the user. ALERT naturally improves Anytime DNN

energy efficiency, stopping the inference sometimes before

the deadline based on its estimation to meet not only latency

and accuracy, but also energy requirements.

Furthermore, ALERT can work with a set of traditional

DNNs and an Anytime DNN together to achieve the best

combined result. The reason is that Anytime DNNs generally

sacrifice accuracy for flexibility. When we feed a group of

traditional DNNs and one Anytime DNN to construct the

candidacy set D, with Eq. 7, ALERT naturally selects the

Anytime DNN when the environment is changing rapidly

(because the expected accuracy of an anytime DNN will be

higher given that variance), and the regular DNN, which has

slightly higher accuracy with similar computation, when it is

stable, getting the best of both worlds.

In our evaluation, we will use the nested design from [86],

which provides a generic coverage of anytime DNNs.

3.6 Limitations and Discussions

Assumptions of the Kalman Filter. ALERT’s prediction,

particularly the Kalman Filter, relies on the feedback from

recent input processing. Consequently, it requires at least one

input to react to sudden changes. Additionally, the Kalman

filter formulations assume that the underlying distributions

are normal, which may not hold in practice. If the behavior is

not Gaussian, the Kalman filter will produce bad estimations

for the mean of ξ for some amount of time.

ALERT is specifically designed to handle data that is

not drawn from a normal distribution, using the Kalman

Filter’s covariance estimation to measure system volatility

and accounting for that in the accuracy/energy estimations.

Consequently, after just 2–3 such bad predictions of means,

the estimated variance will increase, which will then trigger

ALERT to pick anytime DNN over traditional DNNs or pick a

low-latency traditional DNN over high-latency ones, because

the former has a higher expected accuracy under high variance.

So—worst case—ALERT will choose a DNN with slightly

less accuracy than what could have been used with the right

model. Users can also compensate for extremely aberrant

latency distributions by increasing the value of Q(0) in Eq.

5. Section 5.3 shows ALERT performs well even when the

distribution is not normal.

Probabilistic guarantees. ALERT provides probabilistic,

not hard, guarantees. As ALERT estimates not just average

timing, but the distributions of possible timings, it can provide

arbitrarily many nines of assurance that it will meet latency

or accuracy goals but cannot provide 100% guarantee (see

our extended report [87] on how to configure ALERT to

provide guarantees with a specific probability). Providing

100% guarantees requires the worst case execution time

(WCET), an upper bound on the highest possible latency.

ALERT does not assume the availability of such information

and hence cannot provide hard guarantees [6].

Safety guarantees. While ALERT does not explicitly

model safety requirements, it can be configured to prioritize

accuracy over other dimensions. When users particularly

value safety (e.g., auto-driving), they could set a high accuracy

requirement or even remove the energy constraints.

Concurrent inference jobs. ALERT is currently designed

to support one inference job at a time. To support multiple

concurrent inference jobs, future work needs to extend

ALERT to coordinate across these concurrent jobs. We expect

the main idea of ALERT, such as using a global slowdown

factor to estimate system variation, to still apply.

Finally, how the inference behaves ultimately depends not

only on ALERT, but also on the DNN models and system-

resource setting options. As shown in Section 5, ALERT

helps make the best use of supplied DNN models, but does

not eliminate the difference between different DNN models.

4 Implementation

We implement ALERT for both CPUs and GPUs. On CPUs,

ALERT adjusts power through Intel’s RAPL interface [13],

which allows software to set a hardware power limit. On

360    2020 USENIX Annual Technical Conference USENIX Association



Run-time environment setting

Default Inference task has no co-running process

Memory
Co-locate with memory-hungry STREAM [60] (@CPU)

Co-locate with Backprop from Rodinia-3.1 [8] (@GPU)

Compute
Co-locate with Bodytrack from PARSEC-3.0 [5] (@CPU)

Co-locate with the forward pass of Backprop [8] (@GPU)

Ranges of constraint setting

Latency 0.4x–2x mean latency* of the largest Anytime DNN

Accuracy Whole range achievable by trad. and Anytime DNN

Energy Whole feasible power-cap ranges on the machine

Task Trad. DNN Anytime [86] Fixed deadline?

Image Classifi. Sparse ResNet Depth-Nest Yes

Sentence Pred. RNN Width-Nest No

Scheme ID DNN selection Power selection

Oracle Dynamic optimal Dynamic optimal

OracleStatic Static optimal Static optimal

App-only One Anytime DNN System Default

Sys-only Fastest traditional DNN State-of-Art [37]

No-coord Anytime DNN w/o coord. with Power State-of-Art [37]

ALERT ALERT default ALERT default

ALERTAny ALERT w/o traditional DNNs ALERT default

ALERTTrad ALERT w/o Anytime DNNs ALERT default

Table 3: Settings and schemes under evaluation (* measured

under default setting without resource contention)

GPUs, ALERT uses PyNVML to control frequency and builds

a power-frequency lookup table. ALERT can also be applied

to other approaches that translate power limits into settings

for combinations of resources [33, 36, 72, 90].

In our experiments, ALERT considers a series of power

settings within the feasible range with 2.5W interval on our

test laptop and a 5W interval on our test CPU server and GPU

platform, as the latter has a wider power range than the former.

The number of power buckets is configurable.

ALERT incurs small overhead in both scheduler

computation and switching from one DNN/power-setting

to another, just 0.6–1.7% of an input inference time. We

explicitly account for overhead by subtracting it from the

user-specified goal (see step 2 in Section 3.2).

Users may set goals that are not achievable. If ALERT

cannot meet all constraints, it prioritizes latency highest, then

accuracy, then power. This hierarchy is configurable.

5 Experimental Evaluation

We apply ALERT to different inference tasks on both CPU

and GPU with and without resource contention from co-

located jobs. We set ALERT to (1) reduce energy while

satisfying latency and accuracy requirements and (2) reduce

error rates while satisfying latency and energy requirements.

We compare ALERT with both oracle and state-of-the-art

schemes and evaluate detailed design decisions.

5.1 Methodology

Experimental setup. We use the three platforms listed in

Table 1: CPU1, CPU2, and GPU. On each, we run inference

Minimize Energy Minimize Error
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Figure 7: Average performance normalized to OracleStatic.

Violations% is %-of-constraint-settings under which a scheme

incurs >10% violation of all inputs. (Smaller is better)

tasks4, image classification and sentence prediction, under

three different resource-contention scenarios:

• No contention: the inference task is the only job running,

referred to as “Default”;

• Memory dynamic: the inference task runs together with

a memory-intensive job that repeatedly stops and restarts,

representing dynamic memory resource contention,

referred to as “Memory”;

• Computation dynamic: the inference task runs together

with a computation-intensive job that repeatedly stops

and restarts, representing dynamic computation resource

contention, referred to as “Compute”.

Schemes in evaluation. We give ALERT three different

DNN sets, traditional DNN models (ALERTTrad), an Anytime

DNN (ALERTAny), and both (ALERT), and compare it with

two oracle and three state-of-the-art schemes (Table 3).

The two Oracle∗ schemes have perfect predictions for

every input under every DNN/power setting (i.e., impractical).

Specifically, the “Oracle" allows DNN/power settings to

change across inputs, representing the best possible results;

the “OracleStatic” has one fixed setting across inputs,

representing the best results without dynamic adaptation.

The three state-of-the-art approaches include the following:

• “App-only” conducts adaptation only at the application

level through an Anytime DNN [86];

• “Sys-only”adapts only at the system level following an

existing resource-management system that minimizes

energy under soft real-time constraints [62]5 and uses

the fastest candidate DNN to avoid latency violations;

• “No-coord” uses both the Anytime DNN for application

adaptation and the power-management scheme [62] to

adapt power, but with these two working independently.

5.2 Overall Results

Table 4 shows the results for all schemes for different tasks

on different platforms and environments. Each cell shows

4For GPU, we only run image classification task there, as the RNN-based

sentence prediction task is better suited for CPU [91].
5Specifically, this adaptation uses a feedback scheduler that predicts

inference latency based on Kalman Filter.
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Plat. DNN Work. ALERT
ALERT-

Any

Sys-

only

App-

only

No-

coord
Oracle ALERT

ALERT-

Any

Sys-

only

App-

only

No-

coord
Oracle

Energy in Minimizing Energy Task Error Rate in Minimizing Error Task

CPU1

Sparse

Resnet

Idle 0.64 0.68 1.0819 1.19 0.941 0.64 0.91 0.92 1.35 1.023 0.913 0.89

Comp. 0.57 0.58 0.8019 1.30 1.391 0.57 0.38 0.39 0.51 1.3524 0.396 0.36

Mem. 0.53 0.55 0.7619 1.43 1.372 0.53 0.34 0.34 0.46 1.4728 0.392 0.33

RNN

Idle 0.61 0.65 1.0130 1.34 0.952 0.61 0.87 0.87 0.87 0.8721 0.8714 0.86

Comp. 0.60 0.57 0.9330 1.21 1.265 0.60 0.42 0.44 0.50 0.4628 0.4623 0.42

Mem. 0.54 0.56 0.9531 1.45 1.249 0.54 0.45 0.45 0.50 0.5728 0.5427 0.44

CPU2

Sparse

Resnet

Idle 0.93 0.88 0.9620 0.99 1.18 0.91 0.68 0.68 0.97 0.792 0.7124 0.66

Comp. 0.59 0.57 0.6023 1.00 1.01 0.58 0.58 0.57 0.85 0.7416 0.7129 0.55

Mem. 0.38 0.37 0.3919 0.65 0.6313 0.38 0.24 0.82 0.32 0.3317 0.7531 0.21

RNN

Idle 0.87 0.99 0.8034 1.04 1.006 0.83 0.84 0.85 0.99 0.8914 0.891 0.84

Comp. 0.60 0.60 0.5534 0.99 0.867 0.60 0.51 0.52 0.60 0.5321 0.5417 0.52

Mem. 0.52 0.51 0.4333 0.70 0.8514 0.52 0.26 0.27 0.31 0.2821 0.2717 0.26

GPU
Sparse

Resnet

Idle 0.97 0.99 0.9220 1.36 1.37 0.92 0.90 0.92 1.22 1.092 1.7412 0.86

Comp. 0.96 0.97 0.9420 1.66 1.77 0.89 0.32 0.34 1.28 1.2123 2.5018 0.30

Mem. 0.97 1.01 0.9120 1.39 1.43 0.91 0.89 0.92 1.22 1.112 1.8114 0.86

Harmonic mean 0.64 0.64 0.7327 1.11 1.084 0.62 0.46 0.47 0.63 0.6716 0.6315 0.45

Table 4: Average energy consumption and error rate normalized to OracleStatic, smaller is better. (Each cell is averaged over 35–40

constraint settings; superscript: # of constraint settings violated for >10% inputs and hence excluded from energy average.)

the average energy or accuracy under 35–40 combinations

of latency, accuracy, and energy constraints (the settings

are detailed in Table 3), normalized to the OracleStatic

result. Figure 7 compares these results, where lower bars

represent better results and lower *s represent fewer constraint

violations. ALERT and ALERT Any both work very well

for all settings. They outperform state-of-the-art approaches,

which have a significant number of constraint violations, as

visualized by the many superscripts in Table 4 and the high

* positions in Figure 7. ALERT outperforms OracleStatic

because it adapts to dynamic variations. ALERT also comes

very close to the theoretically optimal Oracle.

Comparing with Oracles. As shown in Table 4,

ALERT achieves 93-99% of Oracle’s energy and accuracy

optimization while satisfying constraints. Oraclestatic, the

baseline in Table 4, represents the best one can achieve by

selecting 1 DNN model and 1 power setting for all inputs.

ALERT greatly out-performs Oraclestatic, reducing its energy

consumption by 3–48% while satisfying accuracy constraints

(36% in harmonic mean) and reducing its error rate by 9-66%

while satisfying energy constraints (54% in harmonic mean).

Figure 8 shows a detailed comparison for the energy

minimization task. The figure shows the range of performance

under all requirement settings (i.e., the whiskers). ALERT

not only achieves similar mean energy reduction, its whole

range of optimization behavior is also similar to Oracle. In

comparison, OracleStatic not only has the worst mean but also

the worst tail performance. Due to space constraints, we omit

the figures for other settings, where similar trends hold.

ALERT has more advantage over Oraclestatic on CPUs than

on GPUs. The CPUs have more empirical variance than the

GPU, so they benefit more from dynamic adaptation. The

GPU experiences significantly lower dynamic fluctuation so

the static oracle makes good predictions.

ALERT satisfies the constraint in 99.9% of tests for image

classification and 98.5% of those for sentence prediction. For

the latter, due to the large input variability (NLP1 in Figure 4),

some input sentences simply cannot complete by the deadline

even with the fastest DNN. There the Oracle fails, too.

Note that, these Oracle schemes not only have perfect—

and hence, impractical—prediction capability, but they also

have no overhead. In contrast, ALERT is running on the same

machines as the DNN workloads. All results include ALERT’s

run-time latency and power overhead.

Comparing with State-of-the-Art. For a fair comparison,

we focus on ALERTAny, as it uses exactly the same DNN

candidate set as "Sys-only", "App-only", and "No-coord".

Across all settings, ALERTAny outperforms the others.

The System-only solution suffers from not being able to

choose different DNNs under different runtime scenarios.

As a result, it performs much worse than ALERTAny in

satisfying accuracy requirements or optimizing accuracy. For

the former (left side of Table 4 and Figure 7), it creates

accuracy violations in 68% of the settings as shown in Figure

7; for the latter (right side of Table 4 and Figure 7), although

capable of satisfying energy constraints, it introduces 34%

more error than ALERTAny.

The Application-only solution that uses an Anytime

DNN suffers from not being able to adjust to the energy

requirements: it consumes 73% more energy in energy-

minimizing tasks (left side of Table 4 and Figure 7) and

introduces many energy-budget violations particularly under

resource contention settings (right side of Table 4 and Fig. 7).

The no-coordination scheme is worse than both System-

and Application-only. It violates constraints in both tasks

with 69% more energy and 34% more error than ALERTAny.

Without coordination, the two levels can work at cross

purposes; e.g., the application switches to a faster DNN to

save energy while the system makes more power available.
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Figure 8: ALERT versus Oracle and OracleStatic on minimize energy task (Lower is better). (whisker: whole range; circle: mean)

Plat. Work.
ALERT Any Trad ALERT Any Trad

Minimize Energy Task Minimize Error Task

CPU1

Idle 0.64 0.68 0.651 0.91 0.92 0.93

Comp. 0.57 0.58 0.656 0.38 0.39 0.41

Mem. 0.53 0.55 0.533 0.34 0.34 0.35

CPU2

Idle 0.93 0.88 0.951 0.68 0.68 0.69

Comp. 0.59 0.57 0.604 0.58 0.57 0.59

Mem. 0.38 0.37 0.408 0.23 0.24 0.32

GPU

Idle 0.97 0.99 0.95 0.90 0.92 0.89

Comp. 0.97 1.01 0.96 0.89 0.92 0.89

Mem. 0.96 0.97 0.95 0.32 0.34 0.32

Harmonic mean 0.66 0.66 0.673 0.47 0.48 0.50

Table 5: ALERT normalized average energy consumption and

error rate to OracleStatic @ Sparse ResNet (Smaller is better)

5.3 Detailed Results and Sensitivity

Different DNN candidate sets. Table 5 compares the

performance of ALERT working with an Anytime DNN

(Any), a set of traditional DNN models (Trad), and both.

At a high level, ALERT works well with all three DNN

sets. Under close comparison, ALERTTrad violates more

accuracy constraints than the others, particularly under

resource contention on CPUs, because a traditional DNN

has a much larger accuracy drop than an anytime DNN when

missing a latency deadline. Consequently, when the system

variation is large, ALERTTrad selects a faster DNN to meet

latency and thus may not meet accuracy goals. Of course,

ALERTAny is not always the best. As discussed in Section

3.5, Anytime DNNs sometimes have lower accuracy then a

traditional DNN with similar execution time. This difference

leads to the slightly better results for ALERT over ALERTAny.

Figure 9 visualizes the different dynamic behavior of

ALERT (blue curve) and ALERTTrad (orange curve) when

the environment changes from Default to Memory-intensive

and back. At the beginning, due to a loose latency constraint,

ALERT and ALERTTrad both select the biggest traditional

DNN, which provides the highest accuracy within the energy

budget. When the memory contention suddenly starts, this

DNN choice leads to a deadline miss and an energy-budget

violation (as the idle period disappeared), which causes an

accuracy dip. Fortunately, both quickly detect this problem

and sense the high variability in the expected latency. ALERT

switches to use an anytime DNN and a lower power cap.

This switch is effective: although the environment is still

unstable, the inference accuracy remains high, with slight

ups and downs depending on which anytime output finished
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Figure 9: Minimize error rates w/ latency, energy constraints

on CPU1. (Memory contention occurs from about input 46 to

119; Deadline: 1.25× mean latency of largest Anytime DNN

in Default; power limit: 35W.)

before the deadline. Only able to choose from traditional

DNNs, ALERTTrad conservatively switches to much simpler

and hence lower-accuracy DNNs to avoid deadline misses.

This switch does eliminate deadline misses under the highly

dynamic environment, but many of the conservatively chosen

DNNs finish before the deadline (see the Latency panel),

wasting the opportunity to produce more accurate results and

causing ALERTTrad to have a lower accuracy than ALERT.

When the system quiesces, both schemes quickly shift back

to the highest-accuracy, traditional DNN.

Overall, these results demonstrate how ALERT always

makes use of the full potential of the DNN candidate set to

optimize performance and satisfy constraints.

ALERT probabilistic design. A key feature of ALERT is

its use of not just mean estimations, but also their variance.

To evaluate the impact of this design, we compare ALERT to

an alternative design ALERT*, which only uses the estimated

mean to select configurations.

Figure 10 shows the performance of ALERT and ALERT*

in the minimize error task for sentence prediction. Here,

ALERT (blue circles) always performs better than ALERT*.

Its advantage is the biggest when the DNN candidates include

both traditional and Anytime DNNs (i.e., the “Standard”
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in Figure 10). The reason is that traditional DNNs and

Anytime DNN have different accuracy/latency curves, Eq.

3 for the former and Eq. 10 for the latter. ALERT* is

much worse in distinguishing these two by simply using the

mean of estimated latency to predict accuracy. ALERT also

clearly outperforms ALERT* under memory contention with

traditional DNN candidates, as ALERT’s estimation better

captures dynamic system variation. Overall, these results

show ALERT’s probabilistic design is effective.

Sensitivity to latency distribution. ALERT assumes a

Gaussian distribution, but is designed to work for other

distributions (see Section 3.6). As shown in Figure 11, the

observed ξs (red bars) are indeed not a perfect fit for Gaussian

distribution (blue lines), which confirms ALERT’s robustness.

6 Related work

Past resource management systems have used machine

learning [4, 51, 68, 69, 79] or control theory [32, 37, 44, 45,

62, 74, 93] to make dynamic decisions and adapt to changing

environments or application needs. Some also use Kalman

filter because it has optimal error properties [37, 44, 45, 62].

There are two major differences between them and ALERT:

1) prior approaches use the Kalman filter to estimate physical

quantities such as CPU utilization [45] or job latency [37],

while ALERT estimates a virtual quantity that is then used to

update a large number of latency estimates. 2) while variance

is naturally computed as part of the filter, ALERT actually

uses it, in addition to the mean, to help produce estimates that

better account for environment variability.

Past work designed resource managers explicitly to

coordinate approximate applications with system resource

usage [21, 31, 32, 46]. Although related, they manage

applications separately from system resources, which is

fundamentally different from ALERT’s holistic design. When

an environmental change occurs, prior approaches first adjust

the application and then the system serially (or vice versa)

so that the change’s effects on each can be established

independently [31, 32]. That is, coordination is established

by forcing one level to lag behind the other. In practice

this design forces each level to keep its own independent

model and delays response to environmental changes. In

contrast, ALERT’s global slowdown factor allows it to easily

model and update prediction about all application and system

configurations simultaneously, leading to very fast response

times, like the single input delay demonstrated in Figure 9.

Much work accelerates DNNs through hardware [3, 10–12,

19,23,24,27,30,38,43,54,58,66,73,75,83], compiler [9,65],

system [28,53], or design support [25,25,26,39,42,77,81,85].

They essentially shift and extend the tradeoff space, but do

not provide policies for meeting user needs or for navigating

tradeoffs dynamically, and hence are orthogonal to ALERT.

Some research supports hard real-time guarantees for

DNNs [92], providing 100% timing guarantees while

assuming that the DNN model gives the desired accuracy,

the environment is completely predictable, and energy

consumption is not a concern. ALERT provides slightly

weaker timing guarantees, but manages accuracy and power

goals. ALERT also provides more flexibility to adapt to

unpredictable environments. Hard real-time systems would

fail in the co-located scenario unless they explicitly account

for all possible co-located applications at design time.

7 Conclusion

This paper demonstrates the challenges behind the important

problem of ensuring timely, accurate, and energy efficient

neural network inference with dynamic input, contention, and

requirement variation. ALERT achieves these goals through

dynamic and coordinated DNN model selection and power

management based on feedback control. We evaluate ALERT

with a variety of workloads and DNN models and achieve

high performance and energy efficiency.
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