6} usenix
8 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

ALERT: Accurate Learning for Energy
and Timeliness

Chengcheng Wan, Muhammad Santriaji, Eri Rogers, Henry Hoffmann,
Michael Maire, and Shan Lu, University of Chicago

https://www.usenix.org/conference/atc20/presentation/wan

This paper is included in the Proceedings of the
2020 USENIX Annual Technical Conference.
July 15-17, 2020
978-1-939133-14-4

Open access to the Proceedings of the
2020 USENIX Annual Technical Conference
is sponsored by USENIX.

ALERT: Accurate Learning for Energy and Timeliness

Chengcheng Wan, Muhammad Santriaji, Eri Rogers, Henry Hoffmann, Michael Maire, Shan Lu
The University of Chicago

Abstract

An increasing number of software applications incorporate
runtime Deep Neural Networks (DNN5s) to process sensor data
and return inference results to humans. Effective deployment
of DNNs in these interactive scenarios requires meeting
latency and accuracy constraints while minimizing energy, a
problem exacerbated by common system dynamics.

Prior approaches handle dynamics through either (1)
system-oblivious DNN adaptation, which adjusts DNN
latency/accuracy tradeoffs, or (2) application-oblivious
system adaptation, which adjusts resources to change
latency/energy tradeoffs. In contrast, this paper improves
on the state-of-the-art by coordinating application- and
system-level adaptation. ALERT, our runtime scheduler,
uses a probabilistic model to detect environmental volatility
and then simultaneously select both a DNN and a system
resource configuration to meet latency, accuracy, and energy
constraints. We evaluate ALERT on CPU and GPU platforms
for image and speech tasks in dynamic environments.
ALERT’s holistic approach achieves more than 13% energy
reduction, and 27% error reduction over prior approaches that
adapt solely at the application or system level. Furthermore,
ALERT incurs only 3% more energy consumption and 2%
higher DNN-inference error than an oracle scheme with
perfect application and system knowledge.

1 Introduction

1.1 Motivation

Deep neural networks (DNNs) have become a key workload
for many computing systems due to their high inference
accuracy. This accuracy, however, comes at a cost of
long latency, high energy usage, or both. Successful DNN
deployment requires meeting a variety of user-defined,
application-specific goals for latency, accuracy, and often
energy in unpredictable, dynamic environments.

Latency constraints naturally arise with DNN deployments
when inference interacts with the real world as a consumer—

processing data streamed from a sensor—or a producer—
returning a series of answers to a human. For example,
in motion tracking, a frame must be processed at camera
speed [40]; in simultaneous interpretation, translation must be
provided every 2—4 seconds [56]. Violating these deadlines
may lead to severe consequences: if a self-driving vehicle
cannot act within a small time budget, life threatening
accidents could follow [53].

Accuracy and energy requirements are also common and
may vary for different applications in different operating
environments. On one hand, low inference accuracy can lead
to software failures [67,80]. On the other hand, it is beneficial
to minimize DNN energy or resource usage to extend mobile-
battery time or reduce server-operation cost [41].

These requirements are also highly dynamic. For example,
the latency requirement for a job could vary dynamically
depending on how much time has already been consumed by
related jobs before it [53]; the power budget and the accuracy
requirement for a job may switch among different settings
depending on what type of events are currently sensed [1].
Additionally, the latency requirement may change based on
the computing system’s current context; e.g., in robotic vision
systems the latency requirement can change based on the
robot’s latency and distance from perceived pedestrians [18].

Satisfying all these requirements in a dynamic computing
environment where the inference job may compete
for resources against unpredictable, co-located jobs is
challenging. Although prior work addresses these problems
at either the application level or system level separately, each
approach by itself lacks critical information that could be used
to produce better results.

At the application level, different DNN designs—with
different depths, widths, and numeric precisions—provide
various latency-accuracy trade-offs for the same inference
task [26,39,42,77,85]. Even more dynamic schemes have
been proposed that adapt the DNN by dynamically changing
its structure at the beginning of [22, 61, 84, 89] or during
[34,35,49,52,82,86,88] every inference tasks.

Although helpful, these techniques are sub-optimal

USENIX Association

2020 USENIX Annual Technical Conference 353

without considering system-level adaptation options. For
example, under energy pressure, these application-level
adaptation techniques have to switch to lower-accuracy DNNSs,
sacrificing accuracy for energy saving, even if the energy
goal could have been achieved by lowering the system power
setting (if there is sufficient latency budget).

At the system level, machine learning [4, 14,15,51, 63,68,
69,79] and control theory [32,37,44,45,62,70,74,93] based
techniques have been proposed to dynamically assign system
resources to better satisfy system and application constraints.

Unfortunately, without considering the option of
application adaptions, these techniques also reach sub-
optimal solutions. For example, when the current DNN
offers much higher accuracy than necessary, switching to a
lower-precision DNN may offer much more energy saving
than any system-level adaptation techniques. This problem is
exacerbated because, in the DNN design space, very small
drops in accuracy enable dramatic reductions in latency, and
therefore system resource requirements.

A cross-stack solution would enable DNN applications to
meet multiple, dynamic constraints. However, offering such
a holistic solution is non-trivial. The combination of DNN
and system-resource adaptation creates a huge configuration
space, making it difficult to dynamically and efficiently
predict which combination of DNN and system settings will
meet all the requirements optimally. Furthermore, without
careful coordination, adaptations at the application and system
level may conflict and cause constraint violations, like missing
a latency deadline due to switching to higher-accuracy DNN
and lower power setting at the same time.

1.2 Contributions

This paper presents ALERT, a cross-stack runtime system for
DNN inference to meet user goals by simultaneously adapting
both DNN models and system-resource settings.
Understanding the challenges We profile DNN inference
across applications, inputs, hardware, and resource contention
confirming there is a high variation in inference time. This
leads to challenges in meeting not only latency but also energy
and accuracy requirements. Furthermore, our profiling of 42
existing DNNs for image classification confirms that different
designs offer a wide spectrum of latency, energy, and accuracy
tradeoffs. In general, higher accuracy comes at the cost of
longer latency and/or higher energy consumption. These trade-
offs offered provide both opportunities and challenges to
holistic inference management (Section 2).

Run-time inference management We design ALERT, a
DNN inference management system that dynamically selects
and adapts a DNN and a system-resource setting together
to handle changing system environments and meet dynamic
energy, latency, and accuracy requirements’ (Section 3).

TALERT provides probabilistic, not hard guarantees, as the latter requires
much more conservative configurations, often hurting both energy and

DNN family
With Accuracy &
Latency Information

I Input
Stream

Deadline
Accuracy Constraint, DET'MOdeI Inference
tion
Energy Budget EEC Outputs
Predicted > Inferencae
Inference Time Computation

Resource
Selection

Inference Time,
Accuracy, and Energy
Measurement

Figure 1: ALERT inference system

ALERT is a feedback-based run-time. It measures
inference accuracy, latency, and energy consumption; it
checks whether the requirements on these goals are met;
and, it then outputs both system and application-level
configurations adjusted to the current requirements and
operating conditions. ALERT focuses on meeting constraints
in any two dimensions while optimizing the third; e.g.,
minimizing energy given accuracy and latency requirements
or maximizing accuracy given latency and energy budgets.

The key is estimating how DNN and system configurations
interact to affect the goals. To do so, ALERT addresses
three primary challenges: (1) the combined DNN and system
configuration space is huge, (2) the environment may change
dynamically (including input, available resources, and even
the required constraints), and (3) the predictions must be low
overhead to have negligible impact on the inference itself.

ALERT addresses these challenges with a global slow-
down factor, a random variable relating the current
runtime environment to a nominal profiling environment.
After each inference task, ALERT estimates the global
slow-down factor using a Kalman filter. The global
slow-down factor’s mean represents the expected change
compared to the profile, while the variance represents
the current volatility. The mean provides a single scalar
that modifies the predicted latency/accuracy/energy for
every DNN/system configuration—a simple mechanism
that leverages commonality among DNN architectures to
allow prediction for even rarely used configurations (tackle
challenge-1), while incorporating variance into predictions
naturally makes ALERT conservative in volatile environments
and aggressive in quiescent ones (tackle challenge-2). The
global slow-down factor and Kalman filter are efficient to
implement and low-overhead (tackle challenge-3). Thus,
ALERT combines the global slow-down factor with latency,
power, and accuracy measurements to select the DNN and
system configuration with the highest likelihood of meeting
the constraints optimally.

We evaluate ALERT using various DNNs and application
domains on different (CPU and GPU) machines under various
constraints. Our evaluation shows that ALERT overcomes
dynamic variability efficiently. Across various experimental

accuracy. Section 3.6 discusses this issue further.

354 2020 USENIX Annual Technical Conference

USENIX Association

ImageNet Classification Networks

3 @) T T
o Top5 Error-latency
30} ® Lower bound of top5 error-latency| |
K250
;; 20+
w 15+
£
& 1of @
O
5 9, (@) Q o
0 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3

Inference Time of One Image (s)

Figure 2: Tradeoffs for 42 DNNs (CPU2).

settings, ALERT meets constraints while achieving within
93-99% of optimal energy saving or accuracy optimization.
Compared to approaches that adapt at application-level or
system-level only ALERT achieves more than 13% energy
reduction, and 27% error reduction (Section 5).

2 Understanding Deployment Challenges

We conduct an empirical study to examine the large trade-off
space offered by different DNN designs and system settings
(Sec. 2.1), and the timing variability of inference (Sec. 2.2).

Embedded CPU1 CPU2 GPU
ARM . Xeon(R) .
CPU | Cortex A-15 @Cz";eézlz Gold 6126 @C2°;eal7h
@2.0 GHz i @2.60GHz ’
GPU none none none RTX 2080
Memory | DDR3 2G | DDR4 16G | DDR4 16G*12 | DDR4 16G
LLC 2MB 9MB 19.25MB 9MB

Table 1: Hardware platforms used in our experiments

ID Task DNN Models Datasets
IMGI1 | Image VGG16 [78] ILSVRC2012
IMG2 | Classification ResNet50 [29] | (ImageNet)
NLP1 Sentence Prediction | RNN Penn Treebank [59]
NLP2 | Question Bert [17] Stanford Q&A
Answering Dataset (SQuAD) [71]

Table 2: ML tasks and benchmark datasets in our experiments

We use two canonical machine learning tasks, with
state-of-the-art networks and common data-sets (see Table
2) on a diverse set of hardware platforms, representing
embedded systems, laptops (CPU1), CPU servers (CPU2),
and GPU platforms (see Table 1). The two tasks, image
classification and natural language processing (NLP), are
often deployed with deadlines—e.g., for motion tracking [40]
and simultaneous interpretation [56]—and both have received
wide attention leading to a diverse set of DNN models.

2.1 Understanding the Tradeoffs

Tradeoffs from DNNs We run all 42 image classification
models provided by the Tensorflow website [76] on the

ResNet50 @ Different Power Limit

16.5

) @@@

T 155¢ &

o0

g 15; ®a

145}

o ®

IR PAS

5

S135)

< @@

125 1 1 1 1 @@
006 008 01 012 014 016 018

Inference Time of One Image (s)
Figure 3: Tradeoffs for ResNet50 at different power settings
(CPU2). (Numbers inside circles are power limit settings.)

50000 images from ImageNet [16], and measure their average
latency, accuracy (error rate), and energy consumption. The
results from CPU2 are shown in Figure 2. We can clearly see
two trends from the figure, which hold on other machines.

First, different DNN models offer a wide spectrum of
accuracy (error rate in figure), latency, and energy. As shown
in the figure, the fastest model runs almost 18 x faster than
the slowest one and the most accurate model has about 7.8 x
lower error rate than the least accurate. These models also
consume a wide range—more than 20 x—of energy usage.

Second, there is no magic DNN that offers both the best
accuracy and the lowest latency, confirming the intuition that
there exists a tradeoff between DNN accuracy and resource
usage. Of course, some DNNs offer better tradeoffs than
others. In Figure 2, all the networks sitting above the lower-
convex-hull curve represent sub-optimal tradeoffs.

Tradeoffs from system settings We run ResNet50 under
31 power settings from 40-100W on CPU2. We consider a
sensor processing scenario with periodic inputs, setting the
period to the latency under 40W cap. We then plot the average
energy consumed for the whole period (run-time plus idle
energy) and the average inference latency in Figure 3.

The results reflect two trends, which hold on other
machines. First, a large latency/energy space is available by
changing system settings. The fastest setting (100W) is more
than 2x faster than the slowest setting (40W). The most
energy-hungry setting (64W) uses 1.3x more energy than
the least (40W). Second, there is no easy way to choose the
best setting. For example, 40W offers the lowest energy, but
highest latency. Furthermore, most of these points are sub-
optimal in terms of energy and latency tradeoffs. For example,
84W should be chosen for extremely low latency deadlines,
but all other nearby points (from 52—100) will harm latency,
energy or both. Additionally, when deadlines change or when
there is resource contention, the energy-latency curve also
changes and different points become optimal.

Summary: DNN models and system-resource settings
offer a huge trade-off space. The energy/latency tradeoff
space is not smooth (when accounting for deadlines and
idle power) and optimal operating points cannot be found
with simple gradient-based heuristics. Thus, there is a great

USENIX Association

2020 USENIX Annual Technical Conference 355

Time Variance on Different Inputs and Hardwai

Time Variance with Co-located Jobs

_ :
2 il ’ EEEmbedded| |
g 10 . C_ICPU1

2 BECPU2

E ' EmGPU

2 ‘ i

S 10° | .

G ! +

1] | -

Q } +

E + - - |- - -

= -+ 1

@107 + E | % 1
g (! &+
@ | |

1= | |

£ o

54 102 + L }

gb " = | I

< L

MG MG2 NLP1 NLP2
Settings (explained in Table 2)

Figure 4: Latency variance across inputs for different tasks
and hardware (Most tasks have 3 boxplots for 3 hardware
platforms, CPU1-2, GPU from left to right; NLP1 has an
extra boxplot for Embedded; other tasks run out of memory
on Embedded; every box shows the 25th—75th percentile;
points beyond the whiskers are >90th or <10th).

opportunity and also a great challenge in picking different
DNN models and system-resource settings to satisfy inference
latency, accuracy, and energy requirements.

2.2 Understanding Variability

To understand how DNN-inference varies across inputs,
platforms, and run-time environment and hence how (not)
helpful is off-line profiling, we run a set of experiments below,
where we feed the network one input at a time and use 1/10

of the total data for warm up, to emulate real-world scenarios.

We plot the inference latency without and with co-located
jobs in Figure 4 and 5, and we see several trends.

First, deadline violation is a realistic concern. Image
classification on video has deadlines ranging from 1 second
to the camera latency (e.g., 1/60 seconds) [40]; the two NLP
tasks, have deadlines around 1 second [64]. There is clearly no

single inference task that meets all deadlines on all hardware.

Second, the inference variation among inputs is relatively
small particularly when there are no co-located jobs (Fig. 4),
except for that in NLP1, where this large variance is mainly
caused by different input lengths. For other tasks, outlier
inputs exist but are rare.

Third, the latency and its variation across inputs are both
greatly affected by resource contention. Comparing Figure 5
with Figure 4, we can see that the co-located job has increased
both the median latency, the tail inference, and the difference
between these two for all tasks on all platforms. This trend
also applies to other contention cases.

While the discussion above is about latency, similar
conclusions apply to inference accuracy and energy: the
accuracy typically drops to close to 0 when the inference time
exceeds the latency requirement, and the energy consumption
naturally changes with inference time.

_ ;
2 ol ! Bl Embedded] |
= T [_ICPU1
g +
= + -
2 0 I . .

100, & 1 I
8 el | I = } E ! +
=) f | " ; | | #
o | L

*L i |

.§1071 * | } + o
[l [+
: .
g : R | §
32 P I

10 E|
< i 1 .
= I
ob I
z |

L L L Il L
IMG1 IMG2 NLP1 NLP2

Settings (explained in Table 2)
Figure 5: Latency variance with co-located jobs (the memory-
intensive STREAM benchmark [60] co-located on Embedded,
CPU1-2; GPU-intensive Backprop [8] co-located on GPU)

Summary: Deadline violations are realistic concerns and
inference latency varies greatly across platforms, under
contention, and sometimes across inputs. Clearly, sticking to
one static DNN design across platforms and workloads leads
to an unpleasant trade-off: always meeting the deadline by
sacrificing accuracy or energy in most settings, or achieving
a high accuracy some times but exceeding the deadline in
others. Furthermore, it is also sub-optimal to make run-time
decisions based solely on off-line profiling, considering the
variation caused by run-time contention.

2.3 Understanding Potential Solutions

We now show how confining adaptation to a single layer (just
application or system) is insufficient. We run the ImageNet
classification on CPUI. We examine a range of latency
(0.1s-0.7s) and accuracy constraints (85%-95%), and try
meeting those constraints while minimizing energy by either
(1) configuring just the DNN (selecting a DNN from a
family, like that in Figure 2) or (2) configuring just the
system (by selecting resources to control energy—latency
tradeoffs as in Figure 3). We compare these single-layer
approaches to one that simultaneously picks the DNN and
system configuration. As we are concerned with the ideal
case, we create oracles by running 90 inputs in all possible
DNN and system configurations, from which we find the best
configuration for each input. The App-level oracle uses the
default system setting. The Sys-level oracle uses the default
(highest accuracy) DNN.

Figure 6 shows the results. As we have a three dimensional
problem—meeting accuracy and latency constraints with
minimal energy—we linearize the constraints and show them
on the x-axis (accuracy is faster changing, with latency slower,
so each latency bin contains all accuracy goals). There
are several important conclusions here. First, the App-only
approach meets all possible accuracy and latency constraints,
while the Sys-only approach cannot meet any constraints
below 0.3s. Second, across the entire constraint range, App-

356 2020 USENIX Annual Technical Conference

USENIX Association

oo T T T T T T
=801 —Sys-level |
> —App-level
%°60 - —Combined| |
é Vi
2 40 \
&0
8
@ 20— -
<«

I 1 I I I I I I

deadline 0.1s 0.2s 0.3s 0.4s 0.5s 0.6s 0.7s
Constraint Settings (deadline x accuracy_goal)

Figure 6: Minimize energy task with latency and accuracy
constraint @ CPU1. (e means unable to meet the constraints)

only consumes significantly more energy than Combined
(60% more on average). The intuition behind Combined’s
superiority is that there are discrete choices for DNNs; so
when one is selected, there are almost always energy saving
opportunities by tailoring resource usage to that DNN’s needs.

Summary: Combining DNN and system level approaches
achieves better outcomes. If left solely to the application,
energy will be wasted. If left solely to the system, many
achievable constraints will not be met.

3 ALERT Run-time Inference Management

ALERT’s runtime system navigates the large tradeoff space
created by combining DNN-level and system-level adaptation.
ALERT meets user-specified latency, accuracy, and energy
constraints and optimization goals while accounting for run-
time variations in environment or the goals themselves.

3.1 Inputs & Outputs of ALERT

ALERT’s inputs are specifications about (1) the adaption
options, including a set of DNN models D = {d; | i=1---K}
and a set of system-resource settings, expressed as different
power-caps P = {P; | j =1---L}; and (2) the user-specified
requirements on latency, accuracy, and energy usage, which
can take the form of meeting constraints in any two of these
three dimensions while optimizing the third. ALERT’s output
is the DNN model d; € D and the system-resource setting
p;j € P for the next inference-task input.

Formally, ALERT selects a DNN d; and a system-resource
setting p; to fulfill either of these user-specified goals.

Maximizing inference accuracy g (minimizing error) for
an energy budget Ego, and inference deadline Tgoq:

argmaxg; ; s.t.e;j < Egoa Atj j < Tooal (D)
ij

Minimizing the energy use e for an accuracy goal Qgq
and inference deadline Tgoai:

argrrilijne,-’j s.t. gi,j > ngal /\tl"j < Tgoal)

We omit the discussion of meeting energy and accuracy
constraints while minimizing latency as it is a trivial extension
of the discussed techniques and we believe it to be the least
practically useful. We also omit the problem of optimizing
all three dimensions, as it creates a feasibility problem,
leaving nothing for optimization—Ilowest latency and highest
accuracy are impractical to achieve simultaneously.

Generality Along the DNN-adaptation side, the input DNN
set can consist of any DNNs that offer different accuracy,
latency, and energy tradeoffs; e.g., those in Figure 3. In
particular, ALERT can work with either or both of the broad
classes of DNN adaptation approaches that have arisen
recently, including: (1) traditional DNNs where the adaptation
option should be selected prior to starting an inference task
[20,22,61,84,89] and (2) anytime DNNs that produce a series
of outputs as they execute [34,35,49,52, 82, 86, 88]. These
two classes are similar in that they both vary things like the
network depth or width to create latency/accuracy tradeoffs.

On the system-resource side, ALERT uses a power cap
as the proxy to system resource usage. Since both hardware
[13] and software resource managers [33,72,90] can convert
power budgets into optimal performance resource allocations,
ALERT is compatible with many different schemes from both
commercial products and the research literature.

3.2 ALERT Workflow

ALERT works as a feedback controller. It follows four steps
to pick the DNN and resource settings for each input n:

1) Measurement. ALERT records the processing time,
energy usage, and computes inference accuracy for n— 1.

2) Goal adjustment. ALERT updates the time goal Tyoa
if necessary, considering the potential latency-requirement
variation across inputs. In some inference tasks, a set of inputs
share one combined requirement (e.g., in the NLP1 task in
Table 2, all the words in a sentence are processed by a DNN
one by one and share one sentence-wise deadline) and hence
delays in previous input processing could greatly shorten the
available time for the next input [1,47]. Additionally, ALERT
sets the goal latency to compensate for its own, worst-case
overhead so that ALERT itself will not cause violations.

3) Feedback-based estimation. ALERT computes the
expected latency, accuracy, and energy consumption for every
combination of DNN model and power setting.

4) Picking a configuration. ALERT feeds all the updated
estimations of latency, accuracy, and energy into Egs. | and 2,
and gets the desired DNN model and power-cap setting for n.

The key task is step 3: the estimation needs to be accurate
and fast. In the remainder of this section, we discuss key ideas
and the exact algorithm of our feedback-based estimation.

USENIX Association

2020 USENIX Annual Technical Conference 357

3.3 Key Ideas of ALERT Estimation

Strawman Solving Eqgs. | and 2 would be trivially easy
if the deployment environment is guaranteed to match the
training and profiling environment: we could estimate #; ; to
be the average (or worst case, etc) inference time tip of ver
a set of profiling inputs under model d; and powef setting
p ;- However, this approach does not work given the dynamic
input, contention, and requirement variation.

Next, we present the key ideas behind how ALERT
estimates the inference latency, accuracy, and energy
consumption under model d; and power setting p;.

How to estimate the inference latency #; ;? To handle the
run-time variation, a potential solution is to apply an estimator,
like a Kalman filter [55], to make dynamic predictions based
on recent history about inferences under model d; and power
pj. The problem is that most models and power settings
will not have been picked recently and hence would have
no recent history to feed into the estimator. This problem is a
direct example of the challenge imposed by the large space
of combined application and system options.

Idea 1: Handle the large selection space with a single
scalar value. To make effective online estimation for
all combinations of models and power settings, ALERT
introduces a global slow-down factor & to capture how the
current environment differs from the profiled environment
(e.g., due to co-running processes, input variation, or other
changes). Such an environmental slow-down factor is
independent from individual model or power selection. It
can fully leverage execution history, no matter which models
and power settings were recently used; it can then be used to
estimate 7; j based on 7} ;-Of for all d; and p; combinations.

Applying a global slowdown factor for all combinations
of application and system-level settings is crucial for ALERT
to make quick decisions for every inference task. Although
it is possible that some perturbations may lead to different
slowdowns for different configurations, the slight loss of
accuracy here is out-weighed by the benefit of having a simple
mechanism that allows prediction even for configurations that
have not been used recently.

This idea is also novel for ALERT, as previous cross-stack
management systems all use much more complicated models
to estimate and select different setting combinations (e.g.,
using model predictive control to estimate combinations of
settings [57]). ALERT’s global slowdown factor is based
on several unique features of DNN families that accomplish
the same task with different accurarcy/latency tradeoffs. We
categorize these features as: (1) similarity of code paths
and (2) proportionality of structure. The first is based on
the observation that DNNs do not have complex conditional
code dependences, so we do not need to worry about the
case where different inputs would exercise very different
code paths. Thus, what ALERT learns about latency, accuracy,
and energy for one input will always inform it about future

inputs. The second feature refers to the fact that as DNNs in a
family scale in latency, the proportion of different operations
tend to be similar, so what ALERT learns about one DNN
in the family generally applies to other DNNs in the same
family. These properties of DNNs do not hold for many
other types of software, where different inputs or additional
functionality can invoke entirely different code paths, with
different resource requirements or responses.

How to estimate the accuracy under a deadline? Given
a deadline Ty, the inference accuracy delivered by model
d; and power setting p; is determined by three factors, as
shown in Eq. 3: (1) whether the inference result, which takes
time #; ;, can be generated before the deadline Tgoq; (2) if yes,
the accuracy is determined by the model di;? (3) if not, the
accuracy drops to that offered by a backup result gr,j. For
traditional DNN models, without any output at the deadline, a
random guess will be used and gg,j; will be much worse than
gi. For anytime DNN models that output multiple results as
they are ready, the backup result is the latest output [34, 35,
49,52,82, 86, 88], which we discuss more in Section 3.5.

qi i t;j < Tgoal

qi,j[Tgoal] = { (3)

gfail , otherwise

A potential solution to estimate accuracy ¢; ; at the deadline
Tgoar is to simply feed the estimated #; ; into Eq. 3. However,
this simple approach fails to account for two issues. First,
while DNNs are generally well-behaved, significant tail
effects are possible (see Figure 4). Second, Eq. 3 is not linear,
and is best understood as a step function, where a failure
to complete inference by the deadline results in a worthless
inference output (g74;;). Combined, these two issues mean
that for tail inputs, inference will produce a worthless result;
i.e., accuracy is not proportional to latency, but can easily fall
to zero for tail inputs. The tail will, of course, be increased if
there is any unexpected resource contention. Therefore, the
simple approach of using the mean latency prediction fails to
account for the non-linear affects of latency on accuracy.

Idea 2: handle the runtime variation and account for
tail behavior To handle the run-time variability mentioned in
Section 1, ALERT treats the execution time #; ; and the global
slow-down factor & as random variables drawn from a normal
distribution. ALERT uses a recently proposed extension to the
Kalman filter to adaptively update the noise covariance [2].
While this extension was originally proposed to produce better
estimates of the mean, a novel approach in ALERT is using
this covariance estimate as a measure of system volatility.
ALERT uses this Kalman filter extension to predict not just
the mean accuracy, but also the likelihood of meeting the
accuracy requirements in the current operating environment.
Section 5.3 shows the advantages of our extensions.

2Since it could be infeasible to calculate the exact inference accuracy at
run time, ALERT uses the average training accuracy of the selected DNN
model d;, denoted as ¢;, as the inference accuracy, as long as the inference
computation finishes before the specified deadline.

358 2020 USENIX Annual Technical Conference

USENIX Association

How to minimize energy or satisfy energy constraints?
Minimizing energy or satisfying energy constraints is
complicated, as the energy is related to, but cannot be easily
calculated by, the complexity of the selected model d; and
the power cap p;. As discussed in Section 2.2, the energy
consumption includes both that used during the inference
under a given model d; and that used during the inference-
idle period, waiting for the next input. Consequently, it is not
straightforward to decide which power setting to use.

Idea 3. ALERT leverages insights from previous research,
which shows that energy for latency-constrained systems
can be efficiently expressed as a mathematical optimization
problem [7,48,50,62]. These frameworks optimize energy by
scheduling available configurations in time. Time is assigned
to configurations so that the average performance hits the
desired latency target and the overall energy (including idle
energy) is minimal. The key is that while the configuration
space is large, the number of constraints is small (typically just
two). Thus, the number of configurations assigned a non-zero
time is also small (equal to the number of constraints) [48].
Given this structure, the optimization problem can be solved
using a binary search over available configurations, or even
more efficiently with a hash table [62].

The only difficulty applying prior work to ALERT is that
prior work assumed there was only a single job running
at a time, while ALERT assumes that other applications
might contend for resources. Thus, ALERT cannot assume
that there is a single system-idle state that will be used
whenever the DNN is not executing. To address this challenge,
ALERT continually estimates the system power when DNN
inference is idle (but other non-inference tasks might be
active), ppnnidle, transforming Eq. 1 is transformed into:

argmaxq; j[Teoal] S.t. pij-ti.j + PpNNidie tDNNidle < Egoal
L]

“

3.4 ALERT Estimation Algorithm

Global Slow-down Factor &. As discussed in Idea-1, ALERT
uses & to reflect how the run-time environment differs from
the profiling environment. Conceptually, if the inference
task under model d; and power-cap p; took time #; ; at run

time and took tlp ;-Ot on average to finish during profiling, the

corresponding & would be f; ; /1]r-of . ALERT estimates & using
recent execution history under any model or power setting.

Specifically, after an input n — 1, ALERT computes &)
(

. . -1
as the ratio of the observed time tir;)

th jOf, and then uses a Kalman Filter’ to estimate the mean ,u(")

and variance (6")? of &) at input n. ALERT’s formulation
is defined in Eq. 5, where K is the Kalman gain variable;

to the profiled time

3A Kalman Filter is an optimal estimator that assumes a normal
distribution and estimates a varying quantity based on multiple potentially
noisy observations [55].

R is a constant reflecting the measurement noise; Q(”) is the
process noise capped with 0. We seta forgetting factor of
process variance o = 0.3 [2]. ALERT initially sets K(*) = 0.5,

R=10.001, 0 = 0.1, u® = 1, (6(9)? = 0.1, following the
standard convention [55].

0" = max{0”, a@" V) + (1-a) (K"~ Dyl=1))2}

K(n) _ (] _K(nfl)>(6(nfl))2_~_Q(n)

(1—-K0=-1D)(cn-1)2 40 R
y(n) tl(’; 1)/tPr0f ,Ll<n7])
,U(n) :,U(" D4 gl)y(n)
(6(11))2 _ (1 _K(nfl))(c(nfl))Z_’_Q(n)

Then, using <§<") ALERT estimates the inference time(g%
input 7 under any model d; and power cap p;: (") =EM tpmf.

Probability of meeting the deadline. leen the Kalman
Filter estimation for the global slowdown factor, we can
calculate Pr; ; , the probability that the inference completes
before the deadline Tg,,;. ALERT computes this value using
a cumulative distribution function (CDF) based on the normal
distribution of & estimated by the Kalman Filter:

CDF(EM- 17" Typ)

Pr[,j = Pr[i(n)'tg;()f < T;;oal] lj 3 (6)

=CDF (,Ll(n>'tE;0f7 G(n>; 7;)0411)

Accuracy. As discussed in Idea-2, ALERT computes the
estimated inference accuracy §;, j[Tgoaﬂ by considering #; ; as
a random variable that follows normal distribution with its
mean and variance computed based on that of &. Here ¢;
represents the inference accuracy when the DNN inference
finishes before the deadline, and gy, is the accuracy of a
random guess:

Qi,j [Tgoal} (CIl][T(goal] | t)
. o prot
—E(CIZ,J [Tgoal] | é’; t) (7)
=Prij-q;;+ (1- Prl]) 4fail
EM N (U™, (6)?)

Energy. As discussed in Idea-3, ALERT predicts energy
consumption by separately estimating energy during (1) DNN
execution: estimated by multiplying the power limit by the
estimated latency and (2) between inference inputs: estimated
based on the recent history of inference idle power using
the Kalman Filter in Eq. 8. q)(") is the predicted DNN-idle
power ratio, M () js process variance, S is process noise, V
is measurement noise, and W is the Kalman Filter gain.
ALERT initially sets M(®) = 0.01, S = 0.0001, V = 0.001.

n—1
w — M
M1+ 54V
MW = (1 —wmy (=) 48) ®)

o =1 4w (I?iclle,/j’?,(,”f1> — o)

USENIX Association

2020 USENIX Annual Technical Conference 359

ALERT then predicts the energy by Eq. 9. Unlike Eq. 7 that
uses probabilistic estimates, energy estimation is calculated
without the notion of probability. The inference power is the
same no matter the inference misses or meets the deadline, as
ALERT sets power limits. Therefore it is safe to estimate the
energy by its mean without considering the distribution of its
possible latency. See our extended report [87] on estimating
energy by its worst case latency percentile.

o) = pij &P 00 py i (Tgoar — (B2 9)

3.5 Integrating ALERT with Anytime DNNs

An anytime DNN is an inference model that outputs a series of
increasingly accurate inference results—oj, 02, ... 0k, with o,
more reliable than o,_1. A variety of recent works [35,49,52,
82,86,88] have proposed DNNs supporting anytime inference,
covering a variety of problem domains. ALERT easily works
with not only traditional DNNs but also Anytime DNNs. The
only change is that gg,; in Eq. 3 no longer corresponds to a
random guess. That is, when the inference could not generate
its final result o; by the deadline Tyq1, an earlier result o, can
be used with a much better accuracy than that of a random
guess. The updated accuracy equation is below:

qk if tk,j < tgoal

1 ity <tgou < I
.= qk—1 a“'k 1,j goal k,j (10)

grail , Otherwise

Existing anytime DNNs consider latency but not energy
constraints—an anytime DNN will keep running until the
latency deadline arrives and the last output will be delivered
to the user. ALERT naturally improves Anytime DNN
energy efficiency, stopping the inference sometimes before
the deadline based on its estimation to meet not only latency
and accuracy, but also energy requirements.

Furthermore, ALERT can work with a set of traditional
DNNs and an Anytime DNN together to achieve the best
combined result. The reason is that Anytime DNNs generally
sacrifice accuracy for flexibility. When we feed a group of
traditional DNNs and one Anytime DNN to construct the
candidacy set D, with Eq. 7, ALERT naturally selects the
Anytime DNN when the environment is changing rapidly
(because the expected accuracy of an anytime DNN will be
higher given that variance), and the regular DNN, which has
slightly higher accuracy with similar computation, when it is
stable, getting the best of both worlds.

In our evaluation, we will use the nested design from [86],
which provides a generic coverage of anytime DNNSs.

3.6 Limitations and Discussions

Assumptions of the Kalman Filter. ALERT’s prediction,
particularly the Kalman Filter, relies on the feedback from

recent input processing. Consequently, it requires at least one
input to react to sudden changes. Additionally, the Kalman
filter formulations assume that the underlying distributions
are normal, which may not hold in practice. If the behavior is
not Gaussian, the Kalman filter will produce bad estimations
for the mean of & for some amount of time.

ALERT is specifically designed to handle data that is
not drawn from a normal distribution, using the Kalman
Filter’s covariance estimation to measure system volatility
and accounting for that in the accuracy/energy estimations.
Consequently, after just 2-3 such bad predictions of means,
the estimated variance will increase, which will then trigger
ALERT to pick anytime DNN over traditional DNNs or pick a
low-latency traditional DNN over high-latency ones, because
the former has a higher expected accuracy under high variance.
So—worst case—ALERT will choose a DNN with slightly
less accuracy than what could have been used with the right
model. Users can also compensate for extremely aberrant
latency distributions by increasing the value of Q) in Eq.
5. Section 5.3 shows ALERT performs well even when the
distribution is not normal.

Probabilistic guarantees. ALERT provides probabilistic,
not hard, guarantees. As ALERT estimates not just average
timing, but the distributions of possible timings, it can provide
arbitrarily many nines of assurance that it will meet latency
or accuracy goals but cannot provide 100% guarantee (see
our extended report [87] on how to configure ALERT to
provide guarantees with a specific probability). Providing
100% guarantees requires the worst case execution time
(WCET), an upper bound on the highest possible latency.
ALERT does not assume the availability of such information
and hence cannot provide hard guarantees [6].

Safety guarantees. While ALERT does not explicitly
model safety requirements, it can be configured to prioritize
accuracy over other dimensions. When users particularly
value safety (e.g., auto-driving), they could set a high accuracy
requirement or even remove the energy constraints.

Concurrent inference jobs. ALERT is currently designed
to support one inference job at a time. To support multiple
concurrent inference jobs, future work needs to extend
ALERT to coordinate across these concurrent jobs. We expect
the main idea of ALERT, such as using a global slowdown
factor to estimate system variation, to still apply.

Finally, how the inference behaves ultimately depends not
only on ALERT, but also on the DNN models and system-
resource setting options. As shown in Section 5, ALERT
helps make the best use of supplied DNN models, but does
not eliminate the difference between different DNN models.

4 Implementation

We implement ALERT for both CPUs and GPUs. On CPUs,
ALERT adjusts power through Intel’s RAPL interface [13],
which allows software to set a hardware power limit. On

360 2020 USENIX Annual Technical Conference

USENIX Association

Run-time environment setting
Default Inference task has no co-running process
Memory Co-locate with memory-hungry STREAM [60] (@CPU)
Co-locate with Backprop from Rodinia-3.1 [8] (@ GPU)
Compute Co-locate with Bodytrack from PARSEC-3.0 [5] (@CPU)
Co-locate with the forward pass of Backprop [8] (@GPU)
Ranges of constraint setting
Latency 0.4x-2x mean latency* of the largest Anytime DNN
Accuracy Whole range achievable by trad. and Anytime DNN
Energy Whole feasible power-cap ranges on the machine
Task Trad. DNN Anytime [86] Fixed deadline?
Image Classifi. | Sparse ResNet | Depth-Nest Yes
Sentence Pred. | RNN ‘Width-Nest No
Scheme ID DNN selection Power selection
Oracle Dynamic optimal Dynamic optimal
Oracleggagic Static optimal Static optimal
App-only One Anytime DNN System Default
Sys-only Fastest traditional DNN State-of-Art [37]
No-coord Anytime DNN w/o coord. with Power | State-of-Art [37]
ALERT ALERT default ALERT default
ALERT ppy ALERT w/o traditional DNNs ALERT default
ALERTTpaq ALERT w/o Anytime DNNs ALERT default

Table 3: Settings and schemes under evaluation (* measured
under default setting without resource contention)

GPUs, ALERT uses PyNVML to control frequency and builds
a power-frequency lookup table. ALERT can also be applied
to other approaches that translate power limits into settings
for combinations of resources [33,36,72,90].

In our experiments, ALERT considers a series of power
settings within the feasible range with 2.5W interval on our
test laptop and a SW interval on our test CPU server and GPU
platform, as the latter has a wider power range than the former.
The number of power buckets is configurable.

ALERT incurs small overhead in both scheduler
computation and switching from one DNN/power-setting
to another, just 0.6—1.7% of an input inference time. We
explicitly account for overhead by subtracting it from the
user-specified goal (see step 2 in Section 3.2).

Users may set goals that are not achievable. If ALERT
cannot meet all constraints, it prioritizes latency highest, then
accuracy, then power. This hierarchy is configurable.

5 Experimental Evaluation

We apply ALERT to different inference tasks on both CPU
and GPU with and without resource contention from co-
located jobs. We set ALERT to (1) reduce energy while
satisfying latency and accuracy requirements and (2) reduce
error rates while satisfying latency and energy requirements.
We compare ALERT with both oracle and state-of-the-art
schemes and evaluate detailed design decisions.

5.1 Methodology

Experimental setup. We use the three platforms listed in
Table 1: CPUI, CPU2, and GPU. On each, we run inference

—
~3
LS}

2 2 * * Violations
g 1 160 gg\ EApp—only
£08 148 % Dsys“’“ly
= = No-coord
“5 0.6 136 .S | ggAPP+Sys
B 04 1 8 (ALERT-Any)
g 'S [MOracle
0.2 112
5 >
Z 0 0

Minimize Energy Minimize Error

Figure 7: Average performance normalized to Oracleggsc.
Violations% is %-of-constraint-settings under which a scheme
incurs >10% violation of all inputs. (Smaller is better)

tasks”*, image classification and sentence prediction, under
three different resource-contention scenarios:

e No contention: the inference task is the only job running,
referred to as “Default”;

e Memory dynamic: the inference task runs together with
a memory-intensive job that repeatedly stops and restarts,
representing dynamic memory resource contention,
referred to as “Memory”;

e Computation dynamic: the inference task runs together
with a computation-intensive job that repeatedly stops
and restarts, representing dynamic computation resource
contention, referred to as “Compute”.

Schemes in evaluation. We give ALERT three different
DNN sets, traditional DNN models (ALERTTyaq), an Anytime
DNN (ALERT apy), and both (ALERT), and compare it with
two oracle and three state-of-the-art schemes (Table 3).

The two Oracle, schemes have perfect predictions for
every input under every DNN/power setting (i.e., impractical).
Specifically, the “Oracle" allows DNN/power settings to
change across inputs, representing the best possible results;
the “Oraclegiic” has one fixed setting across inputs,
representing the best results without dynamic adaptation.

The three state-of-the-art approaches include the following:

e “App-only” conducts adaptation only at the application
level through an Anytime DNN [86];

e “Sys-only”adapts only at the system level following an
existing resource-management system that minimizes
energy under soft real-time constraints [62]° and uses
the fastest candidate DNN to avoid latency violations;

e “No-coord” uses both the Anytime DNN for application
adaptation and the power-management scheme [62] to
adapt power, but with these two working independently.

5.2 Overall Results

Table 4 shows the results for all schemes for different tasks
on different platforms and environments. Each cell shows

4For GPU, we only run image classification task there, as the RNN-based
sentence prediction task is better suited for CPU [91].

3Specifically, this adaptation uses a feedback scheduler that predicts
inference latency based on Kalman Filter.

USENIX Association

2020 USENIX Annual Technical Conference 361

ALERT- Sys- App- No-

ALERT- Sys- App- No-

Plat. | DNN | Work. || ALERT Oracle ALERT Oracle
Any only only coord Any only only coord
Energy in Minimizing Energy Task Error Rate in Minimizing Error Task
Sparse |_1d1e 0.64 0.68 1.087 1.19 0.947 064 || 091 0.92 1.35 1.023 0.913 0.89
str{et Comp. || 0.57 0.58 | 0.80" 1.30 1.39! 057 || 038 0.39 0.51 1.352 0.39% 0.36
CPUI Mem. 0.53 0.55 0.76'° 1.43 1.372 053 || 034 0.34 0.46 1478 0.392 0.33
Idle 0.61 0.65 1.01%0 1.34 0.95% 061 [| 087 0.87 0.87 0.8721 0.874 0.86
RNN [Comp.|| 0.60 0.57 | 0.93% 1.21 1.26° 0.60 0.42 0.44 0.50 046X 0.46% 0.42
Mem. 0.54 0.56 0.953! 1.45 1.24° 0.54 || 045 0.45 0.50 0.5728 0.54%7 0.44
Sparse |_1dle 0.93 0.88 0.96%0 0.99 1.18 091 || 0.68 0.68 0.97 0792 0.71% 0.66
Rf;net Comp. || 0.59 057 = 0.60% 1.00 1.01 0.58 0.58 0.57 085 074" 071® 055
CPU2) Mem. 0.38 0.37 0.3919 0.65 0.6313 038 || 024 0.82 0.32 0.3317 0.75%! 0.21
Idle 0.87 0.99 | 0.80%* 1.04 1.00° 083 || 084 0.85 099 0.89* 0.89! 0.84
RNN [Comp.|| 0.60 0.60 | 0.55% 0.99 0.867 0.60 0.51 0.52 0.60 0532 0.547 0.52
Mem. 0.52 0.51 0.43% 0.70 0.8514 052 || 026 0.27 0.31 0.2821 0277 0.26
Sparse |_1d1e 0.97 0.99 0.92%0 1.36 1.37 092 || 090 0.92 1.22 1.092 1.7412 0.86
GPU Rgsnet Comp. || 0.96 0.97 | 0.94% 1.66 1.77 0.89 0.32 0.34 1.28 1.212% 25018 0.30
Mem. 0.97 1.01 0.9120 1.39 1.43 091 || 089 0.92 1.22 1.112 1.81% 0.86
Harmonic mean 0.64 0.64 | 0.73% 1.11 1.08% 0.62 0.46 0.47 0.63 0.67"° 0.630 0.45

Table 4: Average energy consumption and error rate normalized to Oraclesasic, smaller is better. (Each cell is averaged over 35-40
constraint settings; superscript: # of constraint settings violated for >10% inputs and hence excluded from energy average.)

the average energy or accuracy under 35-40 combinations
of latency, accuracy, and energy constraints (the settings
are detailed in Table 3), normalized to the Oraclesic
result. Figure 7 compares these results, where lower bars
represent better results and lower *s represent fewer constraint
violations. ALERT and ALERT A,y both work very well
for all settings. They outperform state-of-the-art approaches,
which have a significant number of constraint violations, as
visualized by the many superscripts in Table 4 and the high
* positions in Figure 7. ALERT outperforms Oraclegasic
because it adapts to dynamic variations. ALERT also comes
very close to the theoretically optimal Oracle.

Comparing with Oracles. As shown in Table 4,
ALERT achieves 93-99% of Oracle’s energy and accuracy
optimization while satisfying constraints. Oraclegygc, the
baseline in Table 4, represents the best one can achieve by
selecting 1 DNN model and 1 power setting for all inputs.
ALERT greatly out-performs Oraclegsic, reducing its energy
consumption by 3-48% while satisfying accuracy constraints
(36% in harmonic mean) and reducing its error rate by 9-66%
while satisfying energy constraints (54% in harmonic mean).

Figure 8 shows a detailed comparison for the energy
minimization task. The figure shows the range of performance
under all requirement settings (i.e., the whiskers). ALERT
not only achieves similar mean energy reduction, its whole
range of optimization behavior is also similar to Oracle. In
comparison, Oracleg,ic not only has the worst mean but also
the worst tail performance. Due to space constraints, we omit
the figures for other settings, where similar trends hold.

ALERT has more advantage over Oraclegie. on CPUs than
on GPUs. The CPUs have more empirical variance than the
GPU, so they benefit more from dynamic adaptation. The
GPU experiences significantly lower dynamic fluctuation so
the static oracle makes good predictions.

ALERT satisfies the constraint in 99.9% of tests for image

classification and 98.5% of those for sentence prediction. For
the latter, due to the large input variability (NLP1 in Figure 4),
some input sentences simply cannot complete by the deadline
even with the fastest DNN. There the Oracle fails, too.

Note that, these Oracle schemes not only have perfect—
and hence, impractical—prediction capability, but they also
have no overhead. In contrast, ALERT is running on the same
machines as the DNN workloads. All results include ALERT’s
run-time latency and power overhead.

Comparing with State-of-the-Art. For a fair comparison,
we focus on ALERT 4y, as it uses exactly the same DNN
candidate set as "Sys-only", "App-only", and "No-coord".
Across all settings, ALERT A,y outperforms the others.

The System-only solution suffers from not being able to
choose different DNNs under different runtime scenarios.
As a result, it performs much worse than ALERT s,y in
satisfying accuracy requirements or optimizing accuracy. For
the former (left side of Table 4 and Figure 7), it creates
accuracy violations in 68% of the settings as shown in Figure
7; for the latter (right side of Table 4 and Figure 7), although
capable of satisfying energy constraints, it introduces 34%
more error than ALERT ppy.

The Application-only solution that uses an Anytime
DNN suffers from not being able to adjust to the energy
requirements: it consumes 73% more energy in energy-
minimizing tasks (left side of Table 4 and Figure 7) and
introduces many energy-budget violations particularly under
resource contention settings (right side of Table 4 and Fig. 7).

The no-coordination scheme is worse than both System-
and Application-only. It violates constraints in both tasks
with 69% more energy and 34% more error than ALERT Apy.
Without coordination, the two levels can work at cross
purposes; e.g., the application switches to a faster DNN to
save energy while the system makes more power available.

362 2020 USENIX Annual Technical Conference

USENIX Association

w

2 -
@ Orcale-Static

N
O
©

0 @ Orcale-Static

= = | ®Orcale-Static = | ®Orcale-Static =

‘;1 5 © ALERT |2 |®ALERT <.20|® ALERT 4 ;60 ©® ALERT

£0°7| O Oracle £910[O Oracle 80 | OOracle £0°7| O Oracle

)) o I5F 19

5 G st Nl IE}

®0.5F RS SOt i SOy - Jed- oo |85k |90 Q0O 200 1@ O - T 9O

5[Teo 5 3 5 5Tty

> > | 1Te9- > >

20 I | I Z0 | I Z0 | | | = | | |
Default Compute Memory Default Compute Memory Default Compute Memory Default Compute Memory

(a) CPU1, Image Classification (b) CPU1, Sentence Prediction

(c) CPU2, Image Classification (d) CPU2, Sentence Prediction

Figure 8: ALERT versus Oracle and Oracles,ic on minimize energy task (Lower is better). (whisker: whole range; circle: mean)

ALERT [Any | Trad [[ALERT [Any | Trad

Plat. | Work. Minimize Energy Task || Minimize Error Task
Idle 0.64 [0.68] 0.65T 091 0.92|0.93
CPUIL | Comp. 0.57 [0.58] 0.65° 0.38 |0.39| 0.41
Mem. 0.53 [0.55] 0.53° 0.34 |0.3410.35
Idle 0.93 [0.88] 0.95T 0.68 |0.68| 0.69
CPU2 | Comp. 0.59 [0.57] 0.60% 0.58 |0.57]0.59
Mem. 0.38 [0.37] 0.40% 0.23]0.24]0.32
Idle 097 10.99| 0.95 090 |0.92]0.89
GPU | Comp. 0.97 |1.01] 0.96 0.89 |0.92] 0.89
Mem. 0.96 [0.97| 0.95 0.32 [0.34]0.32
Harmonic mean|| 0.66 [0.66] 0.67° || 0.47 [0.48] 0.50

Table 5: ALERT normalized average energy consumption and
error rate to Oraclesic @ Sparse ResNet (Smaller is better)

5.3 Detailed Results and Sensitivity

Different DNN candidate sets. Table 5 compares the
performance of ALERT working with an Anytime DNN
(Any), a set of traditional DNN models (Trad), and both.
At a high level, ALERT works well with all three DNN
sets. Under close comparison, ALERTT,q violates more
accuracy constraints than the others, particularly under
resource contention on CPUs, because a traditional DNN
has a much larger accuracy drop than an anytime DNN when
missing a latency deadline. Consequently, when the system
variation is large, ALERTT,q selects a faster DNN to meet
latency and thus may not meet accuracy goals. Of course,
ALERT yy is not always the best. As discussed in Section
3.5, Anytime DNNs sometimes have lower accuracy then a
traditional DNN with similar execution time. This difference
leads to the slightly better results for ALERT over ALERT apy.

Figure 9 visualizes the different dynamic behavior of
ALERT (blue curve) and ALERTT,q (orange curve) when
the environment changes from Default to Memory-intensive
and back. At the beginning, due to a loose latency constraint,
ALERT and ALERTT,q both select the biggest traditional
DNN, which provides the highest accuracy within the energy
budget. When the memory contention suddenly starts, this
DNN choice leads to a deadline miss and an energy-budget
violation (as the idle period disappeared), which causes an
accuracy dip. Fortunately, both quickly detect this problem
and sense the high variability in the expected latency. ALERT
switches to use an anytime DNN and a lower power cap.
This switch is effective: although the environment is still
unstable, the inference accuracy remains high, with slight
ups and downs depending on which anytime output finished

Z 01 | ALERT-Trad[]
oy) | [T—ALERT]
£0.05} i !/ |—Constraint
= i [

0 L

40 ‘ i
= ; !

o
[}

I3
]

o

>
>
Q
<
—
=
)

[}
! I T T T “ T T
! |

:” W\—
A !

A Trad | ‘ % |

1

0 20 40 6 80 100 120 140 160
Image Classification Time (Input Number)

Figure 9: Minimize error rates w/ latency, energy constraints

on CPUI. (Memory contention occurs from about input 46 to

119; Deadline: 1.25x mean latency of largest Anytime DNN

in Default; power limit: 35W.)

before the deadline. Only able to choose from traditional
DNNs, ALERTT;,q conservatively switches to much simpler
and hence lower-accuracy DNNs to avoid deadline misses.
This switch does eliminate deadline misses under the highly
dynamic environment, but many of the conservatively chosen
DNNs finish before the deadline (see the Latency panel),
wasting the opportunity to produce more accurate results and
causing ALERTT,q to have a lower accuracy than ALERT.
When the system quiesces, both schemes quickly shift back
to the highest-accuracy, traditional DNN.

Overall, these results demonstrate how ALERT always
makes use of the full potential of the DNN candidate set to
optimize performance and satisfy constraints.

ALERT probabilistic design. A key feature of ALERT is
its use of not just mean estimations, but also their variance.
To evaluate the impact of this design, we compare ALERT to
an alternative design ALERT*, which only uses the estimated
mean to select configurations.

Figure 10 shows the performance of ALERT and ALERT*
in the minimize error task for sentence prediction. Here,
ALERT (blue circles) always performs better than ALERT*.
Its advantage is the biggest when the DNN candidates include
both traditional and Anytime DNNs (i.e., the “Standard”

USENIX Association

2020 USENIX Annual Technical Conference 363

&5
S

)
=3
S

T
© ALERT
r|® ALERT*

. . .
Standard Tradition OnljAnytime Only
(b) Memory Contention

T T T
© ALERT
| |® ALERT* il

[t]

Standard ~ Trad. Only ~ Any. Only
(a) Default Contention

=

S
[
G
=)

I
=)

Average Perplexity

Average Perplexity
o ?
(=3
(=]

5

(=)
o——
—Q—

IS
=]

S
S

Figure 10: Minimize error for sentence prediction@ CPU1
(Lower is better). (whisker: whole range; circle: mean)

[Observation
—Estimation []

Default
o ©

0
0.99 1 1.01 1.02 1.03 1.04 1.05 1.06
2 ol T T T - -
2 | |
£10.05F]
o]
[S '
1.1 1.2 1.3 1.4 1.5 1.6 1.7
>, 0.2 T T T T T T T
Z
o
g 0.1F
[
= A_C:L al

i 12 13 14 1s 16 17 18 19
Figure 11: Distribution of & for image class. on CPU1.

in Figure 10). The reason is that traditional DNNs and
Anytime DNN have different accuracy/latency curves, Eq.
3 for the former and Eq. 10 for the latter. ALERT¥* is
much worse in distinguishing these two by simply using the
mean of estimated latency to predict accuracy. ALERT also
clearly outperforms ALERT* under memory contention with
traditional DNN candidates, as ALERT’s estimation better
captures dynamic system variation. Overall, these results
show ALERT’s probabilistic design is effective.

Sensitivity to latency distribution. ALERT assumes a
Gaussian distribution, but is designed to work for other
distributions (see Section 3.6). As shown in Figure 11, the
observed &s (red bars) are indeed not a perfect fit for Gaussian
distribution (blue lines), which confirms ALERT’s robustness.

6 Related work

Past resource management systems have used machine
learning [4, 51, 68,69, 79] or control theory [32, 37,44, 45,
62,74,93] to make dynamic decisions and adapt to changing
environments or application needs. Some also use Kalman

filter because it has optimal error properties [37,44,45,62].

There are two major differences between them and ALERT:
1) prior approaches use the Kalman filter to estimate physical
quantities such as CPU utilization [45] or job latency [37],
while ALERT estimates a virtual quantity that is then used to
update a large number of latency estimates. 2) while variance
is naturally computed as part of the filter, ALERT actually
uses it, in addition to the mean, to help produce estimates that
better account for environment variability.

Past work designed resource managers explicitly to
coordinate approximate applications with system resource

usage [21, 31, 32, 46]. Although related, they manage
applications separately from system resources, which is
fundamentally different from ALERT’s holistic design. When
an environmental change occurs, prior approaches first adjust
the application and then the system serially (or vice versa)
so that the change’s effects on each can be established
independently [31,32]. That is, coordination is established
by forcing one level to lag behind the other. In practice
this design forces each level to keep its own independent
model and delays response to environmental changes. In
contrast, ALERT’s global slowdown factor allows it to easily
model and update prediction about all application and system
configurations simultaneously, leading to very fast response
times, like the single input delay demonstrated in Figure 9.

Much work accelerates DNNs through hardware [3, 10-12,
19,23,24,27,30,38,43,54,58,66,73,75,83], compiler [9,65],
system [28,53], or design support [25,25,26,39,42,77,81,85].
They essentially shift and extend the tradeoff space, but do
not provide policies for meeting user needs or for navigating
tradeoffs dynamically, and hence are orthogonal to ALERT.

Some research supports hard real-time guarantees for
DNNs [92], providing 100% timing guarantees while
assuming that the DNN model gives the desired accuracy,
the environment is completely predictable, and energy
consumption is not a concern. ALERT provides slightly
weaker timing guarantees, but manages accuracy and power
goals. ALERT also provides more flexibility to adapt to
unpredictable environments. Hard real-time systems would
fail in the co-located scenario unless they explicitly account
for all possible co-located applications at design time.

7 Conclusion

This paper demonstrates the challenges behind the important
problem of ensuring timely, accurate, and energy efficient
neural network inference with dynamic input, contention, and
requirement variation. ALERT achieves these goals through
dynamic and coordinated DNN model selection and power
management based on feedback control. We evaluate ALERT
with a variety of workloads and DNN models and achieve
high performance and energy efficiency.

Acknowledgement

We thank the reviewers for their helpful feedback and Ken
Birman for shepherding this paper. This research is supported
by NSF (grants CNS-1956180, CNS-1764039, CNS-1764039,
CNS-1514256, CNS-1823032, CCF-1439156), ARO (grant
WO11NF1920321), DOE (grant DESC0014195 0003),
DARPA (grant FA8750-16-2-0004) and the CERES Center
for Unstoppable Computing. Additional support comes from
the DARPA BRASS program and a DOE Early Career award.

364 2020 USENIX Annual Technical Conference

USENIX Association

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

Baidu Al
Online document, http://apollo.auto, 2018.

S. Akhlaghi, N. Zhou, and Z. Huang. Adaptive
adjustment of noise covariance in kalman filter for
dynamic state estimation. In I[EEE Power Energy Society
General Meeting, 2017.

Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor

Aamodt, Natalie Enright Jerger, and Andreas Moshovos.

Cnavlutin: Ineffectual-neuron-free deep neural network
computing. In ISCA, pages 1-13, 2016.

Jason Ansel, Maciej Pacula, Yee Lok Wong, Cy Chan,
Marek Olszewski, Una-May O’Reilly, and Saman
Amarasinghe. Siblingrivalry: online autotuning through
local competitions. In CASES, 2012.

Christian Bienia, Sanjeev Kumar, Jaswinder Pal
Singh, and Kai Li. The parsec benchmark suite:
Characterization and architectural implications. In
PACT, October 2008.

Giorgio C Buttazzo, Giuseppe Lipari, Luca Abeni, and
Marco Caccamo. Soft Real-Time Systems: Predictability
vs. Efficiency: Predictability vs. Efficiency. Springer,
2006.

Aaron Carroll and Gernot Heiser. Mobile multicores:
Use them or waste them. In HotPower, 2013.

Shuai Che, Michael Boyer, Jiayuan Meng, David
Tarjan, Jeremy W Sheaffer, Sang-Ha Lee, and Kevin
Skadron. Rodinia: A benchmark suite for heterogeneous
computing. In /ISWC, 2009.

Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, et al. Tvm: An
automated end-to-end optimizing compiler for deep
learning. In OSDI, pages 578-594, 2018.

Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang,

Chengyong Wu, Yunji Chen, and Olivier Temam.

Diannao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning. SIGPLAN Not., pages
269-284, 2014.

Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and
Vivienne Sze. Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional
neural networks. JSSC, 2016.

Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Ligiang
He, Jia Wang, Ling Li, Tianshi Chen, Zhiwei Xu,
Ninghui Sun, et al. Dadiannao: A machine-learning
supercomputer. In MICRO 47, pages 609-622, 2014.

Apollo open vehicle certificate platform.

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

[22]

(23]

(24]

(25]

H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and
C. Le. Rapl: Memory power estimation and capping. In
ISLPED, 2010.

Christina Delimitrou and Christos Kozyrakis. Paragon:
Qos-aware scheduling for heterogeneous datacenters. In
ASPLOS, 2013.

Christina Delimitrou and Christos Kozyrakis. Quasar:
resource-efficient and qos-aware cluster management.
In ASPLOS, 2014.

J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-
Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Piotr Dollar, Christian Wojek, Bernt Schiele, and Pietro
Perona. Pedestrian detection: An evaluation of the state
of the art. TPAMI, 2011.

Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo
Ienne, Ling Li, Tao Luo, Xiaobing Feng, Yunji Chen, and
Olivier Temam. Shidiannao: Shifting vision processing
closer to the sensor. In ISCA, pages 92-104, 2015.

Biyi Fang, Xiao Zeng, and Mi Zhang. Nestdnn:
Resource-aware multi-tenant on-device deep learning
for continuous mobile vision. In Mobicom, 2018.

Anne Farrell and Henry Hoffmann. MEANTIME:
achieving both minimal energy and timeliness with
approximate computing. In USENIX ATC, 2016.

Michael Figurnov, Maxwell D Collins, Yukun Zhu,
Li Zhang, Jonathan Huang, Dmitry P Vetrov, and Ruslan
Salakhutdinov. Spatially adaptive computation time for
residual networks. In CVPR, page 7, 2017.

Mingyu Gao, Christina Delimitrou, Dimin Niu,
Krishna T Malladi, Hongzhong Zheng, Bob Brennan,
and Christos Kozyrakis. Draf: a low-power dram-based
reconfigurable acceleration fabric. ISCA, pages
506-518, 2016.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan
Pedram, Mark A Horowitz, and William J Dally. FEie:
efficient inference engine on compressed deep neural
network. In ISCA, pages 243-254, 2016.

Song Han, Huizi Mao, and William J Dally. Deep
compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. arXiv
preprint arXiv:1510.00149, 2015.

USENIX Association

2020 USENIX Annual Technical Conference 365

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Soheil Hashemi, Nicholas Anthony, Hokchhay Tann,
R Iris Bahar, and Sherief Reda. Understanding the
impact of precision quantization on the accuracy and
energy of neural networks. In DATE, pages 1474-1479,
2017.

Johann Hauswald, Yiping Kang, Michael A Laurenzano,
Quan Chen, Cheng Li, Trevor Mudge, Ronald G
Dreslinski, Jason Mars, and Lingjia Tang. Djinn and
tonic: Dnn as a service and its implications for future
warehouse scale computers. In ISCA, pages 2740,
2015.

Johann Hauswald, Michael A Laurenzano, Yunqi Zhang,
Cheng Li, Austin Rovinski, Arjun Khurana, Ronald G
Dreslinski, Trevor Mudge, Vinicius Petrucci, Lingjia
Tang, et al. Sirius: An open end-to-end voice and
vision personal assistant and its implications for future
warehouse scale computers. In ASPLOS, pages 223-238,
2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
CVPR, pages 770-778, 2016.

Parker Hill, Animesh Jain, Mason Hill, Babak Zamirai,
Chang-Hong Hsu, Michael A Laurenzano, Scott Mahlke,
Lingjia Tang, and Jason Mars. Deftnn: Addressing
bottlenecks for dnn execution on gpus via synapse vector

elimination and near-compute data fission. In MICRO,
pages 786—799, 2017.

Henry Hoffmann. Coadapt: Predictable behavior for
accuracy-aware applications running on power-aware
systems. In ECRTS, pages 223-232, 2014.

Henry Hoffmann. Jouleguard: energy guarantees for
approximate applications. In SOSP, 2015.

Henry Hoffmann and Martina Maggio. PCP: A
generalized approach to optimizing performance under
power constraints through resource management. In
ICAC, pages 241-247, 2014.

Hanzhang Hu, Debadeepta Dey, Martial Hebert, and
J Andrew Bagnell. Learning anytime predictions in
neural networks via adaptive loss balancing. In AAAI,
2019.

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu,
Laurens van der Maaten, and Kilian Q. Weinberger.
Multi-scale dense convolutional networks for efficient
prediction. In CoRR, 2017.

C. Imes and H. Hoffmann. Bard: A unified framework
for managing soft timing and power constraints. In
SAMOS, pages 31-38, 2016.

[37]

(38]

(39]

[40]

[41]

[42]

[43]

C. Imes, D. H. K. Kim, M. Maggio, and H. Hoffmann.
Poet: a portable approach to minimizing energy under
soft real-time constraints. In RTAS, pages 75-86, April
2015.

Animesh Jain, Michael A Laurenzano, Gilles A Pokam,
Jason Mars, and Lingjia Tang. Architectural support
for convolutional neural networks on modern cpus. In
PACT, 2018.

Shubham Jain, Swagath Venkataramani, Vijayalakshmi
Srinivasan, Jungwook Choi, Pierce Chuang, and Leland
Chang. Compensated-dnn: energy efficient low-
precision deep neural networks by compensating
quantization errors. In DAC, pages 1-6, 2018.

Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik,
Siddhartha Sen, and Ion Stoica. Chameleon: scalable
adaptation of video analytics. In ACM SIGCOMM,
pages 253-266, 2018.

Norman P. Jouppi, Cliff Young, Nishant Patil, David
Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah
Bates, Suresh Bhatia, Nan Boden, Al Borchers,
Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris
Clark, Jeremy Coriell, Mike Daley, Matt Dau,
Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami,
Rajendra Gottipati, William Gulland, Robert Hagmann,
C. Richard Ho, Doug Hogberg, John Hu, Robert
Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek
Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel
Killebrew, Andy Koch, Naveen Kumar, Steve Lacy,
James Laudon, James Law, Diemthu Le, Chris Leary,
Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon
MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni,
Kathy Nix, Thomas Norrie, Mark Omernick, Narayana
Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory
Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg,
Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian,
Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard
Walter, Walter Wang, Eric Wilcox, and Doe Hyun
Yoon. In-datacenter performance analysis of a tensor
processing unit. In ISCA, 2017.

Patrick Judd, Jorge Albericio, Tayler Hetherington,
Tor M Aamodt, Natalie Enright Jerger, and Andreas
Moshovos. Proteus: Exploiting numerical precision
variability in deep neural networks. In ICS, page 23,
2016.

Patrick Judd, Jorge Albericio, Tayler Hetherington,
Tor M Aamodt, and Andreas Moshovos. Stripes: Bit-
serial deep neural network computing. In MICRO, pages
1-12, 2016.

366

2020 USENIX Annual Technical Conference

USENIX Association

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Evangelia Kalyvianaki, Themistoklis Charalambous,
and Steven Hand. Self-adaptive and self-configured
cpu resource provisioning for virtualized servers using
kalman filters. In ICAC, 2009.

Evangelia Kalyvianaki, Themistoklis Charalambous,
and Steven Hand. Adaptive resource provisioning for
virtualized servers using kalman filters. TAAS, 2014.

Aman Kansal, Scott Saponas, AJ Brush, Kathryn S
McKinley, Todd Mytkowicz, and Ryder Ziola. The
latency, accuracy, and battery (lab) abstraction:
programmer productivity and energy efficiency for
continuous mobile context sensing. In OOPSLA, 2013.

Shinpei Kato, Shota Tokunaga, Yuya Maruyama, Seiya
Maeda, Manato Hirabayashi, Yuki Kitsukawa, Abraham
Monrroy, Tomohito Ando, Yusuke Fujii, and Takuya
Azumi. Autoware on board: Enabling autonomous
vehicles with embedded systems. In ICCPS, pages 287—
296, 2018.

D. H. K. Kim, C. Imes, and H. Hoffmann. Racing and
pacing to idle: Theoretical and empirical analysis of
energy optimization heuristics. In /ICCPS, 2015.

Gustav Larsson, Michael Maire, and Gregory
Shakhnarovich. Fractalnet: Ultra-deep neural networks
without residuals. arXiv preprint arXiv:1605.07648,
2016.

Etienne Le Sueur and Gernot Heiser. Slow down or
sleep, that is the question. In USENIX ATC, June 2011.

Benjamin C Lee and David Brooks. Efficiency trends
and limits from comprehensive microarchitectural
adaptivity. ASPLOS, 2008.

Hankook Lee and Jinwoo Shin. Anytime neural
prediction via slicing networks vertically. arXiv preprint
arXiv:1807.02609, 2018.

Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt
Skach, Md E Haque, Lingjia Tang, and Jason Mars.
The architectural implications of autonomous driving:
Constraints and acceleration. In ASPLOS, pages 751—
766, 2018.

Daofu Liu, Tianshi Chen, Shaoli Liu, Jinhong Zhou,
Shengyuan Zhou, Olivier Teman, Xiaobing Feng,
Xuehai Zhou, and Yunji Chen. Pudiannao: A polyvalent
machine learning accelerator. In ISCA, pages 369-381,
2015.

Jun S Liu and Rong Chen. Sequential monte carlo
methods for dynamic systems. Journal of the American
statistical association, 1998.

[56] ATLAS LS. What is
simultaneous/conference interpretation?
Online document, https://atlasls.com/
what-is-simultaneousconference-interpretation/,
2010.

[57] Martina Maggio, Alessandro Vittorio Papadopoulos,
Antonio Filieri, and Henry Hoffmann. Automated
control of multiple software goals using multiple
actuators. In FSE, 2017.

[58] Divya Mahajan, Jongse Park, Emmanuel Amaro, Hardik
Sharma, Amir Yazdanbakhsh, Joon Kyung Kim, and
Hadi Esmaeilzadeh. Tabla: A unified template-based
framework for accelerating statistical machine learning.
In HPCA, pages 14-26. IEEE, 2016.

[59] Mitchell P. Marcus, Beatrice Santorini, Mary Ann
Marcinkiewicz, and Ann Taylor. Treebank-3 - linguistic
data consortium. Online document, https://catalog.
ldc.upenn.edu/LDC99T42, 1999.

[60] John D McCalpin. Memory bandwidth and machine
balance in current high performance computers. TCCA,
1995.

[61] Mason McGill and Pietro Perona. Deciding how to
decide: Dynamic routing in artificial neural networks.
arXiv preprint arXiv:1703.06217, 2017.

[62] Nikita Mishra, Connor Imes, John D. Lafferty, and
Henry Hoffmann. CALOREE: learning control for
predictable latency and low energy. In ASPLOS, 2018.

[63] Nikita Mishra, Huazhe Zhang, John D. Lafferty,
and Henry Hoffmann. A probabilistic graphical
model-based approach for minimizing energy under
performance constraints. ASPLOS, 2015.

[64] Jakob Nielsen. Usability engineering. Elsevier, 1994.

[65] NVIDIA. Nvidia tensorrt: Programmable inference
accelerator. Online document, https://developer.
nvidia.com/tensorrt, 2018.

[66] Kalin Ovtcharov, Olatunji Ruwase, Joo-Young Kim,
Jeremy Fowers, Karin Strauss, and Eric S Chung.
Accelerating deep convolutional neural networks using
specialized hardware. Microsoft Research Whitepaper,
2015.

[67] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman
Jana. Deepxplore: Automated whitebox testing of deep
learning systems. In SOSP, 2017.

[68] Paula Petrica, Adam M Izraelevitz, David H Albonesi,
and Christine A Shoemaker. Flicker: A dynamically
adaptive architecture for power limited multicore
systems. In ISCA, 2013.

USENIX Association

2020 USENIX Annual Technical Conference 367

[69]

Dmitry Ponomarev, Gurhan Kucuk, and Kanad Ghose.
Reducing power requirements of instruction scheduling
through dynamic allocation of multiple datapath
resources. In MICRO, 2001.

[81]

[82]

Hokchhay Tann, Soheil Hashemi, R Iris Bahar, and
Sherief Reda. Hardware-software codesign of accurate,
multiplier-free deep neural networks. In DAC, 2017.

Surat Teerapittayanon, Bradley McDanel, and H.T.

[70] Amir M. Rahmani, Bryan Donyanavard, Tiago Miick, Kung. Branchynet: Fast inference via early exiting from

Kasra Moazzemi, Axel Jantsch, Onur Mutlu, and deep neural networks. In CVPR, 2016.

Nikil D. Dutt. SPECTR: formal supervisory control

and coordination for many-core systems resource [83] Vincent Vanhoucke, Andrew Senior, and Mark Z Mao.

management. In ASPLOS, pages 169-183, 2018. Improving the speed of neural networks on cpus. In Proc.
Deep Learning and Unsupervised Feature Learning

[71] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, NIPS Workshop, page 4, 2011.
and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint [84] Andreas Veit and Serge Belongie. Convolutional
arXiv:1606.05250, 2016. networks with adaptive inference graphs. In ECCV,

2018.

[72] S. Reda, R. Cochran, and A. K. Coskun. Adaptive
power capping for servers with multithreaded workloads. [85] Swagath Venkataramani, Ashish Ranjan, Kaushik Roy,
MICRO, 2012. and Anand Raghunathan. Axnn: energy-efficient

neuromorphic systems using approximate computing.

[73] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, In ISLPED, 2014.

Arslan Zulfiqar, and Stephen W Keckler. vdnn:

Virtualized deep neural networks for scalable, memory- [86] Chengcheng Wan, Henry Hoffmann, Shan Lu, and

efficient neural network design. In MICRO, page 18, Michael Maire. ~ Orthogonalized SGD and nested

2016. architectures for anytime neural networks. In ICML
2020, to appear.

[74] Muhammad Husni Santriaji and Henry Hoffmann.

Grape: Minimizing energy for gpu applications with [87] Chengcheng Wan, Muhammad Santriaji, Eri Rogers,
performance requirements. In MICRO, 2016. Henry Hoffmann, Michael Maire, and Shan Lu. Alert:
Accurate learning for energy and timeliness. arXiv

[75] Hardik Sharma, Jongse Park, Divya Mahajan, preprint arXiv:1911.00119, 2020.

Emmanuel Amaro, Joon Kyung Kim, Chenkai Shao,

Asit Mishra, and Hadi Esmaeilzadeh. From high-level [88] Yan Wang, Zihang Lai, Gao Huang, Brian H Wang,

deep neural models to fpgas. In MICRO, page 17, 2016. Laurens van der Maaten, Mark Campbell, and Kilian Q
Weinberger. Anytime stereo image depth estimation

[76] N Silberman and Guadarrama. S. Tensorflow-slim on mobile devices. arXiv preprint arXiv:1810.11408,
image classification model library. Online document, 2018.
https://github.com/tensorflow/models/tree/
master/research/slim, 2016. [89] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven

Rennie, Larry S Davis, Kristen Grauman, and Rogerio

[77] Hyeonuk Sim, Saken Kenzhegulov, and Jongeun Feris. Blockdrop: Dynamic inference paths in residual
Lee. Dps: dynamic precision scaling for stochastic networks. In CVPR, pages 8817-8826, 2018.
computing-based deep neural networks. In DAC,
page 13, 2018. [90] Huazhe Zhang and Henry Hoffmann. Maximizing

performance under a power cap: A comparison of

[78] Karen Simonyan and Andrew Zisserman. — Very hardware, software, and hybrid techniques. In ASPLOS,
deep convolutional networks for large-scale image 2016.
recognition. In ICLR, 2015.

])]] [91] Minjia Zhang, Samyam Rajbhandari, Wenhan Wang,

[79] Srm'at.h Srldhgran, Gagan. Gupta, and Gurmdar. S Sohi. and Yuxiong He. Deepcpu: Serving rnn-based deep
Holistic run-time parallelism management for time and learning models 10x faster. In ATC, pages 951-965,
energy efficiency. In ICS, 2013. 2018.

[80] Youcheng Sun, Min Wu, Wenji.e Ruan, Xiaowei Huang’ [92] H. Zhou, S. Bateni, and C. Liu. S3dnn: Supervised
Marta Kwiatkowska, and Daniel Kroening. Concolic streaming and scheduling for gpu-accelerated real-time
testing for deep neural networks. In ASE, 2018. DNN workloads. In RTAS, 2018.

368 2020 USENIX Annual Technical Conference USENIX Association

[93] Yanqgi Zhou, Henry Hoffmann, and David Wentzlaff.
Cash: Supporting iaas customers with a sub-core
configurable architecture. In ISCA, 2016.

USENIX Association 2020 USENIX Annual Technical Conference 369

	Introduction
	Motivation
	Contributions

	Understanding Deployment Challenges
	Understanding the Tradeoffs
	Understanding Variability
	Understanding Potential Solutions

	ALERT Run-time Inference Management
	Inputs & Outputs of ALERT
	ALERT Workflow
	Key Ideas of ALERT Estimation
	ALERT Estimation Algorithm
	Integrating ALERT with Anytime DNNs
	Limitations and Discussions

	Implementation
	Experimental Evaluation
	Methodology
	Overall Results
	Detailed Results and Sensitivity

	Related work
	Conclusion

