
Server-Driven Video Streaming for Deep Learning Inference

Kuntai Du∗, Ahsan Pervaiz∗, Xin Yuan, Aakanksha Chowdhery†, Qizheng Zhang, Henry Hoffmann, Junchen Jiang

University of Chicago †Google

ABSTRACT

Video streaming is crucial for AI applications that gather videos

from sources to servers for inference by deep neural nets (DNNs).

Unlike traditional video streaming that optimizes visual quality,

this new type of video streaming permits aggressive compres-

sion/pruning of pixels not relevant to achieving high DNN inference

accuracy. However, much of this potential is left unrealized, because

current video streaming protocols are driven by the video source

(camera) where the compute is rather limited. We advocate that the

video streaming protocol should be driven by real-time feedback

from the server-side DNN. Our insight is two-fold: (1) server-side

DNN has more context about the pixels that maximize its infer-

ence accuracy; and (2) the DNN’s output contains rich information

useful to guide video streaming. We present DDS (DNN-Driven

Streaming), a concrete design of this approach. DDS continuously

sends a low-quality video stream to the server; the server runs the

DNN to determine where to re-send with higher quality to increase

the inference accuracy. We find that compared to several recent

baselines on multiple video genres and vision tasks, DDS maintains

higher accuracy while reducing bandwidth usage by upto 59% or

improves accuracy by upto 9% with no additional bandwidth usage.

CCS CONCEPTS

•Networks→Application layer protocols; • Information sys-

tems→Data streaming;Data analytics; •Computingmethod-

ologies → Computer vision problems;

KEYWORDS

video analytics, video streaming, deep neural networks, feedback-

driven

ACM Reference Format:

Kuntai Du, Ahsan Pervaiz, Xin Yuan, Aakanksha Chowdhery, Qizheng

Zhang, Henry Hoffmann, Junchen Jiang. 2020. Server-Driven Video Stream-

ing for Deep Learning Inference. In Annual conference of the ACM Special

Interest Group on Data Communication on the applications, technologies,

architectures, and protocols for computer communication (SIGCOMM ’20),

August 10ś14, 2020, Virtual Event, USA. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3387514.3405887

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCOMM ’20, August 10ś14, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7955-7/20/08. . . $15.00
https://doi.org/10.1145/3387514.3405887

1 INTRODUCTION
Internet video must balance between maximizing application-level

quality and adapting to limited network resources. This perennial

challenge has sparked decades of research and yielded various

models of user-perceived quality of experience (QoE) and QoE-

optimizing streaming protocols. In the meantime, the proliferation

of deep learning and video sensors has ushered in new analytics-

oriented applications (e.g., urban traffic analytics and safety anom-

aly detection [5, 22, 27]), which also require streaming videos from

cameras through bandwidth-constrained networks [24] to remote

servers for deep neural nets (DNN)-based inference. We refer to it

asmachine-centric video streaming. Rather than maximizing human-

perceived QoE, machine-centric video streaming maximizes for

DNN inference accuracy. This contrast has inspired recent efforts to

compress or prune frames and pixels that may not affect the DNN

output (e.g., [30ś32, 36, 48, 76, 78, 80]).

A key design question in any video streaming system is where to

place the functionality of deciding which actions can optimize applica-

tion quality under limited network resources. Surprisingly, despite

a wide variety of designs, most video streaming systems (both

machine-centric and user-centric) take an essentially source-driven

approachÐit is the content source that decides how the video should

be best compressed and streamed. In traditional Internet videos

(e.g., YouTube, Netflix), the server (the source) encodes a video at

several pre-determined bitrate levels, and although the mainstream

protocol, DASH [7], is dubbed a client-driven protocol, the client

does not provide any instant user feedback on user-perceived QoE

to let server re-encode the video. Current machine-centric video

streaming relies largely on the camera (the source) to determine

which frames and pixels to stream.

While the source-driven approach has served us well, we argue

that it is suboptimal for analytics-oriented applications. The source-

driven approach hinges on two premises: (1) the application-level

quality can be estimated by the video source, and (2) it is hard

to measure user experience directly in real time. Both need to be

revisited in machine-centric video streaming.

First, it is inherently difficult for the source (camera) to estimate

the inference accuracy of the server-side DNN by itself. Inference

accuracy depends heavily on the compute-intensive feature ex-

tractors (tens of NN layers) in the server-side DNN. The disparity

between most cameras and GPU servers in their compute capabil-

ity means that any camera-side heuristics are unlikely to match

the complexity of the server-side DNNs. This mismatch leads to

the suboptimal performance of the source-driven protocols. For

instance, some works use inter-frame pixel changes [30] or cheap

object detectors [80] to identify and send only the frames/regions

that contain new objects, but they may consume more bandwidth

than necessary (e.g., background changes causing pixel-level differ-

ences) and/or cause more false negatives (e.g., small objects could

be missed by the cheap camera-side object detector).

SIGCOMM ’20, August 10ś14, 2020, Virtual Event, USA K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang, H. Hoffmann, J. Jiang

Second, while eliciting real-time feedback from human users may

be hard, DNN models can provide rich and instantaneous feedback.

Running an object-detection DNN on an image returns not only

detected bounding boxes, but also additional feedback for free, like

the confidence score of these detections, intermediate features, etc.

Moreover, such feedback can be extracted on-demand by probing

the DNN with extra images. Such abundant feedback information

has not yet been systematically exploited by prior work.

In this paper, we explore an alternative DNN-driven approach

to machine-centric video streaming, in which video compression

and streaming are driven by how the server-side DNN reacts to

real-time video content. DNN-driven video streaming follows an

iterativeworkflow. For each video segment, the camera first sends it

in low quality to the server for DNN inference; the server runs the

DNN and derives some feedback about the most relevant regions to

the DNN inference and sends this feedback to the camera; and the

camera then uses the feedback to re-encode the relevant regions in a

higher quality and sends them to the server for more accurate infer-

ence. (The workflow can have multiple iterations though this paper

only considers two iterations). Essentially, by deriving feedback di-

rectly from the server-side DNN, it sends high-quality content only

in the minimal set of relevant regions necessary for high inference

accuracy. Moreover, unlike prior work that requires camera-side

vision processing or hardware support (e.g., [30, 48, 80]), we only

need standard video codec on the camera side.

The challenge of DNN-driven protocols, however, is how to derive

useful feedback from running DNN on a low-quality video stream.

We present DDS (DNN-Driven Streaming), a concrete design which

utilizes the feedback regions derived from DNN output on the low-

quality video and sparingly uses high-quality encoding for the

relatively small number of regions of interest. We apply DDS to

three vision tasks: object detection, semantic segmentation, and

face recognition. The insight is that the low-quality video may not

suffice to get sufficient DNN inference accuracy, but it can produce

surprisingly accurate feedback regions which intuitively require

higher quality for the DNN to achieve desirable accuracy. Feedback

regions are robust to low-quality videos because they are more

akin to binary-class tasks (i.e.,whether a region might contain an

object and need higher quality) than to more difficult tasks such as

classifying what object is in each region. Moreover, DDS derives

feedback regions from DNN output without extra GPU overhead.

DDS is not the first to recognize that different pixels affect DNN

accuracy differently, e.g., prior works also send only selected re-

gions/frames to trigger server-side inference [54, 80]. But unlike

DDS, these regions are selected either by simple camera-side log-

ics [80] which suffer from low accuracy, or by region-proposal

networks (RPNs) [54] which are designed to capture where objects

are likely present, rather than where higher quality is needed (e.g.,

large targeted objects will be selected by RPNs but they do not need

high video quality to be accurately recognized). Using RPNs also

limits the applications to object detection and does not generalize

to other tasks such as semantic segmentation. In a broader context,

DDS is related and complementary to the trend in deep learning

of using attention mechanisms (e.g., [61, 74])Ðattention improves

DNN accuracy by focusing computation on the important regions,

while DDS improves bandwidth efficiency by sending only a few

(a) Input (b) Object detection (c) Sem. segmentation

Figure 1: The input and output of object detection and semantic

segmentation on one example image. We use red to label the car and

blue to label the truck.

regions in high quality to achieve the same DNN accuracy as if the

whole video is sent in the highest quality.

We evaluate DDS and a range of recent solutions [30, 54, 76, 78,

80] on three vision tasks. Across 49 videos, we find DDS achieves

same or higher accuracy while cutting bandwidth usage by upto

59%, or uses the same bandwidth consumption while increasing

accuracy by 3-9%. This work does not raise any ethical issues.

2 MOTIVATION
We start with the background of video streaming for distributed

video analytics, including its need, performance metrics, and design

space. We then use empirical measurements to elucidate the key

limitations of prior solutions.

2.1 Video streaming for video analytics
Vision tasks under consideration: We consider three computer

vision tasksÐobject detection, semantic segmentation, and face

recognition. Figure 1 shows an example input and output of object

detection (one label for each bounding box) and semantic segmen-

tation (one label for each pixel). These tasks are widely used in

real-world scenarios to detect/segment objects of interest and their

results are used as input to high-level applications (e.g., vehicle

collision detection).

Why streaming videos out from cameras? On one hand, com-

puter vision accuracy has been improved by deep learning at the

cost of increased compute demand. On the other hand, low prices of

high-definition network-connected cameras make them widely de-

ployed in trafficmonitoring [27], video analytics in retail stores [12],

and inspection of warehouses or remote industrial sites [38]. Thus,

the camera operators must scale out the compute costs of analyzing

ever more camera feeds [2, 6, 21]. One solution is to offload the

compute-intensive inference (partially or completely) to centralized

GPU servers. (Sometimes, video feeds must be kept local due to

privacy regulations, but it is beyond our scope.) For the sake of

discussion, let us calculate the costs of 60 HD cameras each run-

ning ResNet50 classification at 90FPS. We use ResNet50 classifier

because our applications require more complex DNN models (e.g.,

FasterRCNN-ResNet101) cannot run on Jetson TX2 [9] at 30FPS.

Now, buying 60 Raspberry Pi 4 Cameras and an NVIDIA Tesla T4

GPU (with a throughput of running ResNet50 at 5,700FPS [17])

costs $23 × 60(cameras)[19]+$2000(GPU)[13]= $3.4K. Buying 60

NVIDIA Jetson TX2 cameras (each running ResNet50 at 89FPS [16])

costs about $400[15]×60 = $24K, which is one order of magnitude

more expensive. These numbers may vary over time, but the price

gap between two approaches is likely to remain. The calculation

Server-Driven Video Streaming for Deep Learning Inference SIGCOMM ’20, August 10ś14, 2020, Virtual Event, USA

by scheduling configurations over multiple segments. As the sys-

tem has a small, constant number of constraints (simply respecting

the bandwidth requirement), an optimal solution can be found in

constant time [49].

3.4 Design rationale and performance analysis

Why driven by server? At first glance, the idea of server-driven

region extraction seems similar to Vigil [80] and EAAR [54], which

also identifie and send only regions likely with objects to the server.

But we argue that the region extraction methods of Vigil and EAAR

spend extra bandwidth on objects that can be detected at low quality,

and they do not generalize to applications like semantic segmenta-

tion. Moreover, both of them do not leverage modern video codec

to save bandwidth. Furthermore, Vigil’s camera-side local model

uses simpler feature extractor than the server-side DNN, and thus

might miss objects when analyzing challenging video content (as

illustrated in Figure 5). As we will show in ğ5.2, even if Vigil uses a

model (MobileNet-SSD) that runs only 3× faster than the server-

side DNN [20], it still misses about 40%more objects of interest than

DDS and sends over 30% more data; EAAR consumes 4× bandwidth

and still less accurate than DDS. ğ5.2 will give more analysis.

Analysis of DDS’s network usage: The bandwidth usage of DDS

is governed by two factors: (1) the quality levels of Stream A and

Stream B, and (2) the areas of the feedback regions of Stream B. If

Stream A uses a high quality level, the bandwidth usage will be

dominated by Stream A and the feedback regions selected in Stream

B will be less relevant. But if Stream A uses a very low quality level,

DDS cannot extract meaningful feedback regions from the DNN

output on the low-quality video. (ğ5.1 gives the detail configurations

of Stream A and B.) The areas of feedback regions have a complex

relationship with the video content. Intuitively, feedback regions

will be smaller when less objects/pixels are associated with small

objects or hard-to-classify boundaries. When feedback regions are

so large that Stream B is almost the same size of the original video,

then DDS will not save much bandwidth.

To use the analysis in ğ2.4, when the total cost of a video analytics

system is dominated by the network cost (Setting 1), DDS will reach

better cost-accuracy tradeoffs than the baselines, although it will

do poorly when the cost is dominated by the server cost (Setting 2).

Delay analysis of DDS: One concern of DDS is the extra delay

in Stream B. We introduce an optimization in ğ4.2 to reduce the

average response delay by reporting the objects/pixels that are

already detected in Stream A. This allows DDS to achieve a lower

average response delay than the baselines at similar accuracy (see

Figure 4a), since Stream A has a low response delay and many

objects/pixels will not need Stream B.

4 IMPLEMENTATION
We implement DDS mostly in Python and the code is available and

will be regularly updated in [8].

4.1 DDS Interface
DDS sits between the low-level functions (video codec and DNN

inference) and the high-level applications (e.g., object-detection

queries). It provides łsouth-boundž APIs and łnorth-boundž APIs,

both making minimum assumptions about the exact implementa-

tion of the low-level and high-level functions.

The south-bound APIs interact with the video codec and DNN.

Our implementation uses the APIs already exposed by the x264

MPEG video, such as x264_encoder_encode [25]. From DNN, DDS

implements two functions: (1) feedback regions, each with a speci-

fied location; and (2) detection results including the detected pix-

els/bounding boxes each with a specified location and a detection

confidence score.

The north-boundAPIs implement the same analyst-facing (north-

bound) APIs as the DNNs (DDS can simply forward any function

call to DNNs), so the high-level applications (e.g., [51, 58]) do not

need to change and DDS can be deployed transparently from the

analysts’ perspective. The only difference is that DDS runs the DNN

twice on the same video segment, so the two DNN inference results

must be merged into a single result, which is logically similar to

how DNNs internally merge redundant results (e.g., [73]).

4.2 Optimization
Saving bandwidth by leveraging codec: A naive implementa-

tion of Stream B would encode each feedback region as a separate

high-quality image. But we found that the total size of these images

would be much greater than the original video without cropping out

the regions! The reason is that the video codecs (e.g., H.264/H.265),

after decades of optimization, are very effective in exploiting the

spatial redundancies within a frame and the temporal redundancies

between frames to reduce the encoded video size. DDS leverages

such encoding effectiveness. It sets the pixels outside of the feed-

back regions in the high quality image to black (to remove spatial

redundancies), and encodes these images into a video file (to remove

temporal redundancies).

Reducing average delay via early reporting: The cost that DDS

pays to get better performance is the worst-case response delay: the

result of Stream B will wait for two rounds of inference before it can

be returned. We leverage the observation that a substantial fraction

of the DNN output from the low-quality video (Stream A) already

has high confidence and thus can be returned without waiting for

Stream B. While this optimization does not change the bandwidth

consumption or worst-case response delay, it substantially reduces

the delay of many inference results. In object detection, we empiri-

cally found that over 90% of all final detected objects could have

been detected in Stream A. These objects can be returned much

faster than any prior approach, because Stream A uses a quality

level much lower than what other work (e.g., [31, 32, 78]) would

need to achieve the same accuracy. Similarly, in semantic segmenta-

tion, we found that the label of over 93% of all pixels can be returned

by Stream A, without the need of Stream B.

Camera-side heuristics for fault tolerance: When the connec-

tion to the server is poor or the server is disconnected, DDS will

leverage camera-side compute (if available). Like Glimpse [30], DDS

can use a camera-side tracking logic to generate inference results

on new frames based on the results of the previous frames.

5 EVALUATION
The key takeaways of our evaluation are:

• On three vision tasks, DDS achieves same or higher accuracy

than the baselines while using 18-58% less bandwidth (Figure 9)

and 25-65% lower average response delay (Figure 11).

Server-Driven Video Streaming for Deep Learning Inference SIGCOMM ’20, August 10ś14, 2020, Virtual Event, USA

REFERENCES
[1] 4g/lte bandwidth logs. http://users.ugent.be/~jvdrhoof/dataset-4g/.
[2] Are we ready for ai-powered security cameras? https://thenewstack.io/

are-we-ready-for-ai-powered-security-cameras/.
[3] At&t unlimited data plans with talk & text. https://www.att.com/plans/

unlimited-data-plans/. (Accessed on 06/15/2020).
[4] Benchmarking videos used in dds. https://github.com/KuntaiDu/dds.
[5] Can 30,000 cameras help solve chicago’s crime problem? https://www.nytimes.

com/2018/05/26/us/chicago-police-surveillance.html.
[6] Cloud-based video analytics as a service of 2018. https://www.asmag.com/

showpost/27143.aspx.
[7] Dashjs. https://github.com/Dash-Industry-Forum/dash.js.
[8] Dds: Machine-centric video streaming. https://github.com/KuntaiDu/dds.
[9] Faster r-cnn on jetson tx2. https://jkjung-avt.github.io/faster-rcnn/. Accessed:

7/3/2020.
[10] Fastest wireless network in 2020: We tested 8 carriers to crown a winner | tom’s

guide. https://www.tomsguide.com/us/best-mobile-network,review-2942.html.
(Accessed on 06/15/2020).

[11] Gpus pricing | compute engine documentation | google cloud. https://cloud.
google.com/compute/gpus-pricing. (Accessed on 06/21/2020).

[12] How ai based video analytics is benefiting retail industry. https://www.
lanner-america.com/blog/ai-based-video-analytics-benefiting-retail-industry/.

[13] Hp r0w29a tesla t4 graphic card - 1 gpus - 16 gb. https://www.amazon.com/
HP-R0W29A-Tesla-Graphic-Card/dp/B07PGY6QPT/. Accessed: 2020-1-29.

[14] Insightface: 2d and 3d face analysis project. https://github.com/deepinsight/
insightface.

[15] Jetson tx2. https://www.nvidia.com/en-us/autonomous-machines/
embedded-systems/jetson-tx2/. Accessed: 7/3/2020.

[16] Nvidia deep learning inference technical overview, table łjetson tx2 (maxq mode)ž
at row resnet50 batch size 128. http://www.nextplatform.com/wp-content/
uploads/2018/01/inference-technical-overview-1.pdf. Accessed: 7/3/2020.

[17] Nvidia tesla deep learning product performance (table łt4 inference per-
formancež at row resnet50 batch size 128). https://developer.nvidia.com/
deep-learning-performance-training-inference. Accessed: 7/3/2020.

[18] Official implementation of efficient cascading residual network for sr. https:
//github.com/nmhkahn/CARN-pytorch.

[19] Smraza raspberry pi 4 camera module 5 megapixels 1080p. https://www.amazon.
com/Smraza-Raspberry-Megapixels-Adjustable-Fish-Eye/dp/B07L2SY756/. Ac-
cessed: 2020-1-29.

[20] Tensorflow detection model zoo. https://github.com/tensorflow/models/blob/
master/research/object_detection/g3doc/detection_model_zoo.md.

[21] Video meets the internet of things. https://www.mckinsey.com/industries/
high-tech/our-insights/video-meets-the-internet-of-things.

[22] Video surveillance: How technology and the cloud is disrupting the market. https:
//cdn.ihs.com/www/pdf/IHS-Markit-Technology-Video-surveillance.pdf.

[23] Vision meets drones: A challenge. http://www.aiskyeye.com/.
[24] Wi-fi vs. cellular: Which is better for iot? https://www.verypossible.com/blog/

wi-fi-vs-cellular-which-is-better-for-iot.
[25] x264 open source video lan. https://www.videolan.org/developers/x264.html.
[26] Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn. Fast, accurate, and light-

weight super-resolution with cascading residual network. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 252ś268, 2018.

[27] Ganesh Ananthanarayanan, Victor Bahl, Peter Bodik, Krishna Chintalapudi,
Matthai Philipose, Lenin Ravindranath Sivalingam, and Sudipta Sinha. Real-time
video analytics - the killer app for edge computing. IEEE Computer, October 2017.

[28] S. Barati, F. A. Bartha, S. Biswas, R. Cartwright, A. Duracz, D. Fussell, H. Hoffmann,
C. Imes, J. Miller, N. Mishra, Arvind, D. Nguyen, K. V. Palem, Y. Pei, K. Pingali,
R. Sai, A. Wright, Y. Yang, and S. Zhang. Proteus: Language and runtime support
for self-adaptive software development. IEEE Software, 36(2):73ś82, March 2019.

[29] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander
Kirillov, and Sergey Zagoruyko. End-to-end object detection with transformers.
arXiv preprint arXiv:2005.12872, 2020.

[30] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl, and Hari
Balakrishnan. Glimpse: Continuous, real-time object recognition on mobile
devices. In Proceedings of the 13th ACM Conference on Embedded Networked
Sensor Systems, pages 155ś168. ACM, 2015.

[31] Ting-Wu Chin, Ruizhou Ding, and Diana Marculescu. Adascale: Towards real-
time video object detection using adaptive scaling. arXiv preprint arXiv:1902.02910,
2019.

[32] Sandeep P Chinchali, Eyal Cidon, Evgenya Pergament, Tianshu Chu, and Sachin
Katti. Neural networks meet physical networks: Distributed inference between
edge devices and the cloud. In Proceedings of the 17th ACM Workshop on Hot
Topics in Networks, pages 50ś56. ACM, 2018.

[33] High Efficiency Video Coding and ITUT Rec. H. 265 and iso, 2013.
[34] Jiankang Deng, Jia Guo, Xue Niannan, and Stefanos Zafeiriou. Arcface: Additive

angular margin loss for deep face recognition. In CVPR, 2019.

[35] Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica, Dilip Joseph, Aditya Ganjam,
Jibin Zhan, and Hui Zhang. Understanding the impact of video quality on user
engagement. In ACM SIGCOMM Computer Communication Review, volume 41,
pages 362ś373. ACM, 2011.

[36] John Emmons, Sadjad Fouladi, Ganesh Ananthanarayanan, Shivaram Venkatara-
man, Silvio Savarese, and Keith Winstein. Cracking open the dnn black-box:
Video analytics with dnns across the camera-cloud boundary. In Proceedings of
the 2019 Workshop on Hot Topics in Video Analytics and Intelligent Edges, pages
27ś32, 2019.

[37] Antonio Filieri, Henry Hoffmann, and Martina Maggio. Automated design of
self-adaptive software with control-theoretical formal guarantees. In Proceedings
of the 36th International Conference on Software Engineering, ICSE 2014, pages
299ś310, New York, NY, USA, 2014. ACM.

[38] Shilpa George, Junjue Wang, Mihir Bala, Thomas Eiszler, Padmanabhan Pillai,
and Mahadev Satyanarayanan. Towards drone-sourced live video analytics for
the construction industry. In Proceedings of the 20th International Workshop on
Mobile Computing Systems and Applications, pages 3ś8. ACM, 2019.

[39] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn.
In Proceedings of the IEEE international conference on computer vision, pages
2961ś2969, 2017.

[40] João F Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista. High-speed
tracking with kernelized correlation filters. IEEE transactions on pattern analysis
and machine intelligence, 37(3):583ś596, 2014.

[41] Congrui Hetang, Hongwei Qin, Shaohui Liu, and Junjie Yan. Impression network
for video object detection. https://arxiv.org/pdf/1712.05896.pdf, Dec 2017.

[42] Chien-Chun Hung, Ganesh Ananthanarayanan, Peter Bodik, Leana Golubchik,
Minlan Yu, Paramvir Bahl, and Matthai Philipose. Videoedge: Processing camera
streams using hierarchical clusters. In 2018 IEEE/ACM Symposium on Edge
Computing (SEC), pages 115ś131. IEEE, 2018.

[43] Samvit Jain, Ganesh Ananthanarayanan, Junchen Jiang, Yuanchao Shu, and
Joseph E. Gonzalez. Scaling Video Analytics Systems to Large Camera Deploy-
ments. In ACM HotMobile, 2019.

[44] Angela H Jiang, Daniel L-K Wong, Christopher Canel, Lilia Tang, Ishan Misra,
Michael Kaminsky, Michael A Kozuch, Padmanabhan Pillai, David G Andersen,
and Gregory R Ganger. Mainstream: Dynamic stem-sharing for multi-tenant
video processing. In 2018 USENIX Annual Technical Conference (USENIX ATC 18),
pages 29ś42, 2018.

[45] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Siddhartha Sen, and Ion
Stoica. Chameleon: scalable adaptation of video analytics. In Proceedings of the
2018 Conference of the ACM Special Interest Group on Data Communication, pages
253ś266. ACM, 2018.

[46] Junchen Jiang, Vyas Sekar, and Hui Zhang. Improving fairness, efficiency, and sta-
bility in http-based adaptive video streaming with festive. IEEE/ACM Transactions
on Networking (ToN), 22(1):326ś340, 2014.

[47] Kinjal A Joshi and Darshak G Thakore. A survey on moving object detection and
tracking in video surveillance system. International Journal of Soft Computing
and Engineering, 2(3):44ś48, 2012.

[48] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia.
Noscope: optimizing neural network queries over video at scale. Proceedings of
the VLDB Endowment, 10(11):1586ś1597, 2017.

[49] D. H. K. Kim, C. Imes, and H. Hoffmann. Racing and pacing to idle: Theoretical
and empirical analysis of energy optimization heuristics. In ICCPS, 2015.

[50] S Shunmuga Krishnan and Ramesh K Sitaraman. Video stream quality impacts
viewer behavior: inferring causality using quasi-experimental designs. IEEE/ACM
Transactions on Networking, 21(6):2001ś2014, 2013.

[51] Sanjay Krishnan, Adam Dziedzic, and Aaron J Elmore. Deeplens: Towards a
visual data management system. arXiv preprint arXiv:1812.07607, 2018.

[52] Robert LiKamWa and Lin Zhong. Starfish: Efficient concurrency support for
computer vision applications. In Proceedings of the 13th Annual International
Conference on Mobile Systems, Applications, and Services, pages 213ś226. ACM,
2015.

[53] Ji Lin, Chuang Gan, and Song Han. Tsm: Temporal shift module for efficient video
understanding. In Proceedings of the IEEE International Conference on Computer
Vision, pages 7083ś7093, 2019.

[54] Luyang Liu, Hongyu Li, and Marco Gruteser. Edge assisted real-time object de-
tection for mobile augmented reality. In The 25th Annual International Conference
on Mobile Computing and Networking, pages 1ś16, 2019.

[55] Mason Liu and Menglong Zhu. Mobile video object detection with temporally-
aware feature maps. https://arxiv.org/pdf/1711.06368.pdf, Mar 2018.

[56] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song.
Sphereface: Deep hypersphere embedding for face recognition. In CVPR, pages
6738ś6746, 2017.

[57] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional net-
works for semantic segmentation. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 3431ś3440, 2015.

[58] Yao Lu, Aakanksha Chowdhery, and Srikanth Kandula. Optasia: A relational
platform for efficient large-scale video analytics. In Proceedings of the Seventh
ACM Symposium on Cloud Computing, pages 57ś70. ACM, 2016.

SIGCOMM ’20, August 10ś14, 2020, Virtual Event, USA K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang, H. Hoffmann, J. Jiang

[59] Marwa Meddeb. Region-of-interest-based video coding for video conference appli-
cations. PhD thesis, Telecom ParisTech, 2016.

[60] Nikita Mishra, Connor Imes, John D. Lafferty, and Henry Hoffmann. CALOREE:
learning control for predictable latency and low energy. In ASPLOS, 2018.

[61] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of visual
attention. In Advances in neural information processing systems, pages 2204ś2212,
2014.

[62] J-R Ohm. Advances in scalable video coding. Proceedings of the IEEE, 93(1):42ś56,
2005.

[63] Chrisma Pakha, Aakanksha Chowdhery, and Junchen Jiang. Reinventing video
streaming for distributed vision analytics. In 10th USENIXWorkshop on Hot Topics
in Cloud Computing (HotCloud 18), Boston, MA, July 2018. USENIX Association.

[64] Alex Poms, Will Crichton, Pat Hanrahan, and Kayvon Fatahalian. Scanner:
Efficient video analysis at scale. ACM Transactions on Graphics (TOG), 37(4):1ś13,
2018.

[65] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. In CVPR, pages 779ś788, 2016.

[66] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 7263ś7271,
2017.

[67] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In Advances in neural
information processing systems, pages 91ś99, 2015.

[68] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN: towards
real-time object detection with region proposal networks. IEEE Trans. Pattern
Anal. Mach. Intell., 39(6):1137ś1149, 2017.

[69] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
4510ś4520, 2018.

[70] Michael Seufert, Sebastian Egger, Martin Slanina, Thomas Zinner, Tobias Hossfeld,
and Phuoc Tran-Gia. A survey on quality of experience of http adaptive streaming.
IEEE Communications Surveys & Tutorials, 17(1):469ś492, 2015.

[71] Haichen Shen, Seungyeop Han, Matthai Philipose, and Arvind Krishnamurthy.
Fast video classification via adaptive cascading of deep models. arXiv preprint,

2017.
[72] Surat Teerapittayanon, Bradley McDanel, and HT Kung. Distributed deep neural

networks over the cloud, the edge and end devices. In Distributed Computing
Systems (ICDCS), 2017 IEEE 37th International Conference on, pages 328ś339. IEEE,
2017.

[73] Jilin Tu, Ana Del Amo, Yi Xu, Li Guari, Mingching Chang, and Thomas Sebas-
tian. A fuzzy bounding box merging technique for moving object detection. In
2012 Annual Meeting of the North American Fuzzy Information Processing Society
(NAFIPS), pages 1ś6. IEEE, 2012.

[74] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Advances in neural information processing systems, pages 5998ś6008, 2017.

[75] Han Wang, Yuan Hong, Yu Kong, and Jaideep Vaidya. Publishing video data with
indistinguishable objects. In Proceedings of the 22nd International Conference on
Extending Database Technology (EDBT), 2020.

[76] Yiding Wang, Weiyan Wang, Junxue Zhang, Junchen Jiang, and Kai Chen. Bridg-
ing the edge-cloud barrier for real-time advanced vision analytics. In 11th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 19), 2019.

[77] Alper Yilmaz, Omar Javed, and Mubarak Shah. Object tracking: A survey. Acm
computing surveys (CSUR), 38(4):13, 2006.

[78] Ben Zhang, Xin Jin, Sylvia Ratnasamy, John Wawrzynek, and Edward A Lee.
Awstream: Adaptive wide-area streaming analytics. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication, pages
236ś252. ACM, 2018.

[79] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Philipose,
Paramvir Bahl, and Michael J Freedman. Live video analytics at scale with
approximation and delay-tolerance. In NSDI, volume 9, page 1, 2017.

[80] Tan Zhang, Aakanksha Chowdhery, Paramvir Victor Bahl, Kyle Jamieson, and
Suman Banerjee. The design and implementation of a wireless video surveillance
system. In Proceedings of the 21st Annual International Conference on Mobile
Computing and Networking, pages 426ś438. ACM, 2015.

[81] Tong Zhang, Fengyuan Ren, Wenxue Cheng, Xiaohui Luo, Ran Shu, and Xi-
aolan Liu. Modeling and analyzing the influence of chunk size variation on
bitrate adaptation in dash. In IEEE INFOCOM 2017-IEEE Conference on Computer
Communications, pages 1ś9. IEEE, 2017.

	Abstract
	1 Introduction
	2 Motivation
	2.1 Video streaming for video analytics
	2.2 Design space of video analytics systems
	2.3 Potential room for improvement
	2.4 Preliminary comparison of existing solutions
	2.5 Sources of the limitations

	3 DNN-Driven Video Streaming
	3.1 Overall workflow
	3.2 Feedback regions
	3.3 Handling bandwidth variation
	3.4 Design rationale and performance analysis

	4 Implementation
	4.1 DDS Interface
	4.2 Optimization

	5 Evaluation
	5.1 Methodology
	5.2 End-to-end improvements
	5.3 Sensitivity to application settings
	5.4 Sensitivity to network settings
	5.5 System microbenchmarks

	6 Related work
	7 Limitations and discussion
	8 Conclusion
	Acknowledgments
	References

