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Widespread subsidence and carbon emissions
across Southeast Asian peatlands

Alison M. Hoyt ©®'4X, Estelle Chaussard©?2, Sandra S. Seppalainen’ and Charles F. Harvey ©'3

Over the last three decades, most of the 25 million hectares of tropical peatlands in Southeast Asia have been deforested and
drained. As a consequence, declining water tables are exposing peat to oxidation, converting plant material accumulated over
millennia to carbon dioxide, and causing land subsidence. Here, we quantify the widespread peat carbon loss by using InSAR
remote sensing to map subsidence at 90-m resolution across 2.7 Mha of peatland area from 2007 to 2011. Over 90% of the sur-
veyed area is subsiding, with a mean rate of 2.2cmyr-". Consequently, the region now faces loss of productive land and flood-
ing because many peatlands are near sea level. Our measurements reveal that smallholder agricultural areas and degraded
peatlands are subsiding at rates comparable to those of plantations, and that subsidence rates increase away from rivers and
decrease over time following drainage. Because of its detailed spatial resolution, INSAR provides a valuable tool to identify
emissions by land use and geography and to target hotspots for better management. Finally, we use remotely sensed maps to
update IPCC emissions factors and calculate regional CO, emissions from peat oxidation of 155 + 30 MtCyr—"in 2015, similar in
magnitude to both regional fossil-fuel emissions and peat fires.

as relatively undisturbed freshwater peat swamp forests before

the 1980s. By 2015 only 6% of the area remained as pristine
peatland’. In Insular Southeast Asia, most peatlands have been con-
verted to industrial plantations (27%), smallholder agriculture (22%)
or degraded peat swamp forests (23%)". The drainage accompany-
ing this land conversion lowers the water table, exposing peat soil
to oxygen, allowing aerobic oxidation and fire, and resulting in CO,
emissions and subsidence of the peatland surface”. The large organic
carbon stock within tropical peat (66-69 Gt)" is being emitted as CO,
at a rate of 132-159 MtCyr~" in 2015, estimated on the basis of IPCC
(Intergovernmental Panel on Climate Change) emissions factors’.

Moststudieshave used polesanchoredinto the underlying clay>*-'*
to document subsidence of tropical peatlands. They observed initial
rates of subsidence up to 75cmyr~' from compaction after drain-
age, followed by long-term subsidence rates up to 5cmyr~' from
oxidation and loss of peat to CO, emissions’. If these rates persist,
many coastal tropical peatlands that are only a few metres above sea
level will experience frequent flooding or complete inundation and
saltwater intrusion in the coming decades'.

These studies are limited by the low number of poles, the chal-
lenges of multiyear monitoring and the inaccessibility of field sites.
They have primarily focused on oil palm plantations, neglecting
land uses such as smallholder farming. Media reports and indus-
try groups have leveraged this data gap to cast doubt on whether
subsidence is widespread or long lasting'“. While the mechanisms
linking subsidence to peatland drainage are well established”, the
spatial extent and trajectory over time remains controversial.

In this work, we present a large-scale high-resolution assess-
ment of subsidence on tropical peatlands. We use Interferometric
Synthetic Aperture Radar (InSAR) remote sensing to monitor
subsidence in tropical peatlands across Southeast Asia, covering
2.7Mha, or over 10% of the region’s peatland area. We systemati-
cally document subsidence across all disturbed land-use catego-

| he estimated 25 Mha of peatlands in Southeast Asia remained

ries, including smallholder agriculture, shrubs, ferns, cleared/burnt
areas and degraded forests. Over 90% of the peatland area sur-
veyed is subsiding, demonstrating that subsidence is not limited to
plantations.

InSAR remote sensing of subsidence
Our InSAR remote sensing approach characterizes subsidence at
90-m resolution across 4.3 Mha in Southeast Asia, including 2.7 Mha
of tropical peatlands. InSAR is an active remote sensing technique,
which detects centimetre- to millimetre-scale changes in elevation by
measuring phase changes in the reflected microwave beam between
subsequent flyovers of a SAR spacecraft (every 46 d for the Advanced
Land Observing Satellite—ALOS)'‘. Subsidence rates are derived by
taking the linear fit to the time series of deformation at each pixel
(Fig. 1). This approach has been used to quantify volcanic defor-
mation, earthquakes and interseismic deformation, and to manage
aquifer systems'?'. Recently, subsidence due to peatland drainage
in the Netherlands and Wales**, local subsidence associated with
the construction of Kuala Lumpur International Airport on tropi-
cal peatland* and subsidence on drained and restored peatlands in
Jambi and Central Kalimantan, Indonesia®, was quantified using
InSAR. Our large-scale InSAR analysis expands on these previous
datasets to cover all major land-use classes on tropical peatlands.

We measure subsidence across eight 100X 100km?* frames in
Indonesia and Malaysia (Fig. 2a, Extended Data Table 1, Extended
Data Figs. 6-9 and Supplementary Figs. 1-4) using a correlation-based
selection method'®* derived from the Small Baseline Subset
time-series approach”, relying on ALOS L-band data from 2007-
2011. We filter out regional deformation, such as the Sumatra subduc-
tion zone, and compare our subsidence maps with established maps of
peatland extent and historical land use developed by Miettinen et al.’
to analyse spatial and temporal trends (Methods).

We demonstrate that the correlation-based InSAR time-series
method applied to L-band data overcomes several obstacles to
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Fig. 1| Subsidence rates and time series in peat and non-peatland areas in ALOS frame 1 of 8. (For other frames analysed, see Fig. 2a, Extended Data
Figs. 6-9 and Supplementary Figs. 1-4.) a, Map of subsidence rates across coastal peatlands in North Sumatra and Riau provinces, Sumatra, Indonesia.
Highest subsidence rates are found within irregularly shaped peatlands (hashed, peatland extent reproduced with permission from from ref., Elsevier).
b, Time series of cumulative subsidence in the indicated non-peatland area show negligible change in the land surface elevation. ¢, Time series of
cumulative subsidence in the indicated peatland area (s.d. in grey). Positive values indicate subsidence and negative values indicate uplift.

measuring long-term subsidence in drained tropical peatlands: pen-
etration of dense vegetation, maintaining signal coherence through
time and avoiding phase-unwrapping errors. First, in contrast to
previous approaches with C-band data”~**, L-band data enable some
canopy penetration and maintain coherence in oil palm plantations
and areas with partially open canopy such as small-scale agricul-
ture, shrubland, burned areas and degraded peat swamp forests®.
Second, measurements of long-term subsidence due to peat carbon
loss, which are the focus of this study, are minimally impacted by
signal decorrelation or phase-unwrapping errors. Decorrelation is
expected if a substantial change in the land surface or canopy texture
occurs within the 46-d return period, and phase-unwrapping errors
occur when the deformation between repeat passes is greater than
half the ALOS wavelength (24 cm). These processes are expected

with rapid subsidence due to short-term compaction immedi-
ately following deforestation or with large fires’, but long-term
subsidence due to peat oxidation is of the order of 1-5cmyr™!
(0.13-0.63 cm per 46 d), minimizing decorrelation and unwrapping
errors. Furthermore, fires are almost entirely excluded from our
analysis because of the low fire frequency during our study period
(Supplementary Fig. 8 and Supplementary Table 2). Our analysis is
therefore well suited to measuring subsidence from peat oxidation
because initial compaction and fires are excluded.

We validate the estimated subsidence rates from InSAR time
series and mean velocity maps in several ways. First, we con-
firm that subsidence maps show no deformation in non-peatland
areas and show clear and accurate delineation of the subsiding
peat boundaries (Figs. 1 and 2). These areas provide an estimate
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Fig. 2 | Subsidence and land-use maps. a, Study area in Southeast Asia (peatland areas in grey'), including eight ALOS frames analysed (outlined in red),
and insets (outlined in black). b-f, Details of subsidence rate maps at different spatial scales (left-hand panels; left-hand legend in a) alongside their
corresponding land-use maps from ref. ' (right-hand panel; right-hand legend). Boundaries of peatland areas (black line) and industrial plantations (purple
lines) overlay the InSAR subsidence rates. Locations are ALOS frame 2 (b), frame 5 (¢), frame 6 (d), frame 8 (e) and frames 7 and 8 (f). ALOS frame 1is
shown in Fig. 1. g, Binned subsidence versus distance from the edge of the peat (20 bins) for 0-10 km (slightly, moderately and heavily degraded peatlands
shown together). h, Histogram of mean subsidence rates across all INSAR pixels on peatland. Positive values indicate subsidence and negative values
indicate uplift. Peatland extent and land-use maps adapted with permission from ref.’, Elsevier.
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Table 1| Land use, InSAR subsidence rates, and ground-based studies

Land use Land InSAR-measured Bootstrapped Regional Ground-based Number of Number of
areain subsidence subsidence emissions subsidence studies subsidence poles InSAR pixels
2015 (%) (cmyr™) (mean (upscaling) factor
+s.d.) (cmyr™) (mean (upscaling)
+ s.e.m.) (tCha'yr™")

Industrial plantation 27.4 26+17 25+0.2 1M1.0+2.0 DID & LAWOO® 22 (2 sites; oil palm 414,718

Wésten et al.” (OP))

Maswar*° 17 (1 site; OP)

Othman et al.? 5 (1site; OP)

Hooijer et al.? 25 (5 sites; OP)

Couwenberg & Hooijer’ 125 (1 site; acacia)

Ishikura et al.”® 51 (2 sites; OP)

Evans et al.® 1(1 site; OP)

220 (acacia)

Degraded peat 22.8 2.8+17 25+0.6 1M.2+31 Nagano et al.”® 4 (1 site) 440,756
swamp forest Ritzema et al.”? 19 (4 sites)

Khasanah & van 12 (1 site)

Noordwijk?®
Smallholder 224 1.7+16 1.8+0.3 77+19 Taylor & Ali” 20 (2 sites) 673,915
area Khasanah & van 44 (4 sites)

Noordwijk?®
Tall shrub/secondary 11.1 26+17 24+0.3 10.4+2.2 - - 89,929
forest
Ferns/low shrub 54 22+14 22+0.2 9.6+18 - - 215,439
Cleared/burntarea 2.0 2.8+15 25+0.2 1M.2+21 - - 41,800
Urban area 0.3 1.0+£0.2 = = = = 166

Subsidence rates for each land cover class are calculated from both INSAR measurements and bootstrapped regression-tree-based regional upscaling. Emissions factors are calculated from bootstrapped
subsidence values. We find similar subsidence rates across land uses. We exclude peatland areas classified as pristine (6.5%), seasonal water (1.7%), mangrove (0.4%) or water (0.3%), as the INSAR
coverage was poor and these areas are not expected to experience subsidence. Data were insufficient to calculate an emissions factor for urban areas on peat (0.3%). The fraction of peatland area is

reported from ref. .

of the method’s accuracy and precision with an overall measured
mean subsidence of 0.21cmyr™, and an s.d. of 1.05cmyr7), in
non-peatland areas >15km from the peat edge (Extended Data
Figs. 1 and 2 and Supplementary Table 3). However, due to the lack
of direct ground-based validation, it is possible that the s.d. is higher
for peatlands. Second, we verify that spatial discontinuities in sub-
sidence rates correspond to past or present land-use boundaries in
nearly all cases (Fig. 2). Finally, we validate trends in InSAR subsid-
ence rates with subsidence pole measurements across land-use cat-
egories (Extended Data Fig. 4)>°'>?%. Point-by-point comparison
is not possible due to limited ground measurements between 2007
and 2011*%, a lack of precise coordinates for monitoring poles, and
subpixel heterogeneity within the 90-m SAR resolution (Methods).

Subsidence trends across Southeast Asian peatlands

We find widespread subsidence across Southeast Asian peatlands,
regardless of land use. Over 90% of the peat is subsiding, with approx-
imately 80% subsiding at rates>1cmyr™', 60% at rates>2cmyr
and 15% at rates >4 cmyr~" (Fig. 2h). These rates are consistent with
ground-based measurements (Extended Data Fig. 4), but are now
observed across large areas and diverse land uses.

Our remote sensing analysis shows that subsidence extends
beyond plantations, with comparable mean subsidence rates
across distinct land-use categories (Table 1). Degraded peatlands
and smallholder areas cover 23% and 22% of regional peatland
area respectively, but account for only a small number of pole
measurements'®'>?® (Table 1), as most studies have focused on
plantations>>*%*112%% While previous upscaling efforts assumed,
for example, that plantations subside over five times faster than
degraded peat swamp forests®, or twice as fast as smallholder agri-
culture and three times faster than shrublands and recently cleared/

burnt areas®, our large-scale analysis reveals comparable mean sub-
sidence rates across land uses. This enables important updates to
IPCC emissions factors and confirms that the drainage itself, rather
than land use, is the principal driver of the subsidence.

Although subsidence is observed across all land-use categories,
rates are not uniform across the landscape or within land-use cat-
egories. In many cases, land-use boundaries are clearly reflected
in subsidence patterns, probably due to different drainage depths
in adjacent areas (Fig. 2c,e). However, in other regions, such as
the Ex-Mega-Rice project area, subsidence is consistent across the
landscape despite differences in land use, probably due to system-
atic drainage efforts (Fig. 2f). Regional peat properties such as peat
depth, degree of decomposition and mineral content may also con-
tribute to variability in subsidence rates (Extended Data Fig. 2).
Subsidence rates may also be influenced by warming temperatures
resulting from climate and land-use change®".

Subsidence rates are higher further from rivers and peat margins,
independent of land-use history (Figs. 1a, 2g and 3c) and across
land-use categories. This finding is consistent with understand-
ing*>* of the interaction between peat morphology and hydrol-
ogy: the water table within a peat dome cannot fall below the water
level of its bounding rivers, hence subsidence is limited at the dome
margins, where the peat is thinnest. Subsidence is greater in dome
interiors, where drainage can expose thick layers of peat to oxida-
tion. We note that at the largest distances from the river the sub-
sidence rates appear to once again decrease; however, this signal is
dominated by a few locations. This large-scale pattern of increasing
subsidence with distance from rivers contrasts with the small-scale
pattern of decreasing subsidence with distance from canals'. Near
canals, the largest water table drawdowns are immediately adjacent
to the bank, causing the highest subsidence. In the future, detailed
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Fig. 3 | Subsidence rates over time since oil palm plantation establishment. a, Expansion of oil palm plantations on peatland from 1990 to 2007 across
coastal areas in North Sumatra and Riau, Sumatra, Indonesia (ALOS frame 1, see Fig. 1 for subsidence rates and geographic coordinates). b, Probability
density estimate of INSAR subsidence rates on oil palm plantations at different stages of development. ¢, Subsidence rates binned by distance from the river
(20 bins). Subsidence rates are higher on recently drained plantations, and show an increase in subsidence away from the river. 0-7-yr data are limited to
points <7 km from the peat boundary for consistency with 7-17-yr data. Peatland extent and land-use maps in a adapted with permission from ref. ', Elsevier.

subsidence maps may help to design canal systems to better manage
subsidence.

This subsidence dataset also allows us to address a question of
regional importance: does subsidence slow over time? Long-term
subsidence rates as high as 5cmyr™ have been observed in
ground-based measurements’. If maintained, these rates could result
in flooding within a few decades. In contrast, other pole measure-
ments have shown that subsidence slows over time®'". To address
this question, we use a space-for-time substitution approach. We
compare subsidence rates in adjacent peatland areas in North
Sumatra that were drained and converted to oil palm plantations
at different times (Fig. 3a). Subsidence rates on recently established
plantations are the highest and decrease with time since conversion
(Fig. 3b), even when accounting for distance from the river (Fig. 3¢).
Potential causes for slowed subsidence with time include the follow-
ing: (1) a change in peat properties if preferential decomposition of
labile organic matter leaves behind a more stable peat matrix; (2)
drainage depths could decrease over time if canals are not main-
tained; (3) in some cases, all peat may have decomposed, expos-
ing the underlying mineral soil and lowering average rates for old
plantations. Longer-term trends in subsidence rates (beyond 20yr)
remain uncertain.
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Upscaling subsidence to carbon losses

Subsidence measurements, when combined with bulk density data,
integrate carbon loss over time and capture all carbon fluxes from
the peat (including for example fluvial C export®®). The increase in
subsidence measurements from hundreds of poles to hundreds of
thousands of InSAR measurements (Table 1) enables us to extrapo-
late subsidence values and corresponding CO, emissions across
insular Southeast Asia, on the basis of extensive spatial cover-
age. This represents an improvement over existing regional stud-
ies, which calculated regional CO, emissions from peat oxidation
by multiplying a single emissions factor by the total area in each
land-use category™’!, sometimes relying on a handful of data points
for large areas.

Across all pixels, we find a mean regional subsidence of
2.24cmyr" (Supplementary Table 1). To upscale these measure-
ments across the region, beyond the eight InSAR frames, while
still accounting for differences in the regional land-use distribution
(Supplementary Fig. 7), we use a regression-tree approach based on
(1) classification of present land use at the time of subsidence mea-
surements, (2) distance from the peat edge and (3) past land use
(1990) as a proxy for time since drainage (Extended Data Fig. 3).
Using a bootstrapping approach to generate 1,000 regression
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trees, we find a similar upscaled mean regional subsidence rate of
2.24+0.23cmyr! (mean +s.e.m.; Methods, Supplementary Table 1
and Supplementary Fig. 6). Because the variability in site-specific
drainage practices is high, it is challenging to accurately predict sub-
sidence at a single location, which is reflected by the large s.d. in
measured subsidence values (Table 1). In contrast, across the region,
this variability averages out, reducing the uncertainty in the regional
mean subsidence. To estimate regional CO, emissions due to peat
oxidation, we multiply the subsidence rate by the peat bulk den-
sity and carbon content, following the method of Couwenberg and
Hooijer” and using values and uncertainty ranges for peat properties
from the literature (Methods and Extended Data Fig. 5).

We find that drainage of tropical peatlands in insular Southeast
Asia resulted in a net carbon loss of 155+30MtCyr~" in 2015,
confirming that long-term peat oxidation is a large source of CO,
emissions, consistent with previous regional estimates’'. As our
upscaling does not consider Indonesian Papua and Papua New
Guinea, home to an additional ~10 Mha of tropical peatlands, which
are poorly mapped, our results probably underestimate the total
CO, emissions from peat oxidation in Southeast Asia. Wider appli-
cation of InSAR is needed to further identify subsidence hotspots
and inform regional management practices.
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Methods

Site selection. Sites were selected to cover representative land uses on peat across
Southeast Asia, including agricultural plantations, smallholder areas and degraded
peat swamp forest. The spatial scale of ALOS frames (100 X 100 km?) results in
amix of land uses in each frame (Extended Data Table 1). Preference was given

to sites where concurrent subsidence pole measurements are available, such as
frame 6, which includes the region with the measurements of Othman et al.%.
Frame 9 includes the oil palm measurements by Hooijer et al.? and Couwenberg
and Hooijer’, but a two-year gap in the ALOS time series prevented further
analysis. Frame 2 overlaps with acacia plantation, where measurements by Hooijer
et al.” were made, but decorrelation occurs in the localized area of the pole
measurements, probably due to dense forest cover.

InSAR data processing. We employed InSAR, the best technology currently
available for dense spatial sampling of ground deformation at local to national
scales. InSAR measures ground displacement in the radar line-of-sight (LOS)
direction of a SAR satellite between different passes of the satellite over the same
area'®. We used data from ALOS of the Japanese Space Exploration Agency.

The long wavelength (L-band, 24 cm) of the radar system on board the ALOS
satellite enables deformation monitoring even in highly vegetated areas such

as Indonesia*”’, in contrast with previous works relying on C-band data®*".
Although suitable for temperate peatlands, the shorter-wavelength C-band signal is
poorly adapted to the dense vegetation and high subsidence rates found in tropical
peatlands®*. ALOS acquired data with global coverage between late 2006 and mid-
2011 on a 46-d repeat orbit, imaging most of the world’s continents 25 times or
more” with data freely available through the Alaska Satellite Facility.

We used the ISCE (InSAR Scientific Computing Environment) software to
produce interferograms, removed topographic contributions using the Shuttle
Radar Topography Mission 1-arcsec digital elevation model, coregistered all
interferograms of each frame to a master image and used the statistical-cost
network-flow algorithm for phase unwrapping (SNAPHU)*. To precisely track
ground deformation between the first and the last SAR acquisition we used a
correlation-based time-series technique'®* derived from the Small Baseline Subset
method””. Both methods combine many interferograms and invert them to retrieve
the surface displacement through time, but the correlation-based selection method
relies on using only interferograms with high coherence in a selected area of
interest'®*® (Supplementary Figs. 9 and 11). The correlation-based method ensures
higher coherence in the resulting mean velocity map even in vegetated or cultivated
areas'®”, and limits bias from soil moisture change since interferograms between
distinct seasons (wet and dry) affected by a decrease in coherence are not included
(Supplementary Figs. 9 and 10). We multilooked the data three times (90-m pixel)
to increase the coherence and reduce the computing time. The processing scheme
includes removal of topography-correlated atmospheric noise* and removal
of long-wavelength signals in the form of a quadratic ramp to decrease orbital
artifacts and ionospheric noise and eliminate potential interseismic or postseismic
contributions from the Sumatra subduction zone™. Errors correlated with elevation
and baselines (digital elevation model errors) were removed following the method
of Fattahi and Amelung*', and unwrapping errors were identified using the phase
closure technique and manually corrected.

InSAR analysis provides a time series of the observed signal at each pixel that
maintains similar ground characteristics between successive passes (temporal
coherence >0.4), and a mean velocity map showing the average speed at which the
ground is moving in the LOS of the satellite (Fig. 1b,c and Supplementary Fig. 5).
Time series were first screened for outliers and then used to calculate the mean
linear subsidence rates. Uncertainties in the InSAR time series were evaluated
following the method of Chaussard et al.*, in which the temporal variability
of the signal at pixels in non-deforming areas is considered to evaluate the
time-dependent background noise level and identify acquisitions affected by strong
ionospheric and tropospheric noise or remaining small unwrapping errors. Soil
moisture variations were considered to result in minimal noise*-*, as we applied
a digital elevation model error correction, removed unwrapping errors, relied on
linear averages in which the nonlinear signal (such as the soil moisture component)
is part of the noise and used a correlation-based method with temporal coherence
masking (Supplementary Figs. 9 and 10).

Tonospheric noise is related to the total electron content of the upper
atmosphere and its impact is about 16 times greater for L-band than C-band
SAR data due to the frequency dependency of the ionosphere refractive index.
Tonospheric noise results in a long-wavelength signal across an interferogram. In
contrast, tropospheric delays result from changes in the refractive index due to
variations in atmospheric pressure, temperature and water vapour in the lower
atmosphere. Tropospheric noise is more spatially localized than ionospheric
noise, does not affect an entire SAR frame and correlates with topography. Both
ionospheric and tropospheric noise are temporally random. Outlier dates in the
time series associated with ionospheric or tropospheric noise were identified on
the basis of the background noise level mentioned above (Extended Data Table
1) and were removed without influencing preceding or following acquisitions,
as all measurements were referenced to the first SAR date. Residual atmospheric
noise contributes to our uncertainty estimates. Unwrapping errors occur when the
change in land surface elevation is misinterpreted by half a wavelength (12 cm),
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which was infrequent in our case as typical subsidence rates are 1-5cmyr~!
(0.13-0.63 cm per 46 d). In time series with gaps of one year or more, subsidence
rates before and after the gap were analysed separately to ensure similarity.

We used a linear fit to the corrected time series to calculate the mean LOS
velocities, assuming that nonlinearities due to seasonal differences or localized
disturbance were beyond the scope of this study. We did not analyse temporal
dynamics further, as the 46-d repeat of ALOS led to noise, which could be
overinterpreted.

As most peat deformation is expected to be vertical, we converted LOS (dy )
into vertical displacement (d,) for every time series using the ALOS incidence
angle (0=34.3°), d,=d, os/cos 0, and reported all deformation as vertical. Vertical
ground displacement is 21% more than LOS displacement; that is, 1 cm of LOS
displacement corresponds to 1.2 cm of vertical displacement. We thus multiplied
the LOS velocity by a factor of 1.2 to obtain the mean subsidence rate.

To evaluate the role of fire, we compared our InSAR signal with the
aggregated dry season (June-October) burned area on peatlands for each year
of the time series with the Collection 6 MODIS (Moderate Resolution Imaging
Spectroradiometer) Burned Area Product (MCD64monthly). Burned areas were
mapped over the time series (Supplementary Fig. 8) and the percentage of each
ALOS frame burned each year is shown in Supplementary Table 2.

We find that nearly all fires were excluded from our analysis, and therefore our
subsidence measurements and corresponding CO, emissions estimates reflect C
loss from peat oxidation, with a negligible contribution from fires. This is primarily
due to the time period of the analysis, rather than a loss of coherence due to fire.
We did not capture any major fire events or dry years, with the exception of frame
1 in 2009 (however, no changes in subsidence rate were observed in the frame 1
time series). Additionally, most small fires were excluded from our analysis as they
tended to occur in areas with poor coherence (in most cases due to vegetation
characteristics). Finally, although 2009 was a major fire year in Central Kalimantan,
our time series in this region ended in November 2008, thus excluding these fires
(Supplementary Fig. 8i,k and Supplementary Table 2). Likewise, the El Nifio dry
seasons of 1997 and 2015, when fires were widespread, were not covered by our
analysis. Thus, our subsidence measurements mostly reflect carbon losses due to
long-term peat oxidation and exclude large-scale peat fires, which are an additional
source of regional CO, emissions in Southeast Asia*.

Although fire was not included in our analysis, our results indicate that InSAR
may have the potential to measure subsidence due to shallow peat fires. The InNSAR
signal retains coherence in some MODIS burned areas, consistent with our ability
to successfully measure subsidence in areas classified as burnt and open land. This
is probably because small and medium-sized peat fires, which primarily burn at
and just below the peat surface, do not substantially change the character of the
land surface. Many peat fires are smouldering, allowing vegetation to survive
despite the fire. In contrast, large, deep or intense fires are expected to result
in loss of SAR coherence due to changes in the ground texture between repeat
satellite passes, but further analysis is needed as no large fires occurred during our
observation period.

Land-use and spatial analysis. To assess spatial and temporal trends in subsidence
rates, we assigned each InSAR pixel a land-use classification on the basis of
peatland land-use maps by Miettinen et al.'. Land-cover classes for 1990, 2007

and 2015 include pristine peat swamp forest, degraded peat swamp forest (slightly,
moderately, heavily), tall shrub/secondary forest, ferns/low shrub, smallholder area,
industrial plantations, built-up area and cleared and burnt area. Permanent water,
seasonal water and mangrove areas are excluded from our analysis. Full details on
land-use classification (derived from 30-m-resolution Landsat data) are available
in ref. '. These maps were also used to delineate peatland and non-peatland area.
Maps of likely oil palm plantation extent for 1990, 2000 and 2007"*"** were used in
the space-for-time analysis of ALOS frame 1 data.

Distance from peat edge. To analyse spatial variation, we assigned each pixel a
distance from the peat edge as a proxy for the distance from the nearest river and
peat depth. Coastal peat in Southeast Asia forms in domes separated by rivers, with
increasing peat depth further from the river and peat edge. As a digitized map of
regional rivers and streams was not available, we use the peat boundaries in ref. '
for these calculations. We also manually mapped rivers within ALOS frame 1 and
found that the same trends hold. Coordinates were projected from WGS84 to UTM
47N for distance calculations.

Time since drainage. For our space-for-time substitution analysis on the impact
of plantation history on subsidence rates, we used land-use maps developed by
Miettinen et al."*”**. These maps document the extent of plantations (oil palm,
acacia and other) on peatlands in 1990, 2000, 2007 and 2010. We selected a site in
North Sumatra (frame 1) where oil palm plantations were established at different
times across neighbouring peat domes (Fig. 3) and used the time of plantation
establishment as a proxy for the time since drainage. To control for previous land
use, we selected only land classified as pristine peat swamp forest in 1990. We then
selected land which was converted to oil palm plantations in the following time
periods: pre-1990, 1990-2000 and 2000-2007 (0-7 years since conversion,

7-17 years since conversion and 17+ years since conversion).
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Regional upscaling. We used a regression-tree approach to extrapolate the
observed 2007-2011 ALOS subsidence values across the region. The regression
tree classifies peatland subsidence rates on the basis of ‘present’ (2007) land-use
classification, distance from the edge of the peat and past land-use classification (as
a proxy for time since drainage). Subsidence rates for 2015 were then extrapolated
across all peatlands in Sumatra and Borneo using 2015 peatland land-use maps'.
Upscaling relied on ‘present’ (2015) land-use classification, distance from the

edge of the peat and past land-use classification, and subsidence was computed at
points on a 1-km grid. Upscaling was limited to Sumatra, Borneo and Peninsular
Malaysia, hotspots of land-use change on peatlands. We were unable to calculate
projected subsidence rates for the understudied peatlands in Indonesian Papua
and Papua New Guinea, as no peatland land-use maps were available there. This
regression-tree approach was used to calculate spatially weighted mean subsidence
values for the region. Although the mean subsidence and s.e.m. were calculated
from an ensemble of regression trees using a bootstrapping approach described
below, a single example regional upscaling map is shown to illustrate the method
(Extended Data Fig. 3). It is not our intent to make site-specific predictions due to
the wide variability in drainage practices.

In combination with the regression-tree approach, we relied on bootstrapping
to calculate the regional mean subsidence and the s.e.m. for each land-use class
and for the region as a whole. While the s.d. measures the amount of variability
in a dataset, the s.e.m. measures how far the sample mean is likely to be from the
true mean, and is therefore a more appropriate statistic for regional uncertainty
estimates and emissions factors (Table 1). Our bootstrapping analysis sampled
the dataset with replacement to create 1,000 synthetic datasets. For each of these
synthetic datasets, we calculated a regression tree, and then used this regression
tree to calculate gridded subsidence rates across the region and the corresponding
regional mean subsidence rates. The distributions of these 1,000 mean subsidence
values are shown in Supplementary Fig. 3 and the s.e.m. is calculated as the s.d.
of the distribution of the mean. In generating the synthetic datasets, we sampled
each InSAR frame, selecting eight frames with replacement for each synthetic
dataset. This approach accounts for any potential systematic bias between InSAR
frames due to factors such as peat depth, differences in regional drainage policies,
high concentrations of certain land uses within a given frame and so on. Due to
these frame-correlated factors, frame-based sampling introduced the maximum
variability into the synthetic datasets, resulting in the widest range of regression
trees and regional mean subsidence rates. It thus provided an upper bound on
the s.e.m. and accounted for unquantified variables not directly included in the
regression-tree analysis.

We further assessed our regression-tree approach with a cross-validation
analysis (Supplementary Table 1). We conducted our cross-validation using
two approaches: a standard k-fold cross-validation (k=8) and a frame-based
cross-validation (eight frames). In the first approach, all pixels from the InSAR
dataset are randomly divided into eight groups. One group is held out, and
aregression tree is fitted to the remaining data and then used to predict the
subsidence values of the held-out pixels. Predictions are then compared with
the true values. In the second approach, we used a frame-based cross-validation
method, in which each frame is held out, and a regression tree is fitted to the
remaining seven frames and then used to predict the subsidence values of the
held-out frame. Due to systematic differences between frames, this approach
resulted in higher variability, and was a more appropriate metric of uncertainty
for our dataset, justifying our choice of frame-based bootstrapping to calculate an
upper bound on the s.e.m.

Calculation of CO, fluxes from subsidence rates. We calculated CO, flux from
subsidence using a method developed in northern peatlands”-' and extended

to tropical peat by Couwenberg and Hooijer’. During subsidence, peat in the
near-surface oxic zone is simultaneously lost to oxidation and compacted, increasing
bulk density. In an effort to understand net carbon losses, Couwenberg and Hooijer
compared cores extracted from locations where peat had been subject to different
histories of land use, drainage and subsidence. They found that profiles of bulk
density were nearly identical. As tropical peat subsides, the peat profile remains close
to a pseudosteady state; the peat maintains both an oxic surface layer and a deeper
anoxic peat column, so the bulk density decrease with depth maintains a similar
profile. Only the thickness of the anoxic peat decreases (Extended Data Fig. 5). Thus,
the C loss can be calculated from an equivalent loss of deep uncompacted anoxic
peat, equal in thickness to the subsidence of the peat surface (Extended Data Fig. 5).
Employing this result, regional CO, emissions were estimated using

CO, emissions = subsidence

x dry bulk density of deep peat

x carbon concentration of deep peat
x peatarea

This approach accounts for both compaction and oxidation of the surface peat
but, with an elegant substitution, does not rely on these terms in the equations used
to calculate C loss. This approach is well established and has been applied in both
northern and tropical peatlands™*-"".

We used values from the literature to estimate mean values and uncertainty
ranges for peat parameters. We assumed a carbon concentration of 55% (53-57%)

and a dry bulk density of 0.08 gcm= (0.07-0.09 gcm~?) on the basis of the review
by Couwenberg and Hoojier’ of subsidence-based carbon loss calculations.

These dry bulk density values are consistent with other measurements from the
region®~’, where average values ranged from 0.073 to 0.089 gcm™. Measured
values are variable because of small-scale variability, sampling bias due to exclusion
of woody material and differences in methodology. Carbon concentrations are

less variable, although there is some spatial variability in peat composition.
Ombrotrophic fibric and hemic peats have high carbon concentrations while

peat soils from mangrove forests and floodplains generally have lower carbon
concentrations. This spatial variability is beyond the scope of this upscaling.
Additional variability is due to methodology, which includes loss on ignition, wet
combustion and elemental analysis. Uncertainties in subsidence (dsubsidence), dry
bulk density (5dry bulk density) and carbon concentration (Scarbon concentration)
were propagated to calculate the uncertainty in the total regional CO, emissions
(6CO,), assuming that errors in dry bulk density and carbon concentration may be
correlated, but are uncorrelated with uncertainty in subsidence, as follows:

.| (Ssubsidence®> /Sdrybulk density ~ Scarbon concentration') >
6CO, = CO, - - -
subsidence drybulk density = carbon concentration

where ‘CO,’ is the total regional CO, emissions, on the basis of a peatland area of
15.7 Mha for insular Southeast Asia’. Regional emissions factors and uncertainties
for each land use (Table 1) were also calculated using the above formulation. In
Supplementary Information, we also calculate the CO, emissions using an older
method that relies on shallow, oxic, peat parameters (Extended Data Fig. 5). While
this method gives very similar results, these calculated uncertainties are higher
because of the uncertainties in both the bulk density of the shallow oxic peat and
the estimated fraction of peat lost to oxidation.

Data availability

The calculated mean subsidence rates that support the findings of this study are
archived on Zenodo at https://doi.org/10.5281/zenodo.3694667. The raw SAR data
that support the findings of this study are publicly available through the Alaska
Satellite Facility data portal at https://vertex.daac.asf.alaska.edu/.
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Extended Data Fig. 1| Industrial Plantations and Non-Peatland Areas at all Sites. Density plot of subsidence rates for industrial plantations (2007) and
non-peatland areas for each ALOS frame. Non-peatland areas are shown for pixels >15km from the edge of the peat to exclude transition zones between
peatland and mineral soils. Positive values indicate subsidence and negative values indicate uplift.
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Extended Data Fig. 2 | Subsidence Rate by Land Use. Mean subsidence rates (positive values) for each 2007 land use category on peat within each ALOS
frame, where available. Numbers indicate number of INSAR measurements averaged for each bar. Dashed lines indicate the mean subsidence rate of
2.24.cm/yr across all peatland measurements. Non-peatland areas (light blue) are shown for pixels >15km from the edge of the peat to exclude transition
zones between peatland and mineral soils. Error bars represent the standard deviation of the data (not the standard error of the mean).
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Extended Data Fig. 3 | Example of Upscaled Subsidence Map and Regression Tree. (a) Map of upscaled subsidence. (b) Regression tree schematic.
Mean regional subsidence and associated uncertainties were calculated based on a bootstrapping analysis of 1,000 regression trees and corresponding
upscaled subsidence maps (Methods). To generate a single regression tree, 2007 land use was used as the Current Land Use, concurrent with ALOS
measurements from 2007-2011. For regional upscaling, 2015 land use was used as the Current Land Use, as the most recently available regional mapping.
All land use maps were generated by Miettinen et al.. Total regional CO, emissions and emissions factors were based on the mean of eight regression
trees (each removing data from one ALOS frame). The displayed regression tree, for example purposes only, is based on all data and was used to generate
the example regional subsidence map above. The upscaling map is provided as an illustration of the method. It is not our intent to make site-specific
predictions due to the wide variability in drainage practices.
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(a) Plantation Area in Sarawak, Malaysia
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Extended Data Fig. 4 | InSAR Validation with Ground-Based Subsidence Data. (a) ALOS frame 6 measurements of industrial plantations which overlap
in space and time with measurements on oil palm plantations in Sarawak, Malaysia by Othman et al.? This is the only area of direct overlap in the region.
(b) InSAR data from all other industrial plantations compared to ground-based pole measurements also made on plantations, but at different times and/
or places. (¢) INSAR data from all non-plantation land uses on peat (excluding pristine peat swamp forest) compared to ground-based pole measurements
made on non-plantation land uses in the region, but at different times and/or places. In all panels, where multiple points are shown from a single study,
they represent plantation areas established at different times or distinct land uses with distinct subsidence rates. Error bars indicate the standard deviation

of the ground-based measurements within these study groups
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Method #1: Depth - calculate emissions with anoxic zone bulk density
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Extended Data Fig. 5 | Schematic explanation of two methods for calculating carbon loss from bulk density profiles in a subsiding peatland with water
table decline. Method #1: The approach first applied to tropical peat by Couwenberg and Hooijier®. Bulk density profiles are plotted relative to the land
surface, which has subsided. It is evident from these bulk density profiles, before and after subsidence, that the carbon loss can be calculated from the
change in thickness of the anoxic peat, the small yellow rectangle on the far right. Method #2: Bulk density profiles are plotted relative to elevation. The net
carbon lost must be the same regardless of how the plot is constructed, but the calculation is more complex for Method #2. Here the net carbon lost is
shown as loss in carbon due to the drop in the land surface, minus the apparent gain in carbon from the increased bulk density below the elevation that is
now the land surface. The carbon lost is the difference between the gain and loss shown by the yellow regions on the far right. Our results rely on Method
#1. However, calculations of CO, emissions from Method #2 yield similar results with higher uncertainties. Assuming a dry bulk density of 0.11+.03g/cm?
and carbon content of 55+ 2 % in the compacted oxic peat, a mean subsidence rate of 2.24 + 0.23 cm/yr, a peat area of 15.7 Mha, and the fraction of
subsidence due to compaction of 75+15 % as found by Hooijer et al.?, we calculate CO, emissions equivalent to 160 + 61 MtC/yr (compared to 155+ 30
MtC/yr using Method #1).

NATURE GEOSCIENCE | www.nature.com/naturegeoscience


http://www.nature.com/naturegeoscience

NATURE GEOSCIENCE ARTICLES

NFNTE W WL e
2 1 1 1

Subsu-nc‘.‘l}m
W -5 oy |

W s oy |

S
N 22 oy |
B 1 52emiyr |
:}1-1.50!\’11 \ prweon
CJodomye |
] 1.0 omiyr \
Bl <towr |

No data

= ATUN

e N

o™

Land Use on Peat

Seanrat oot [ ]
Praere cewnano e [ \
Tt Wt v s otary Seed [ 7
ferave ene [ .M. m\ ,..’
T teeser wea [ ] X ‘% <
.M'W“- v
e | 1
f.‘.v-t'.\"lm- . ‘.* . 'I#s
PPy ey e pmanaay veedt [ -
Uocarate’, Segrsied covee~o Cree [ T rewav
ooty dmy i movesy Sewd | ] . - [Yeuy Drem——
Nt Peanand

Extended Data Fig. 6 | Frame 1 Subsidence and Land Use Map. ALOS Frame 1 mean subsidence rates (top), 1990 land use (left) and 2007 land use
(right). Positive values indicate subsidence and negative values indicate uplift. Peatland extent and land-use maps adapted with permission from
ref.’, Elsevier.
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Extended Data Fig. 7 | Frame 3 Subsidence and Land Use Map. ALOS Frame 3 mean subsidence rates (top), 1990 land use (left) and 2007 land
use (right). Positive values indicate subsidence and negative values indicate uplift. Peatland extent and land-use maps adapted with permission from
ref.’, Elsevier.
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Extended Data Fig. 8 | Frame 4 Subsidence and Land Use Map. ALOS Frame 4 mean subsidence rates (top), 1990 land use (left) and 2007 land
use (right). Positive values indicate subsidence and negative values indicate uplift. Peatland extent and land-use maps adapted with permission

from ref.’, Elsevier.
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Extended Data Fig. 9 | Frame 6 Subsidence and Land Use Map. ALOS Frame 6 mean subsidence rates (top), 1990 land use (left) and 2007 land
use (right). Positive values indicate subsidence and negative values indicate uplift. Peatland extent and land-use maps adapted with permission
from ref.’, Elsevier.

NATURE GEOSCIENCE | www.nature.com/naturegeoscience


http://www.nature.com/naturegeoscience

NATURE GEOSCIENCE

ARTICLES

Extended Data Table 1| Study sites (ALOS frames) listed from north to south, first in Sumatra, then in Borneo

Frame Province Dominant Land Peatland Area Additional Time Range and
(Island) Use (Total Arca) Information InSAR Acquisition
Surveved Dates Removed
(mm/dd/yy: notes)
I Noeth Sumatra Oil Palm 0.25 Mha Plamations established at 070307 - 0272310
(Sumatra) (0.43 Mha) different times 1070508, 1070809, 0108710
(aim. noise and uplsit)
2 Risu Acacia, Degraded 0.51 Mha Subssdence poles: 062807 - 1121710
(Sumatra) peat swamp forest (0.66 Mha) Hoodjer et. al. (2012) 0973072008 (lonospheric noise)
2-part analysas for |.5yr gap:
climinates clear incidences of
oo phase unwrapping cmor
3 Riau Oil Palm 0.38 Mha 112507 - 120810
(Sumatra) (0.43 Mha) Q1 10008, 10712708 (atm. noise),
1203710 (wplift)
4 Risu Smaliholder 048 Mha Q72707 - 091910
(Sumatra) (0.68 Mha) 06/ 19710, 0804710, 0019710
(remoave poimts afler 1yr gap
because beginnang of imeseries is
alone sufficient %o yweld clear
subsadence signal)
s South Sumatra Senallholder, Acacia 0.26 Mha 072207 0172409
(Sumatra) {0.55 Mha) Maimtzined all poines.
6 Sarawak Oil Palm 0.08 Mha Subsidence poles: 0172807 - 0808509
{Bomeo) (0.29 Mha) Othman et. al. (2011) 03/ 1708, 06/17/08, 0620009
(troposphenc noise)
/) Central Degraded peat swamp 0.34 Mha Onerlaps well-stadiod 022107 - 112608
Kalimantan forest (0.61 Mha) Ex-Mega Rice Project 1000907, 171108
e {Bomeo) i S N (analyzed with site 8)
8 Central Degraded peat swamp 0.41 Mha Onerlaps well-stadied 022107 -~ 112608
Kalimantan forest (0,62 Mha) Ex-Mega Rice Progect 1070907, 10V 108
{Bomeo) area (analyzed with site 7)
Total Peatland Area: 2.7 Mha
Total Land Area: 4.29 Mha

Frame 9 is listed last as it is not included in the subsequent analysis.
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