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The estimated 25 Mha of peatlands in Southeast Asia remained 
as relatively undisturbed freshwater peat swamp forests before 
the 1980s. By 2015 only 6% of the area remained as pristine 

peatland1. In Insular Southeast Asia, most peatlands have been con-
verted to industrial plantations (27%), smallholder agriculture (22%) 
or degraded peat swamp forests (23%)1. The drainage accompany-
ing this land conversion lowers the water table, exposing peat soil 
to oxygen, allowing aerobic oxidation and fire, and resulting in CO2 
emissions and subsidence of the peatland surface2. The large organic 
carbon stock within tropical peat (66–69 Gt)3 is being emitted as CO2 
at a rate of 132–159 MtC yr−1 in 2015, estimated on the basis of IPCC 
(Intergovernmental Panel on Climate Change) emissions factors4.

Most studies have used poles anchored into the underlying clay2,5–12  
to document subsidence of tropical peatlands. They observed initial 
rates of subsidence up to 75 cm yr−1 from compaction after drain-
age, followed by long-term subsidence rates up to 5 cm yr−1 from 
oxidation and loss of peat to CO2 emissions2. If these rates persist, 
many coastal tropical peatlands that are only a few metres above sea 
level will experience frequent flooding or complete inundation and 
saltwater intrusion in the coming decades13.

These studies are limited by the low number of poles, the chal-
lenges of multiyear monitoring and the inaccessibility of field sites. 
They have primarily focused on oil palm plantations, neglecting 
land uses such as smallholder farming. Media reports and indus-
try groups have leveraged this data gap to cast doubt on whether 
subsidence is widespread or long lasting14. While the mechanisms 
linking subsidence to peatland drainage are well established15, the 
spatial extent and trajectory over time remains controversial.

In this work, we present a large-scale high-resolution assess-
ment of subsidence on tropical peatlands. We use Interferometric 
Synthetic Aperture Radar (InSAR) remote sensing to monitor 
subsidence in tropical peatlands across Southeast Asia, covering 
2.7 Mha, or over 10% of the region’s peatland area. We systemati-
cally document subsidence across all disturbed land-use catego-

ries, including smallholder agriculture, shrubs, ferns, cleared/burnt 
areas and degraded forests. Over 90% of the peatland area sur-
veyed is subsiding, demonstrating that subsidence is not limited to 
plantations.

InSAR remote sensing of subsidence
Our InSAR remote sensing approach characterizes subsidence at 
90-m resolution across 4.3 Mha in Southeast Asia, including 2.7 Mha 
of tropical peatlands. InSAR is an active remote sensing technique, 
which detects centimetre- to millimetre-scale changes in elevation by 
measuring phase changes in the reflected microwave beam between 
subsequent flyovers of a SAR spacecraft (every 46 d for the Advanced 
Land Observing Satellite—ALOS)16. Subsidence rates are derived by 
taking the linear fit to the time series of deformation at each pixel 
(Fig. 1). This approach has been used to quantify volcanic defor-
mation, earthquakes and interseismic deformation, and to manage 
aquifer systems16–21. Recently, subsidence due to peatland drainage 
in the Netherlands and Wales22,23, local subsidence associated with 
the construction of Kuala Lumpur International Airport on tropi-
cal peatland24 and subsidence on drained and restored peatlands in 
Jambi and Central Kalimantan, Indonesia25, was quantified using 
InSAR. Our large-scale InSAR analysis expands on these previous 
datasets to cover all major land-use classes on tropical peatlands.

We measure subsidence across eight 100 × 100 km2 frames in 
Indonesia and Malaysia (Fig. 2a, Extended Data Table 1, Extended 
Data Figs. 6–9 and Supplementary Figs. 1–4) using a correlation-based 
selection method18,26 derived from the Small Baseline Subset 
time-series approach27, relying on ALOS L-band data from 2007–
2011. We filter out regional deformation, such as the Sumatra subduc-
tion zone, and compare our subsidence maps with established maps of 
peatland extent and historical land use developed by Miettinen et al.1 
to analyse spatial and temporal trends (Methods).

We demonstrate that the correlation-based InSAR time-series 
method applied to L-band data overcomes several obstacles to  
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measuring long-term subsidence in drained tropical peatlands: pen-
etration of dense vegetation, maintaining signal coherence through 
time and avoiding phase-unwrapping errors. First, in contrast to 
previous approaches with C-band data22–24, L-band data enable some 
canopy penetration and maintain coherence in oil palm plantations 
and areas with partially open canopy such as small-scale agricul-
ture, shrubland, burned areas and degraded peat swamp forests25. 
Second, measurements of long-term subsidence due to peat carbon 
loss, which are the focus of this study, are minimally impacted by 
signal decorrelation or phase-unwrapping errors. Decorrelation is 
expected if a substantial change in the land surface or canopy texture 
occurs within the 46-d return period, and phase-unwrapping errors 
occur when the deformation between repeat passes is greater than 
half the ALOS wavelength (24 cm). These processes are expected 

with rapid subsidence due to short-term compaction immedi-
ately following deforestation or with large fires2, but long-term 
subsidence due to peat oxidation is of the order of 1–5 cm yr−1 
(0.13–0.63 cm per 46 d), minimizing decorrelation and unwrapping 
errors. Furthermore, fires are almost entirely excluded from our 
analysis because of the low fire frequency during our study period 
(Supplementary Fig. 8 and Supplementary Table 2). Our analysis is 
therefore well suited to measuring subsidence from peat oxidation 
because initial compaction and fires are excluded.

We validate the estimated subsidence rates from InSAR time 
series and mean velocity maps in several ways. First, we con-
firm that subsidence maps show no deformation in non-peatland 
areas and show clear and accurate delineation of the subsiding 
peat boundaries (Figs. 1 and 2). These areas provide an estimate 
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Fig. 1 | Subsidence rates and time series in peat and non-peatland areas in ALOS frame 1 of 8. (For other frames analysed, see Fig. 2a, Extended Data  
Figs. 6–9 and Supplementary Figs. 1–4.) a, Map of subsidence rates across coastal peatlands in North Sumatra and Riau provinces, Sumatra, Indonesia. 
Highest subsidence rates are found within irregularly shaped peatlands (hashed, peatland extent reproduced with permission from from ref. 1, Elsevier).  
b, Time series of cumulative subsidence in the indicated non-peatland area show negligible change in the land surface elevation. c, Time series of 
cumulative subsidence in the indicated peatland area (s.d. in grey). Positive values indicate subsidence and negative values indicate uplift.
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Fig. 2 | Subsidence and land-use maps. a, Study area in Southeast Asia (peatland areas in grey1), including eight ALOS frames analysed (outlined in red), 
and insets (outlined in black). b–f, Details of subsidence rate maps at different spatial scales (left-hand panels; left-hand legend in a) alongside their 
corresponding land-use maps from ref. 1 (right-hand panel; right-hand legend). Boundaries of peatland areas (black line) and industrial plantations (purple 
lines) overlay the InSAR subsidence rates. Locations are ALOS frame 2 (b), frame 5 (c), frame 6 (d), frame 8 (e) and frames 7 and 8 (f). ALOS frame 1 is 
shown in Fig. 1. g, Binned subsidence versus distance from the edge of the peat (20 bins) for 0–10!km (slightly, moderately and heavily degraded peatlands 
shown together). h, Histogram of mean subsidence rates across all InSAR pixels on peatland. Positive values indicate subsidence and negative values 
indicate uplift. Peatland extent and land-use maps adapted with permission from ref. 1, Elsevier.
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of the method’s accuracy and precision with an overall measured 
mean subsidence of 0.21 cm yr−1, and an s.d. of 1.05 cm yr−1, in 
non-peatland areas >15 km from the peat edge (Extended Data 
Figs. 1 and 2 and Supplementary Table 3). However, due to the lack 
of direct ground-based validation, it is possible that the s.d. is higher 
for peatlands. Second, we verify that spatial discontinuities in sub-
sidence rates correspond to past or present land-use boundaries in 
nearly all cases (Fig. 2). Finally, we validate trends in InSAR subsid-
ence rates with subsidence pole measurements across land-use cat-
egories (Extended Data Fig. 4)2,5–12,28,29. Point-by-point comparison 
is not possible due to limited ground measurements between 2007 
and 20112,8, a lack of precise coordinates for monitoring poles, and 
subpixel heterogeneity within the 90-m SAR resolution (Methods).

Subsidence trends across Southeast Asian peatlands
We find widespread subsidence across Southeast Asian peatlands, 
regardless of land use. Over 90% of the peat is subsiding, with approx-
imately 80% subsiding at rates > 1 cm yr−1, 60% at rates > 2 cm yr−1 
and 15% at rates > 4 cm yr−1 (Fig. 2h). These rates are consistent with 
ground-based measurements (Extended Data Fig. 4), but are now 
observed across large areas and diverse land uses.

Our remote sensing analysis shows that subsidence extends 
beyond plantations, with comparable mean subsidence rates 
across distinct land-use categories (Table 1). Degraded peatlands 
and smallholder areas cover 23% and 22% of regional peatland 
area respectively, but account for only a small number of pole 
measurements10,12,28 (Table 1), as most studies have focused on 
plantations2,5,6,8,9,11,29,30. While previous upscaling efforts assumed, 
for example, that plantations subside over five times faster than 
degraded peat swamp forests4, or twice as fast as smallholder agri-
culture and three times faster than shrublands and recently cleared/

burnt areas31, our large-scale analysis reveals comparable mean sub-
sidence rates across land uses. This enables important updates to 
IPCC emissions factors and confirms that the drainage itself, rather 
than land use, is the principal driver of the subsidence.

Although subsidence is observed across all land-use categories, 
rates are not uniform across the landscape or within land-use cat-
egories. In many cases, land-use boundaries are clearly reflected 
in subsidence patterns, probably due to different drainage depths 
in adjacent areas (Fig. 2c,e). However, in other regions, such as 
the Ex-Mega-Rice project area, subsidence is consistent across the 
landscape despite differences in land use, probably due to system-
atic drainage efforts (Fig. 2f). Regional peat properties such as peat 
depth, degree of decomposition and mineral content may also con-
tribute to variability in subsidence rates (Extended Data Fig. 2). 
Subsidence rates may also be influenced by warming temperatures 
resulting from climate and land-use change32–34.

Subsidence rates are higher further from rivers and peat margins, 
independent of land-use history (Figs. 1a, 2g and 3c) and across 
land-use categories. This finding is consistent with understand-
ing31,35 of the interaction between peat morphology and hydrol-
ogy: the water table within a peat dome cannot fall below the water 
level of its bounding rivers, hence subsidence is limited at the dome 
margins, where the peat is thinnest. Subsidence is greater in dome 
interiors, where drainage can expose thick layers of peat to oxida-
tion. We note that at the largest distances from the river the sub-
sidence rates appear to once again decrease; however, this signal is 
dominated by a few locations. This large-scale pattern of increasing 
subsidence with distance from rivers contrasts with the small-scale 
pattern of decreasing subsidence with distance from canals11. Near 
canals, the largest water table drawdowns are immediately adjacent 
to the bank, causing the highest subsidence. In the future, detailed 

Table 1 | Land use, InSAR subsidence rates, and ground-based studies

Land use Land 
area in 
2015 (%)

InSAR-measured 
subsidence
(cm"yr−1) (mean 
± s.d.)

Bootstrapped 
subsidence 
(upscaling) 
(cm"yr−1) (mean 
± s.e.m.)

Regional 
emissions 
factor 
(upscaling) 
(tC"ha−1"yr−1)

Ground-based 
subsidence studies

Number of  
subsidence poles

Number of 
InSAR pixels

Industrial plantation 27.4 2.6!±!1.7 2.5!±!0.2 11.0!±!2.0 DID & LAWOO6

Wösten et al.11

Maswar30

Othman et al.8
Hooijer et al.2

Couwenberg & Hooijer9

Ishikura et al.29

Evans et al.5

22 (2 sites; oil palm 
(OP))
17 (1 site; OP)
5 (1 site; OP)
25 (5 sites; OP)
125 (1 site; acacia)
51 (2 sites; OP)
1 (1 site; OP)
220 (acacia)

414,718

Degraded peat 
swamp forest

22.8 2.8!±!1.7 2.5!±!0.6 11.2!±!3.1 Nagano et al.10

Ritzema et al.12

Khasanah & van 
Noordwijk28

4 (1 site)
19 (4 sites)
12 (1 site)

440,756

Smallholder
area

22.4 1.7!±!1.6 1.8!±!0.3 7.7!±!1.9 Taylor & Ali7

Khasanah & van 
Noordwijk28

20 (2 sites)
44 (4 sites)

673,915

Tall shrub/secondary 
forest

11.1 2.6!±!1.7 2.4!±!0.3 10.4!±!2.2 – – 89,929

Ferns/low shrub 5.4 2.2!±!1.4 2.2!±!0.2 9.6!±!1.8 – – 215,439
Cleared/burnt area 2.0 2.8!±!1.5 2.5!±!0.2 11.2!±!2.1 – – 41,800

Urban area 0.3 1.0!±!0.2 – – – – 166

Subsidence rates for each land cover class are calculated from both InSAR measurements and bootstrapped regression-tree-based regional upscaling. Emissions factors are calculated from bootstrapped 
subsidence values. We find similar subsidence rates across land uses. We exclude peatland areas classified as pristine (6.5%), seasonal water (1.7%), mangrove (0.4%) or water (0.3%), as the InSAR 
coverage was poor and these areas are not expected to experience subsidence. Data were insufficient to calculate an emissions factor for urban areas on peat (0.3%). The fraction of peatland area is 
reported from ref. 1.
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subsidence maps may help to design canal systems to better manage 
subsidence.

This subsidence dataset also allows us to address a question of 
regional importance: does subsidence slow over time? Long-term 
subsidence rates as high as 5 cm yr−1 have been observed in 
ground-based measurements2. If maintained, these rates could result 
in flooding within a few decades. In contrast, other pole measure-
ments have shown that subsidence slows over time8,11. To address 
this question, we use a space-for-time substitution approach. We 
compare subsidence rates in adjacent peatland areas in North 
Sumatra that were drained and converted to oil palm plantations 
at different times (Fig. 3a). Subsidence rates on recently established 
plantations are the highest and decrease with time since conversion 
(Fig. 3b), even when accounting for distance from the river (Fig. 3c). 
Potential causes for slowed subsidence with time include the follow-
ing: (1) a change in peat properties if preferential decomposition of 
labile organic matter leaves behind a more stable peat matrix; (2) 
drainage depths could decrease over time if canals are not main-
tained; (3) in some cases, all peat may have decomposed, expos-
ing the underlying mineral soil and lowering average rates for old 
plantations. Longer-term trends in subsidence rates (beyond 20 yr) 
remain uncertain.

Upscaling subsidence to carbon losses
Subsidence measurements, when combined with bulk density data, 
integrate carbon loss over time and capture all carbon fluxes from 
the peat (including for example fluvial C export36). The increase in 
subsidence measurements from hundreds of poles to hundreds of 
thousands of InSAR measurements (Table 1) enables us to extrapo-
late subsidence values and corresponding CO2 emissions across 
insular Southeast Asia, on the basis of extensive spatial cover-
age. This represents an improvement over existing regional stud-
ies, which calculated regional CO2 emissions from peat oxidation 
by multiplying a single emissions factor by the total area in each 
land-use category4,31, sometimes relying on a handful of data points 
for large areas.

Across all pixels, we find a mean regional subsidence of 
2.24 cm yr−1 (Supplementary Table 1). To upscale these measure-
ments across the region, beyond the eight InSAR frames, while 
still accounting for differences in the regional land-use distribution 
(Supplementary Fig. 7), we use a regression-tree approach based on 
(1) classification of present land use at the time of subsidence mea-
surements, (2) distance from the peat edge and (3) past land use 
(1990) as a proxy for time since drainage (Extended Data Fig. 3).  
Using a bootstrapping approach to generate 1,000 regression 
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trees, we find a similar upscaled mean regional subsidence rate of 
2.24 ± 0.23 cm yr−1 (mean ± s.e.m.; Methods, Supplementary Table 1 
and Supplementary Fig. 6). Because the variability in site-specific 
drainage practices is high, it is challenging to accurately predict sub-
sidence at a single location, which is reflected by the large s.d. in 
measured subsidence values (Table 1). In contrast, across the region, 
this variability averages out, reducing the uncertainty in the regional 
mean subsidence. To estimate regional CO2 emissions due to peat 
oxidation, we multiply the subsidence rate by the peat bulk den-
sity and carbon content, following the method of Couwenberg and 
Hooijer9 and using values and uncertainty ranges for peat properties 
from the literature (Methods and Extended Data Fig. 5).

We find that drainage of tropical peatlands in insular Southeast 
Asia resulted in a net carbon loss of 155 ± 30 MtC yr−1 in 2015, 
confirming that long-term peat oxidation is a large source of CO2 
emissions, consistent with previous regional estimates4,31. As our 
upscaling does not consider Indonesian Papua and Papua New 
Guinea, home to an additional ~10 Mha of tropical peatlands, which 
are poorly mapped, our results probably underestimate the total 
CO2 emissions from peat oxidation in Southeast Asia. Wider appli-
cation of InSAR is needed to further identify subsidence hotspots 
and inform regional management practices.
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Methods
Site selection. Sites were selected to cover representative land uses on peat across 
Southeast Asia, including agricultural plantations, smallholder areas and degraded 
peat swamp forest. The spatial scale of ALOS frames (100 × 100 km2) results in 
a mix of land uses in each frame (Extended Data Table 1). Preference was given 
to sites where concurrent subsidence pole measurements are available, such as 
frame 6, which includes the region with the measurements of Othman et al.8. 
Frame 9 includes the oil palm measurements by Hooijer et al.2 and Couwenberg 
and Hooijer9, but a two-year gap in the ALOS time series prevented further 
analysis. Frame 2 overlaps with acacia plantation, where measurements by Hooijer 
et al.2 were made, but decorrelation occurs in the localized area of the pole 
measurements, probably due to dense forest cover.

InSAR data processing. We employed InSAR, the best technology currently 
available for dense spatial sampling of ground deformation at local to national 
scales. InSAR measures ground displacement in the radar line-of-sight (LOS) 
direction of a SAR satellite between different passes of the satellite over the same 
area16. We used data from ALOS of the Japanese Space Exploration Agency. 
The long wavelength (L-band, 24 cm) of the radar system on board the ALOS 
satellite enables deformation monitoring even in highly vegetated areas such 
as Indonesia25,37, in contrast with previous works relying on C-band data22–24. 
Although suitable for temperate peatlands, the shorter-wavelength C-band signal is 
poorly adapted to the dense vegetation and high subsidence rates found in tropical 
peatlands24. ALOS acquired data with global coverage between late 2006 and mid-
2011 on a 46-d repeat orbit, imaging most of the world’s continents 25 times or 
more37 with data freely available through the Alaska Satellite Facility.

We used the ISCE (InSAR Scientific Computing Environment) software to 
produce interferograms, removed topographic contributions using the Shuttle 
Radar Topography Mission 1-arcsec digital elevation model, coregistered all 
interferograms of each frame to a master image and used the statistical-cost 
network-flow algorithm for phase unwrapping (SNAPHU)38. To precisely track 
ground deformation between the first and the last SAR acquisition we used a 
correlation-based time-series technique18,26 derived from the Small Baseline Subset 
method27. Both methods combine many interferograms and invert them to retrieve 
the surface displacement through time, but the correlation-based selection method 
relies on using only interferograms with high coherence in a selected area of 
interest18,26 (Supplementary Figs. 9 and 11). The correlation-based method ensures 
higher coherence in the resulting mean velocity map even in vegetated or cultivated 
areas18,26, and limits bias from soil moisture change since interferograms between 
distinct seasons (wet and dry) affected by a decrease in coherence are not included 
(Supplementary Figs. 9 and 10). We multilooked the data three times (90-m pixel) 
to increase the coherence and reduce the computing time. The processing scheme 
includes removal of topography-correlated atmospheric noise39 and removal 
of long-wavelength signals in the form of a quadratic ramp to decrease orbital 
artifacts and ionospheric noise and eliminate potential interseismic or postseismic 
contributions from the Sumatra subduction zone40. Errors correlated with elevation 
and baselines (digital elevation model errors) were removed following the method 
of Fattahi and Amelung41, and unwrapping errors were identified using the phase 
closure technique and manually corrected.

InSAR analysis provides a time series of the observed signal at each pixel that 
maintains similar ground characteristics between successive passes (temporal 
coherence >0.4), and a mean velocity map showing the average speed at which the 
ground is moving in the LOS of the satellite (Fig. 1b,c and Supplementary Fig. 5). 
Time series were first screened for outliers and then used to calculate the mean 
linear subsidence rates. Uncertainties in the InSAR time series were evaluated 
following the method of Chaussard et al.42, in which the temporal variability 
of the signal at pixels in non-deforming areas is considered to evaluate the 
time-dependent background noise level and identify acquisitions affected by strong 
ionospheric and tropospheric noise or remaining small unwrapping errors. Soil 
moisture variations were considered to result in minimal noise43–45, as we applied 
a digital elevation model error correction, removed unwrapping errors, relied on 
linear averages in which the nonlinear signal (such as the soil moisture component) 
is part of the noise and used a correlation-based method with temporal coherence 
masking (Supplementary Figs. 9 and 10).

Ionospheric noise is related to the total electron content of the upper 
atmosphere and its impact is about 16 times greater for L-band than C-band 
SAR data due to the frequency dependency of the ionosphere refractive index. 
Ionospheric noise results in a long-wavelength signal across an interferogram. In 
contrast, tropospheric delays result from changes in the refractive index due to 
variations in atmospheric pressure, temperature and water vapour in the lower 
atmosphere. Tropospheric noise is more spatially localized than ionospheric 
noise, does not affect an entire SAR frame and correlates with topography. Both 
ionospheric and tropospheric noise are temporally random. Outlier dates in the 
time series associated with ionospheric or tropospheric noise were identified on 
the basis of the background noise level mentioned above (Extended Data Table 
1) and were removed without influencing preceding or following acquisitions, 
as all measurements were referenced to the first SAR date. Residual atmospheric 
noise contributes to our uncertainty estimates. Unwrapping errors occur when the 
change in land surface elevation is misinterpreted by half a wavelength (12 cm), 

which was infrequent in our case as typical subsidence rates are 1–5 cm yr−1  
(0.13–0.63 cm per 46 d). In time series with gaps of one year or more, subsidence 
rates before and after the gap were analysed separately to ensure similarity.

We used a linear fit to the corrected time series to calculate the mean LOS 
velocities, assuming that nonlinearities due to seasonal differences or localized 
disturbance were beyond the scope of this study. We did not analyse temporal 
dynamics further, as the 46-d repeat of ALOS led to noise, which could be 
overinterpreted.

As most peat deformation is expected to be vertical, we converted LOS (dLOS) 
into vertical displacement (dv) for every time series using the ALOS incidence 
angle (θ = 34.3°), dv = dLOS/cos θ, and reported all deformation as vertical. Vertical 
ground displacement is 21% more than LOS displacement; that is, 1 cm of LOS 
displacement corresponds to 1.2 cm of vertical displacement. We thus multiplied 
the LOS velocity by a factor of 1.2 to obtain the mean subsidence rate.

To evaluate the role of fire, we compared our InSAR signal with the 
aggregated dry season (June–October) burned area on peatlands for each year 
of the time series with the Collection 6 MODIS (Moderate Resolution Imaging 
Spectroradiometer) Burned Area Product (MCD64monthly). Burned areas were 
mapped over the time series (Supplementary Fig. 8) and the percentage of each 
ALOS frame burned each year is shown in Supplementary Table 2.

We find that nearly all fires were excluded from our analysis, and therefore our 
subsidence measurements and corresponding CO2 emissions estimates reflect C 
loss from peat oxidation, with a negligible contribution from fires. This is primarily 
due to the time period of the analysis, rather than a loss of coherence due to fire. 
We did not capture any major fire events or dry years, with the exception of frame 
1 in 2009 (however, no changes in subsidence rate were observed in the frame 1 
time series). Additionally, most small fires were excluded from our analysis as they 
tended to occur in areas with poor coherence (in most cases due to vegetation 
characteristics). Finally, although 2009 was a major fire year in Central Kalimantan, 
our time series in this region ended in November 2008, thus excluding these fires 
(Supplementary Fig. 8i,k and Supplementary Table 2). Likewise, the El Niño dry 
seasons of 1997 and 2015, when fires were widespread, were not covered by our 
analysis. Thus, our subsidence measurements mostly reflect carbon losses due to 
long-term peat oxidation and exclude large-scale peat fires, which are an additional 
source of regional CO2 emissions in Southeast Asia46.

Although fire was not included in our analysis, our results indicate that InSAR 
may have the potential to measure subsidence due to shallow peat fires. The InSAR 
signal retains coherence in some MODIS burned areas, consistent with our ability 
to successfully measure subsidence in areas classified as burnt and open land. This 
is probably because small and medium-sized peat fires, which primarily burn at 
and just below the peat surface, do not substantially change the character of the 
land surface. Many peat fires are smouldering, allowing vegetation to survive 
despite the fire. In contrast, large, deep or intense fires are expected to result 
in loss of SAR coherence due to changes in the ground texture between repeat 
satellite passes, but further analysis is needed as no large fires occurred during our 
observation period.

Land-use and spatial analysis. To assess spatial and temporal trends in subsidence 
rates, we assigned each InSAR pixel a land-use classification on the basis of 
peatland land-use maps by Miettinen et al.1. Land-cover classes for 1990, 2007 
and 2015 include pristine peat swamp forest, degraded peat swamp forest (slightly, 
moderately, heavily), tall shrub/secondary forest, ferns/low shrub, smallholder area, 
industrial plantations, built-up area and cleared and burnt area. Permanent water, 
seasonal water and mangrove areas are excluded from our analysis. Full details on 
land-use classification (derived from 30-m-resolution Landsat data) are available 
in ref. 1. These maps were also used to delineate peatland and non-peatland area. 
Maps of likely oil palm plantation extent for 1990, 2000 and 20071,47,48 were used in 
the space-for-time analysis of ALOS frame 1 data.

Distance from peat edge. To analyse spatial variation, we assigned each pixel a 
distance from the peat edge as a proxy for the distance from the nearest river and 
peat depth. Coastal peat in Southeast Asia forms in domes separated by rivers, with 
increasing peat depth further from the river and peat edge. As a digitized map of 
regional rivers and streams was not available, we use the peat boundaries in ref. 1 
for these calculations. We also manually mapped rivers within ALOS frame 1 and 
found that the same trends hold. Coordinates were projected from WGS84 to UTM 
47N for distance calculations.

Time since drainage. For our space-for-time substitution analysis on the impact 
of plantation history on subsidence rates, we used land-use maps developed by 
Miettinen et al.1,47,48. These maps document the extent of plantations (oil palm, 
acacia and other) on peatlands in 1990, 2000, 2007 and 2010. We selected a site in 
North Sumatra (frame 1) where oil palm plantations were established at different 
times across neighbouring peat domes (Fig. 3) and used the time of plantation 
establishment as a proxy for the time since drainage. To control for previous land 
use, we selected only land classified as pristine peat swamp forest in 1990. We then 
selected land which was converted to oil palm plantations in the following time 
periods: pre-1990, 1990–2000 and 2000–2007 (0–7 years since conversion,  
7–17 years since conversion and 17+ years since conversion).
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Regional upscaling. We used a regression-tree approach to extrapolate the 
observed 2007–2011 ALOS subsidence values across the region. The regression 
tree classifies peatland subsidence rates on the basis of ‘present’ (2007) land-use 
classification, distance from the edge of the peat and past land-use classification (as 
a proxy for time since drainage). Subsidence rates for 2015 were then extrapolated 
across all peatlands in Sumatra and Borneo using 2015 peatland land-use maps1. 
Upscaling relied on ‘present’ (2015) land-use classification, distance from the 
edge of the peat and past land-use classification, and subsidence was computed at 
points on a 1-km grid. Upscaling was limited to Sumatra, Borneo and Peninsular 
Malaysia, hotspots of land-use change on peatlands. We were unable to calculate 
projected subsidence rates for the understudied peatlands in Indonesian Papua 
and Papua New Guinea, as no peatland land-use maps were available there. This 
regression-tree approach was used to calculate spatially weighted mean subsidence 
values for the region. Although the mean subsidence and s.e.m. were calculated 
from an ensemble of regression trees using a bootstrapping approach described 
below, a single example regional upscaling map is shown to illustrate the method 
(Extended Data Fig. 3). It is not our intent to make site-specific predictions due to 
the wide variability in drainage practices.

In combination with the regression-tree approach, we relied on bootstrapping 
to calculate the regional mean subsidence and the s.e.m. for each land-use class 
and for the region as a whole. While the s.d. measures the amount of variability 
in a dataset, the s.e.m. measures how far the sample mean is likely to be from the 
true mean, and is therefore a more appropriate statistic for regional uncertainty 
estimates and emissions factors (Table 1). Our bootstrapping analysis sampled 
the dataset with replacement to create 1,000 synthetic datasets. For each of these 
synthetic datasets, we calculated a regression tree, and then used this regression 
tree to calculate gridded subsidence rates across the region and the corresponding 
regional mean subsidence rates. The distributions of these 1,000 mean subsidence 
values are shown in Supplementary Fig. 3 and the s.e.m. is calculated as the s.d. 
of the distribution of the mean. In generating the synthetic datasets, we sampled 
each InSAR frame, selecting eight frames with replacement for each synthetic 
dataset. This approach accounts for any potential systematic bias between InSAR 
frames due to factors such as peat depth, differences in regional drainage policies, 
high concentrations of certain land uses within a given frame and so on. Due to 
these frame-correlated factors, frame-based sampling introduced the maximum 
variability into the synthetic datasets, resulting in the widest range of regression 
trees and regional mean subsidence rates. It thus provided an upper bound on 
the s.e.m. and accounted for unquantified variables not directly included in the 
regression-tree analysis.

We further assessed our regression-tree approach with a cross-validation 
analysis (Supplementary Table 1). We conducted our cross-validation using 
two approaches: a standard k-fold cross-validation (k = 8) and a frame-based 
cross-validation (eight frames). In the first approach, all pixels from the InSAR 
dataset are randomly divided into eight groups. One group is held out, and 
a regression tree is fitted to the remaining data and then used to predict the 
subsidence values of the held-out pixels. Predictions are then compared with 
the true values. In the second approach, we used a frame-based cross-validation 
method, in which each frame is held out, and a regression tree is fitted to the 
remaining seven frames and then used to predict the subsidence values of the 
held-out frame. Due to systematic differences between frames, this approach 
resulted in higher variability, and was a more appropriate metric of uncertainty 
for our dataset, justifying our choice of frame-based bootstrapping to calculate an 
upper bound on the s.e.m.

Calculation of CO2 fluxes from subsidence rates. We calculated CO2 flux from 
subsidence using a method developed in northern peatlands49–51 and extended 
to tropical peat by Couwenberg and Hooijer9. During subsidence, peat in the 
near-surface oxic zone is simultaneously lost to oxidation and compacted, increasing 
bulk density. In an effort to understand net carbon losses, Couwenberg and Hooijer 
compared cores extracted from locations where peat had been subject to different 
histories of land use, drainage and subsidence. They found that profiles of bulk 
density were nearly identical. As tropical peat subsides, the peat profile remains close 
to a pseudosteady state; the peat maintains both an oxic surface layer and a deeper 
anoxic peat column, so the bulk density decrease with depth maintains a similar 
profile. Only the thickness of the anoxic peat decreases (Extended Data Fig. 5). Thus, 
the C loss can be calculated from an equivalent loss of deep uncompacted anoxic 
peat, equal in thickness to the subsidence of the peat surface (Extended Data Fig. 5). 
Employing this result, regional CO2 emissions were estimated using

CO2 emissions ¼ subsidence
´ dry bulk density of deep peat
´ carbon concentration of deep peat
´ peat area

This approach accounts for both compaction and oxidation of the surface peat 
but, with an elegant substitution, does not rely on these terms in the equations used 
to calculate C loss. This approach is well established and has been applied in both 
northern and tropical peatlands9,49–51.

We used values from the literature to estimate mean values and uncertainty 
ranges for peat parameters. We assumed a carbon concentration of 55% (53–57%) 

and a dry bulk density of 0.08 g cm−3 (0.07–0.09 g cm−3) on the basis of the review 
by Couwenberg and Hoojier9 of subsidence-based carbon loss calculations. 
These dry bulk density values are consistent with other measurements from the 
region52–57, where average values ranged from 0.073 to 0.089 g cm−3. Measured 
values are variable because of small-scale variability, sampling bias due to exclusion 
of woody material and differences in methodology. Carbon concentrations are 
less variable, although there is some spatial variability in peat composition. 
Ombrotrophic fibric and hemic peats have high carbon concentrations while 
peat soils from mangrove forests and floodplains generally have lower carbon 
concentrations. This spatial variability is beyond the scope of this upscaling. 
Additional variability is due to methodology, which includes loss on ignition, wet 
combustion and elemental analysis. Uncertainties in subsidence (δsubsidence), dry 
bulk density (δdry bulk density) and carbon concentration (δcarbon concentration) 
were propagated to calculate the uncertainty in the total regional CO2 emissions 
(δCO2), assuming that errors in dry bulk density and carbon concentration may be 
correlated, but are uncorrelated with uncertainty in subsidence, as follows:

δCO2 ¼ CO2
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where ‘CO2’ is the total regional CO2 emissions, on the basis of a peatland area of 
15.7 Mha for insular Southeast Asia1. Regional emissions factors and uncertainties 
for each land use (Table 1) were also calculated using the above formulation. In 
Supplementary Information, we also calculate the CO2 emissions using an older 
method that relies on shallow, oxic, peat parameters (Extended Data Fig. 5). While 
this method gives very similar results, these calculated uncertainties are higher 
because of the uncertainties in both the bulk density of the shallow oxic peat and 
the estimated fraction of peat lost to oxidation.

Data availability
The calculated mean subsidence rates that support the findings of this study are 
archived on Zenodo at https://doi.org/10.5281/zenodo.3694667. The raw SAR data 
that support the findings of this study are publicly available through the Alaska 
Satellite Facility data portal at https://vertex.daac.asf.alaska.edu/.
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Extended Data Fig. 1 | Industrial Plantations and Non-Peatland Areas at all Sites. Density plot of subsidence rates for industrial plantations (2007) and 
non-peatland areas for each ALOS frame. Non-peatland areas are shown for pixels >15!km from the edge of the peat to exclude transition zones between 
peatland and mineral soils. Positive values indicate subsidence and negative values indicate uplift.
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Extended Data Fig. 2 | Subsidence Rate by Land Use. Mean subsidence rates (positive values) for each 2007 land use category on peat within each ALOS 
frame, where available. Numbers indicate number of InSAR measurements averaged for each bar. Dashed lines indicate the mean subsidence rate of 
2.24!cm/yr across all peatland measurements. Non-peatland areas (light blue) are shown for pixels >15!km from the edge of the peat to exclude transition 
zones between peatland and mineral soils. Error bars represent the standard deviation of the data (not the standard error of the mean).
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Extended Data Fig. 3 | Example of Upscaled Subsidence Map and Regression Tree. (a) Map of upscaled subsidence. (b) Regression tree schematic. 
Mean regional subsidence and associated uncertainties were calculated based on a bootstrapping analysis of 1,000 regression trees and corresponding 
upscaled subsidence maps (Methods). To generate a single regression tree, 2007 land use was used as the Current Land Use, concurrent with ALOS 
measurements from 2007–2011. For regional upscaling, 2015 land use was used as the Current Land Use, as the most recently available regional mapping. 
All land use maps were generated by Miettinen et al.1. Total regional CO2 emissions and emissions factors were based on the mean of eight regression 
trees (each removing data from one ALOS frame). The displayed regression tree, for example purposes only, is based on all data and was used to generate 
the example regional subsidence map above. The upscaling map is provided as an illustration of the method. It is not our intent to make site-specific 
predictions due to the wide variability in drainage practices.
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Extended Data Fig. 4 | InSAR Validation with Ground-Based Subsidence Data. (a) ALOS frame 6 measurements of industrial plantations which overlap 
in space and time with measurements on oil palm plantations in Sarawak, Malaysia by Othman et al.8 This is the only area of direct overlap in the region. 
(b) InSAR data from all other industrial plantations compared to ground-based pole measurements also made on plantations, but at different times and/
or places. (c) InSAR data from all non-plantation land uses on peat (excluding pristine peat swamp forest) compared to ground-based pole measurements 
made on non-plantation land uses in the region, but at different times and/or places. In all panels, where multiple points are shown from a single study, 
they represent plantation areas established at different times or distinct land uses with distinct subsidence rates. Error bars indicate the standard deviation 
of the ground-based measurements within these study groups.
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Extended Data Fig. 5 | Schematic explanation of two methods for calculating carbon loss from bulk density profiles in a subsiding peatland with water 
table decline. Method #1: The approach first applied to tropical peat by Couwenberg and Hooijier9. Bulk density profiles are plotted relative to the land 
surface, which has subsided. It is evident from these bulk density profiles, before and after subsidence, that the carbon loss can be calculated from the 
change in thickness of the anoxic peat, the small yellow rectangle on the far right. Method #2: Bulk density profiles are plotted relative to elevation. The net 
carbon lost must be the same regardless of how the plot is constructed, but the calculation is more complex for Method #2. Here the net carbon lost is 
shown as loss in carbon due to the drop in the land surface, minus the apparent gain in carbon from the increased bulk density below the elevation that is 
now the land surface. The carbon lost is the difference between the gain and loss shown by the yellow regions on the far right. Our results rely on Method 
#1. However, calculations of CO2 emissions from Method #2 yield similar results with higher uncertainties. Assuming a dry bulk density of 0.11!±!.03!g/cm3  
and carbon content of 55!±!2 % in the compacted oxic peat, a mean subsidence rate of 2.24!±!0.23!cm/yr, a peat area of 15.7 Mha, and the fraction of 
subsidence due to compaction of 75!±!15 % as found by Hooijer et al.2, we calculate CO2 emissions equivalent to 160!±!61 MtC/yr (compared to 155!±!30 
MtC/yr using Method #1).
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Extended Data Fig. 6 | Frame 1 Subsidence and Land Use Map. ALOS Frame 1 mean subsidence rates (top), 1990 land use (left) and 2007 land use 
(right). Positive values indicate subsidence and negative values indicate uplift. Peatland extent and land-use maps adapted with permission from  
ref. 1, Elsevier.
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Extended Data Fig. 7 | Frame 3 Subsidence and Land Use Map. ALOS Frame 3 mean subsidence rates (top), 1990 land use (left) and 2007 land  
use (right). Positive values indicate subsidence and negative values indicate uplift. Peatland extent and land-use maps adapted with permission from  
ref. 1, Elsevier.
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Extended Data Fig. 8 | Frame 4 Subsidence and Land Use Map. ALOS Frame 4 mean subsidence rates (top), 1990 land use (left) and 2007 land  
use (right). Positive values indicate subsidence and negative values indicate uplift. Peatland extent and land-use maps adapted with permission  
from ref. 1, Elsevier.
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Extended Data Fig. 9 | Frame 6 Subsidence and Land Use Map. ALOS Frame 6 mean subsidence rates (top), 1990 land use (left) and 2007 land  
use (right). Positive values indicate subsidence and negative values indicate uplift. Peatland extent and land-use maps adapted with permission  
from ref. 1, Elsevier.
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Extended Data Table 1 | Study sites (ALOS frames) listed from north to south, first in Sumatra, then in Borneo

Frame 9 is listed last as it is not included in the subsequent analysis.
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