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Heterosigma  akashiwo  is  a  raphidophyte  known  for  forming  ichthyotoxic  blooms.  In  order  to  predict
the potential  impacts  of  rising  CO2 on  H.  akashiwo  it  is  necessary  to  understand  the  factors  influencing
growth rates  over  a  range  of  CO2 concentrations.  Here  we  examined  the  physiology  and  gene  expres-
sion response  of  H.  akashiwo  to  concentrations  from  200  to  1000  ppm  CO2. Growth  rate  data  were
combined from  this  and  previous  studies  and  fit  with  a  CO2 limitation-inhibition  model  that  revealed
an apparent  growth  optimum  around  600–800  ppm  CO2. Physiological  changes  included  a  significant
increase in  C:N  ratio  at  ∼800  ppm  CO2 and  a significant  decrease  in  hydrogen  peroxide  concentra-
tion at  ∼1000  ppm.  Whole  transcriptome  sequencing  of  H.  akashiwo  revealed  sharp  distinctions  in
metabolic pathway  gene  expression  between  ∼600  and  ∼800  ppm  CO2.  Hierarchical  clustering  by  co-
expression identified  groups  of  genes  with  significant  correlations  to  CO2 and  growth  rate.  Genes  with
significant differential  expression  with  CO2 included  carbon  concentrating  mechanism  genes  such
as beta-carbonic  anhydrases  and  a  bicarbonate  transporter,  which  may  underpin  shifts  in  physiol-
ogy. Genes  involved  in  cell  motility  were  significantly  changed  by  both  elevated  CO and  growth  rate,
2
suggesting that  future  ocean  conditions  could  modify  swimming  behavior  in  this  species.
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Introduction

Over the last  century anthropogenic  emissions
of  CO2 have resulted  in rising atmospheric CO2
and  the carbonation  and  acidification  of the global
oceans  (Ciais et al. 2013; Sabine  et  al. 2004).
The  increase  in dissolved CO2 and  concomitant
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decrease  in ocean pH are projected  to continue
over  the present  century (Caldeira  and  Wickett
2003;  Ciais  et al. 2013), resulting  in  signifi-
cant  impacts  on marine  organisms (Brierley and
Kingsford  2009; Doney et al. 2009). A  global
marine  ecosystem  model  that  integrated the var-
ious  responses  of phytoplankton  groups  to rising
CO2 predicted  significant  shifts in species dom-
inance  under future  CO2 conditions  (Dutkiewicz
et  al. 2015). These  community  shifts may exacer-
bate  an already  difficult  and persistent  problem  for
coastal  and estuarine communities, the prediction
of  harmful algal blooms  (HAB) (Hallegraeff  2010).
HABs  are  increasing  worldwide  (Anderson et al.
2012;  Hallegraeff 1993),  reported  in  locations  and
seasons  in which  they have never been  detected
before  (Daley 2018).  A modeling  study focused on
two  dinoflagellate  HAB species  predicted  a north-
ern  range  and seasonal  expansion of toxic blooms
with  rising  temperatures  in the North Atlantic  and
Pacific  (Gobler  et al. 2017).  To  date, several stud-
ies  have reported  that HAB species,  particularly
dinoflagellates  and raphidophytes,  have enhanced
growth  rates with ocean  acidification  predicted  for
2100  (Fu et al. 2008; Ou  et al. 2017; Pang et al.
2017), suggesting  that  rising  CO2 could  also  pro-
mote  HAB events.

The marine  raphidophyte,  Heterosigma
akashiwo,  is a widely distributed  coastal  and
estuarine  species capable of  forming HABs  (Honjo
1992). H. akashiwo  blooms  have  been  reported
to  be ichthyotoxic,  causing  mortality  events in
both  farmed and  wild fish populations  (Itakura
and  Imai  2014; Rensel et al.  2010;Taylor and
Haigh  1993). Despite strain-to-strain  differences,
it  is well-reported  that  H. akashiwo  tolerates  a
wide  range  of  environmental  variables,  including
light  (Butrón  et al. 2012), salinity (Strom et al.
2013), and temperature  (Zhang  et  al. 2006).
H.  akashiwo growth rates  have  been  shown to
significantly  increase  under  elevated  CO2 and
acidification  predicted  for  the year 2100 (Fu  et al.
2008;  Hennon  et  al. 2017). Swimming  behavior
has  been reported  to be impacted  by shifts in pH,
implying  that H.  akashiwo has  the ability to sense
and  respond to changes in carbonate  chemistry
(Kim et al. 2013). In fact, CO2-stimulated  growth
rate  enhancement  gave H. akashiwo  an  advantage
in  co-culture  experiments  with the non-toxic  diatom
Skeletonema  costatum  (Xu  et al. 2010),  suggest-
ing  that under future  CO2 conditions  HABs  of  H.
akashiwo  may increase  in frequency and severity
by  outcompeting  other  coastal  phytoplankton
species.

The  cause  of growth  rate  enhancement  under
elevated  CO2 is not definitively  known for H.
akashiwo,  but physiological  evidence  suggests that
raphidophytes  may be carbon-limited  in the modern
ocean.  Nimer  et al. (1997)  found that  raphidophytes
did  not  take  up external bicarbonate  or extracel-
lularly  convert bicarbonate  to CO2, making them
one  of the few marine phytoplankton  groups to
apparently  lack a way to use  bicarbonate from their
environment.  In another study, H. akashiwo had  a
higher  rate of beta-carboxylation  relative  to Rubisco
carboxylation  (Descolas-Gros  and Oriol 1992),  sug-
gesting  that  carbon  fixation  by Rubisco is very
slow  in raphidophytes  and  may be  compensated
for  by more energetically  expensive  carbon fixation
pathways.  These  studies suggest  that  H. akashiwo
relies  on  CO2 diffusion to supply  carbon to Rubisco,
hence  elevated CO2 allows for an  increased rate
of  carbon  fixation.  However, with the first  transcrip-
tomes  for H. akashiwo and  other  raphidophytes now
available  (Haley et al. 2017; Keeling  et al. 2014),
genes  with homology  to bicarbonate  transporters,
carbonic  anhydrases  as well as C3 and C4  pathway
genes  were  identified  in these  assembled  transcrip-
tomes  (Hennon et al. 2017). Carbonic anhydrase
genes  were  found to shift expression  in concert with
carbon  fixation genes in both  lab and  field stud-
ies  of H. akashiwo (Hennon et al. 2017;  Ji et al.
2018). These  recent  findings suggest  that at least
some  raphidophytes  may in fact  have the  genetic
capacity  to  use bicarbonate  with a carbon  (or CO2)
concentrating  mechanism  (CCM).

The physiological  responses,  and their genetic
underpinnings,  to a broad  range  of CO2 condi-
tions  are  largely  unknown  for toxic H. akashiwo
strain  CCMP2393.  Here  we measured  physiolog-
ical  changes  of  H. akashiwo in response to CO2
conditions ranging  from pre-industrial (∼200 ppm)
to  those  predicted  for year 2100 (∼1000 ppm) (Ciais
et  al. 2013). We complemented  physiological mea-
surements  with whole  transcriptome sequencing to
not  only assess genetic  capabilities  but also to iden-
tify  and compare mechanistic  shifts  along the  CO2
gradient.

Results and Discussion

Changes  in growth rates, physiology,  and gene
expression  in  H.  akashiwo were  measured in
response  to a range of CO2 concentrations in order
to  examine  potential  non-linear  responses  over  a
variety  of predicted  CO2 concentration scenarios.
The  highest mean  growth rate for H.  akashiwo
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Table  1. Physiology  of  H.  akashiwo  under  a  range  of  CO2 scenarios. CO2 scenarios  include  pre-
modern, modern  and  three  representative  concentration  pathways  (RCP)  (Ciais  and  Sabine  2013).  Mean
values ±  standard  deviation  for  CO2 concentration  (ppm),  growth  rate  (day−1),  carbon  per  cell  (pg  C  cell−1),
nitrogen per  cell  (pg  N  cell−1),  and  chlorophyll  concentration  (pg  cell−1).

200  (premodern)  400  (modern)  600  (RCP4.5)  800  (RCP6.0)  1000  (RCP8.5)

CO2 (ppm)  265  ±  45  423  ±  51  571  ±  74  780  ±  80  1017  ±  98
Growth rate  (day−1) 0.61  ±  0.09 0.63  ±  0.04 0.70  ±  0.11 0.77  ±  0.12  0.54  ±  0.13
Carbon (pg  cell−1)  240  ±  82  219  ±  50  151  ±  8  226  ±  31  181  ±  13
Nitrogen (pg  cell−1)  57  ±  18  50  ±  11  37  ±  2  44  ±  8  41  ±  5
Chlorophyll a  (pg  cell−1)  0.74  ±  0.12  0.52  ±  0.26  0.31  ±  0.13  0.43  ±  0.02  0.45  ±  0.08

(0.77  d−1)  was measured  for cultures  maintained
at  ∼800 ppm  CO2. However, there  was no signif-
icant  difference in growth rates among  the CO2
treatments  in this study  due to  high variability in
the  biological replicates  (Table 1,  ANOVA p > 0.05).
Despite  this  variability, the range  of growth  rates
was  remarkably  consistent  with previous  studies.
A  comparison  of growth  rate  responses  of  H.
akashiwo  from  this  study with  those from the litera-
ture  (Fig.  1)  showed that, despite the  differences
in  culturing  conditions  between  labs,  and strain
variability,  the  growth rate  responses  were  simi-
lar  for H. akashiwo under  the  same  concentrations
of  CO2 (Fig. 1). In contrast to previous studies,

our study examined  a  greater number of CO2
treatments  spanning  pre-industrial (∼200 ppm) to
the  business-as-usual  scenario predicted  for 2100
(∼1000  ppm) (Supplemental  Material Table S1).
When  the growth rate  data from  all  available stud-
ies  are  considered  together,  there  is an apparent
maximum  in growth  rates  around  700 ppm, and
a  decline  in growth  rate at CO2 greater than
800  ppm  (Fig. 1). Growth rate  data were  fit  with
a  CO2 limitation-inhibition  model  (See  Methods:
Equation  (1))  that predicted  a half-saturation of
236  ± 114  ppm  CO2 with a maximum  theoretical
growth  rate of 3.0 ± 0.7 day−1 and an inhibi-
tion  coefficient of 0.0006 ± 0.0002  ppm−1 CO2.

Figure  1. Growth  rate  response  of  Heterosigma  akashiwo  for  a  range  of  CO2 concentrations.  Exponential
growth rate  (day−1,  mean  ±  SD)  versus  CO2 concentration  (�atm,  mean  ±  SD)  for  H.  akashiwo  compiled  from
the literature  and  in  this  study.  Black  circles  indicate  data  from  this  study  (n  =  3),  red  squares:  from  Fu  et  al.
2008 (n  =  3),  orange  triangles:  Kim  et  al.  2013  (n  = 3),  green  circles:  Stewart  et  al.  2015  (n  =  4),  green  diamonds:
Bianco  et  al.  2016  (n  =  4),  and  blue  squares:  Hennon  et  al.  2017  (n  = 3).  Solid  line  indicates  the  mean  best  fit
for a  CO2 limitation-inhibition  model  with  dashed  lines  to  indicate  one  standard  deviation  of  the  model  fit  with
the Monte  Carlo  method  (1000  simulations).
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Figure  2.  Physiological  response  of  Heterosigma
akashiwo to  a  range  of  CO2 treatments.  Bar  plots  of
(A) carbon  to  nitrogen  ratio  (C:N),  and  (B)  hydrogen
peroxide  (fmol  cell−1)  with  mean  and  standard  devia-
tion indicated  by  error  bar  (n  =  3).  Letters  above  bars
indicate significant  differences  from  ANOVA  (p  <  0.05)
and post  hoc  Tukey  HSD  test  (p  <  0.05).

Estuarine waters  where H. akashiwo thrives often
have  lower pH and higher  pCO2 than the open
ocean  as a consequence  of upwelling  of deep  water
(Feely et al. 2010),  potentially  explaining  why the
apparent  growth optimum  is at a CO2 concentration
greater  than  modern atmospheric  concentrations.

Physiological  measurements of H. akashiwo over
the  range of CO2 treatments revealed  a trend of
declining  chlorophyll  a concentrations  at  higher
CO2 similar to previous  studies  (Hennon  et al.
2017), although  the differences  were  not statisti-
cally  significant (Table  1), perhaps due to the loss of
one  of the biological  replicate  samples.  Significant
differences  in carbon  to nitrogen  ratio  (C:N)  and
hydrogen  peroxide  concentration per  cell (Fig.  2A)
were  also observed. The  significant  increase  in C:N
ratio  at 800  ppm CO2 and the apparent decline
in  chlorophyll  a  content  per  cell  correspond  well
to  a previously measured  increase  in carbohy-
drate  production  and decrease  in chlorophyll  a in
H.  akashiwo  under  elevated  CO2 (Hennon et  al.
2017). Previous studies  have found  increased  C:N
ratio  in the elevated  CO2 treatments  of commu-
nity  mesocosm  experiments  (Riebesell  et al. 2007),
suggesting  this could  be a general  phytoplankton
response  with potential to  increase  the efficiency
of  carbon export  and decrease  the quality  of phy-

toplankton  as food for  higher  trophic  levels. The
significant  decrease  in hydrogen  peroxide  concen-
tration  at 1000  ppm  CO2 (Fig. 2B)  could derive from
either  a decrease  in hydrogen  peroxide production
or  an increase in degradation  rates.  Raphidophytes
have  been  reported  to have relatively high rates
of  hydrogen  peroxide  and superoxide production
(Dorantes-Aranda  et al.  2015; Twiner and Trick
2000). While this  is likely  not the main cause of
ichthyotoxicity  in H. akashiwo  (Twiner et al. 2001),
free  radical  concentrations  can serve as an indi-
cator  of metabolic  activity, and  potential oxidative
stress  (Twiner and Trick 2000). In order  to predict
the  impact  of these  physiological changes on eco-
logical  success,  it is  necessary  to  identify which
metabolic  pathways were  differentially expressed.

Whole  transcriptome  sequencing  was  performed
on  biological  triplicate  bottles of H. akashiwo cul-
tures  acclimated  to  five concentrations of CO2 from
200  to 1000  ppm  to examine the  genetic mech-
anisms  of the response  to CO2 for this species.
The  cultures were non-axenic,  so polyA selec-
tion  was used to capture  only the eukaryotic
RNA.  To get a broad  view of metabolic  changes,
RNA  reads  were aligned  to the H. akashiwo con-
tigs  and  groups of genes belonging  to  KEGG
pathways  were  filtered  for significant  changes
in  expression  distribution  (Kolmogorov-Smirnov
test,  p < 0.05)  among  CO2 treatments compared
with  400 ppm  CO2 (Fig. 3). Metabolic pathways
involved  in the same  processes  displayed simi-
lar  patterns of expression  across CO2 treatments
(Fig.  3). For example,  light gathering pathways
of  photosynthesis  and  biosynthesis pathways for
chlorophyll  and  other  photosynthetic pigments
grouped  together  and had  decreased  expression
at  both  pre-industrial  (200  ppm) and  elevated CO2
(800–1000  ppm)  treatments  compared  to  ambient
(400  ppm) CO2 (Fig.  3). Likewise,  other core car-
bon  metabolic  pathways like glycolysis  and C3
carbon  fixation had decreased  expression at ele-
vated  CO2 (800–1000  ppm) despite  no significant
change  in growth  rates (Fig.  3). This  observation
is  similar to the decrease  in core  metabolic gene
expression  observed  in the diatom,  Thalassiosira
pseudonana,  under  elevated CO2 (Hennon et  al.
2015)  with  no  change  in growth rate,  thought to
be  a response  to down-regulation  of  CCM genes.
Genes  involved  in cell  cycle,  DNA replication, and
DNA  repair  grouped  together  with a pattern of
increased  expression at elevated (800–1000 ppm)
CO2 (Fig. 3). These  results suggest  there may be
increased  damage  as well as replication of genomic
DNA.  A peroxidase  gene  was also significantly
differentially  expressed  with elevated expression
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Figure  3.  Changes  in  KEGG  pathway  expression  of  Heterosigma  akashiwo  under  a  range  of  CO2 treatments.
Heatmap colors  indicate  the  mean  log2 (fold  change)  in  expression  of  genes  in  each  KEGG  pathway  according
to the  color  bar  for  each  CO2 treatment  relative  to  400  ppm,  with  red  indicating  increased  expression,  blue
indicating decreased  expression  and  white  indicating  no  change  in expression.  The  dendrogram  indicates
similarity in  KEGG  pathway  expression.  All  KEGG  pathways  shown  have  a significantly  different  distribution
relative to  400  ppm  in  at  least  one  of  the  treatments  (Kolmogorov–Smirnov  test  p <  0.05).
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at 800–1000 ppm  (CAMPEP_0188594904,  Sup-
plementary  Material  Table  S2).  The  decreased
concentration  of hydrogen  peroxide (Fig.  2) could
potentially  be explained by an increase  in  expres-
sion  of a peroxidase  enzyme at elevated  CO2.

The  most striking change  in KEGG  pathway
expression  was  for nitrogen metabolism  genes
with  a  greater  than 2-fold decrease  at elevated
(800–1000  ppm)  CO2 (Fig. 3).  The decreased  nitro-
gen  metabolism  gene  expression may underpin
the  increased  C:N ratio  at 800 ppm,  yet upon
inspection,  this expression  pattern  is  largely  driven
by  a few carbonic  anhydrase  genes  that are
potentially  involved  in either  nitrogen  pathways or
CCMs.  Differential expression  analysis  across  CO2
treatments  revealed  significant  differences  in the
transcript  levels  of 121  genes (exact test, false dis-
covery  rate  <0.05, Supplementary  Material Table
S2).  To determine whether  the  patterns of  CCM
gene  expression  were  more closely  related  to CO2
treatment  or changes in growth physiology, the
putative  CCM genes  were  tested  for a signifi-
cant  monotonic increase or  decrease  in expression
(Pearson  correlation)  with CO2 or growth  rate.
This  analysis  took advantage of the  wide range  in
CO2 concentrations and growth rates measured  in
this  study, using  data for each individual  biologi-
cal  replicate  sample  rather than grouping  samples
by  treatment. Putative  CCM genes  including  all
contigs  with significant homology to alpha and
beta  carbonic  anhydrases,  bestrophins  and bicar-
bonate  transporters  are  listed in Table 2 along
with  their  putative  locations  in  the cell. A select
few  putative  CCM  genes  had both significant  dif-
ferences  in expression  by CO2 treatment  and a
monotonic  decrease  with CO2 (beta  CA-4,5,9 and
SLC4-2:  Table 2) as would be expected  for  a  CO2-
responsive  CCM.  Two of three CO2-responsive
carbonic  anhydrases  had a  predicted  localization  to
the  plastid,  suggesting  they operate  in close  prox-
imity  to  Rubisco  (beta-CA4  and beta-CA5,  Table 2).
SLC4-2  is a  putative  bicarbonate  transporter,  which
displayed  lower  expression  under  both  800 and
1000  ppm CO2 relative  to 400 ppm  CO2.  SLC4
bicarbonate  transporters have been  shown  to trans-
port  bicarbonate  from the seawater media  into
diatoms  (Nakajima  et al. 2013)  as part of the CCM.
These  results  support  a CO2-responsive  biophys-
ical  CCM  in this raphidophyte  and suggest that
selected  plastid-targeted  beta-CAs and an  external
bicarbonate  transporter  are  the key  genes control-
ling  the response  of H. akashiwo to changing  CO2
conditions,  similar to those described  for  the  well-
characterized  diatom,  Phaeodactylum  tricornutum
(Harada et al. 2006;  Nakajima  et al. 2013).

Hierarchical clustering revealed  co-expression
relationships  between  genes and correlations to
either  CO2 or growth rate (Fig. 4).  A  cluster
of  genes involved  in  flagellar  motion and motil-
ity  were  found to be  positively  correlated with
CO2 (Pearson  correlation =  0.56,  p-value = 0.03,
Fig.  4A), while a  separate  cluster of motility genes
was  significantly  correlated  to growth rate (Pear-
son  correlation  = 0.66,  p-value  <0.01,  Fig. 4E).
The  increased  expression of motility  genes with
increased  CO2 is consistent  with observations  from
a  previous  study  that  found  enhanced downward
swimming  behavior  of H.  akashiwo under elevated
CO2 (Kim et al. 2013). Although  swimming  behavior
was  not measured  in  this study,  the  gene expres-
sion  patterns suggest  that  both elevated CO2 and
growth  rate were  correlated  with  enhanced expres-
sion  of motility  genes  (Fig.  4A,E). A  Ras-family
signaling  pathway gene  was significantly differ-
entially  expressed  with  respect to CO2 treatment
(contig  ID: 13233_1,  Supplementary  Material Table
S2) and falls  within  the CO2-responsive  motility
gene  cluster (Fig. 4A: cluster 143).  Although Ras-
family  signaling  genes can  impact  many possible
cell  functions, the co-expression of  these genes
suggests  that  this particular  Ras signaling path-
way  gene may be involved  in the  regulation of
motility  genes  in H. akashiwo  that are influenced
by  CO2. Swimming  behavior  in  H. akashiwo is an
important  facet  of bloom ecology, as the raphi-
dophyte  can form or disaggregate  surface  slicks
due  to coordinated  swimming  (Bearon  et al.  2004).
Down-swimming  in response  to elevated CO2 as
observed  by Kim et al. (2013) could  serve to dis-
aggregate  surface blooms  and possibly decrease
encounters  with surface predators.  The expression
response  in motility genes identified herein may
underpin  changes  in swimming  behavior and offers
an  avenue  for further study of this aspect of bloom
dynamics  in the future ocean.

The CO2-responsive  CCM genes were grouped
into  three  clusters (Fig.  4B,C,D) with 38, 386 and
401  genes,  respectively.  The  beta-CA4  gene was
part  of  the 38-gene  cluster (Fig. 4B, cluster 174) that
was  significantly  anti-correlated  with CO2 (pearson
correlation  = −0.70, p-value  <0.01,  Supplementary
Material  Tables S3 and S4). Other genes in the
cluster  included  a  sodium/proton  antiporter  (Na+/H+

antiporter, Fig. 4B) and potential  regulatory genes
with  dnaJ and RNA-binding  domains  (Supplemen-
tary  Material  Table S3).  The  Na+/H+ antiporter could
be  involved in  pH homeostasis  or in the  function-
ing  of a H. akashiwo CCM.  The  maintenance  of an
acidified  thylakoid compartment  within the plastid
may  be important for an efficient  biophysical CCM
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Table  2. Putative  biophysical  CCM  genes  from  H.  akashiwo  with  summary  statistics  and  predicted  localization.  Gene  names  are  assigned
according to  homology  with  alpha  or  beta  carbonic  anhydrases  (CA),  bestrophins  (Best)  and  SLC4  bicarbonate  transporters  (SLC4).  For  clarity,
gene names  have  been  abbreviated  and  amended  with  numbers  to  indicate  unique  genes.  Summary  statistics  include:  exact  test  (edgeR)  to  test
for differences  among  CO2 treatments,  and  pearson  correlation  tests  to  determine  whether  genes  display  a  significant  monotonic  change  with
CO2 or  growth  rate.  The  predicted  localization  of  genes  products  was  determined  by  SignalP  and  ASAFind.

Gene  Name  Peptide  ID  exact  test  (fdr)  pearson  CO2 pearson  growth  rate  localization

alpha-CA1  CAMPEP_0188570690 0.27  −0.44 0.07  Not  plastid,  SignalP  negative
alpha-CA2 CAMPEP_0188571210 0.33  −0.30 0.04  Plastid,  high  confidence
alpha-CA3 CAMPEP_0188570788  0.37  −0.42  0.06  Plastid,  low  confidence
alpha-CA4 CAMPEP_0188575582  0.51  −0.41  0.03  Plastid,  low  confidence
alpha-CA5 CAMPEP_0188582928  0.43  −0.43  0.03  Not  plastid,  SignalP  negative
alpha-CA6 CAMPEP_0188565536  not  expressed  Not  plastid,  SignalP  negative
alpha-CA7 CAMPEP_0188572346  0.32  −0.49  0.05  Not  plastid,  SignalP  negative
alpha-CA8 CAMPEP_0188580680  0.51  −0.44  0.18  Not  plastid,  SignalP  negative
alpha-CA9 CAMPEP_0188589552  1.00  0.11  −0.59  Not  plastid,  SignalP  negative
alpha-CA10 CAMPEP_0188555996  1.00  −0.09  0.50  Plastid,  low  confidence
beta-CA1 CAMPEP_0188570370  1.00  −0.46  0.17  Not  plastid,  SignalP  negative
beta-CA2 CAMPEP_0188569706  1.00  0.59  −0.08  Not  plastid,  SignalP  negative
beta-CA3 CAMPEP_0188590882  0.66  −0.47  0.06  Plastid,  high  confidence
beta-CA4 CAMPEP_0188557288  0.00  −0.88  0.04  Plastid,  high  confidence
beta-CA5 CAMPEP_0188571404  0.00  −0.79  0.06  Plastid,  high  confidence
beta-CA6 CAMPEP_0188597438  0.76  −0.40  −0.07  Not  plastid,  SignalP  negative
beta-CA7 CAMPEP_0188571148  0.98  −0.36  −0.11  Plastid,  high  confidence
beta-CA8 CAMPEP_0188575444  0.91  −0.46  0.04  Plastid,  high  confidence
beta-CA9 CAMPEP_0188586576  0.02  −0.75  0.09  Not  plastid,  SignalP  negative
beta-CA10 CAMPEP_0188590874  0.55  −0.45  0.07  Not  plastid,  SignalP  negative
Best-1 CAMPEP_0188596298  0.59  −0.50  0.01  Plastid,  high  confidence
Best-2 CAMPEP_0188569350  0.53  −0.45  0.06  Plastid,  high  confidence
Best-3 CAMPEP_0188546542  0.47  −0.48  0.11  Plastid,  high  confidence
Best-4 CAMPEP_0188597218  0.13  −0.54  0.19  Plastid,  high  confidence
Best-5 CAMPEP_0188597062  1.00  0.00  0.20  Not  plastid,  SignalP  negative
Best-6 CAMPEP_0188567114  0.39  −0.47  0.23  Not  plastid,  SignalP  positive
SLC4-1 CAMPEP_0188568326  1.00  −0.18  −0.04  Not  plastid,  SignalP  negative
SLC4-2 CAMPEP_0188598466  0.03  −0.41  0.21  Not  plastid,  SignalP  negative
SLC4-3 CAMPEP_0188555726  1.00  −0.36  0.13  Not  plastid,  SignalP  negative
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Figure  4.  Co-expressed  gene  clusters  correlated  with  growth  rate  and  CO2.  The  log  transformed  fold  change
(log2 FC)  of  transcript  abundance  relative  to  modern  CO2 treatments  of  selected  genes  and  gene  clusters  from
H. akashiwo  defined  by  hierarchical  clustering  versus  CO2 (A–D)  and  growth  rate  (E–H).  Genes  are  plotted  as
solid lines  and  clusters  are  filled  polygons,  asterisk  indicates  gene  clusters  with  significant  Pearson  correlation
with CO2 and  dagger  indicates  a  significant  Pearson  correlation  with  growth  rate.  Gene  abbreviations:  CA:
carbonic anhydrase,  Na+/H+: sodium/proton,  SLC4:  SLC4  family  bicarbonate  transporter,  ALAT_GGAT:  alanine
amino transferase,  psbO:  photosystem  II  subunit  O,  sucB:  2-oxoglutarate  dehydrogenase.

(Giordano et al. 2005; Raven 1997), however the
localization  of  the gene product  is unclear.  The  clus-
tering  analysis  allows for discovery of genes  that
may  be integral  to a biophysical  CCM  that  would
be  missed  in a traditional  targeted  analysis.  The
putative  regulatory genes also suggest  how gene

expression might be altered  by CO2-responsive
signaling  cascades  similar to findings  for diatoms
(Harada  et al. 2006;  Hennon  et al.  2015). The
large  multi-gene  clusters (Fig.  4C, D) contain genes
with  many different functions  with a few putative
CCM  genes, including  the SLC4-2  bicarbonate
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transporter (Fig.  4C,  cluster 79)  and  three car-
bonic  anhydrase  genes, a bestrophin  gene and a
photorespiration  gene (Fig.  4D, cluster  76).  These
clusters  that  were  not  significantly monotonically
correlated  with CO2 (Supplementary  Material Table
S4),  instead  displaying a local maximum  expres-
sion  at ambient  CO2. Other  genes in  these clusters
include  genes associated  with metabolism such
as  chlorophyll a-b binding and ATPase  domains.
The  co-expression  of these genes  in H. akash-
wio  suggests that  these  carbonic  anhydrases  and
the  bicarbonate  transporter  may  be  regulated  by
both  metabolic  and  CO2-responsive mechanisms,
but  disentangling  these  regulatory  associations  will
require  a greater  number of experimental  treat-
ments  than reported  here.

Metabolic and regulatory  genes  formed  clus-
ters  with  significant  correlations  to growth  rate
(Fig.  4F,G,H  and Supplementary  Material  Table
S4).  The  photosystem  II gene, psbO,  was
negatively  correlated  to growth  rate (Pearson  cor-

relation = −0.56, p-value  =  0.03, Fig.  4F),  mirroring
the  results from the  KEGG pathway analyses
(Fig.  3). In contrast, the glycolysis  and TCA  cycle
genes  sucB and enolase  were  positively corre-
lated  with growth rate (Pearson  correlation = 0.54,
p-value  = 0.04, Fig.  4G). These  differences in gene
expression  reflect  a  variation in  metabolic path-
ways  underpinning  and perhaps  moderating the
physiological  response  of H.  akashiwo to changes
in  CO2. Cluster 314 (Fig.  4H) contains gene
transcription  machinery  with a significant  anticorre-
lation  to  growth rate (Pearson  correlation = −0.60,
p-value  = 0.02), suggesting  that as growth rate
increases  there  may be transcriptional changes.
These  gene  clusters illustrate  cell  regulation and
metabolic  pathways that are influenced by CO2
treatments,  yet are intimately  connected  to growth
and  physiology of H. akashiwo.

To summarize  the effect  of  future CO2 scenarios
on  H. akashiwo gene  expression  and metabolism,
the  data were  combined  from  KEGG pathways,

Figure  5. Summary  of  gene  and  metabolic  pathway  changes  of  Heterosigma  akashiwo  under  three  future
CO2 scenarios.  The  change  in  expression  of  genes,  pathways,  and  gene  clusters  (bold  italicized)  are  dis-
played as  the  log  transformed  Fold  Change  (log2FC)  compared  to  modern  CO2 for  each  projected  future  CO2
treatment  (600  ppm:  left,  800  ppm:  center,  1000  ppm:  right).  The  reactions  catalyzed  by  each  gene  product
or pathway  are  represented  by  small  arrows,  transport  with  large  arrows,  and  metabolites  with  bold  text.  The
bolded wavy  line  represents  a  flagellum  and  the  intracellular  compartments  are  labeled  as  plastid  (green),
mitochondrion (orange),  and  nucleus  (purple).  Note  that  localizations  of  CCM  gene  products  are  putative
(Table  2).  Gene/pathway  abbreviations:  CA:  carbonic  anhydrase,  SLC4:  SLC4  family  bicarbonate  transporter,
TCA: tricarboxylic  acid  cycle,  oxphos:  oxidative  phosphorylation.



Physiology  and  Genetic  Response  of  H.  akashiwo  to  CO2 47

hierarchical  clusters  and single gene  expression
measurements  (Fig.  5). The 600 ppm CO2 treat-
ment  was  similar to modern (∼400 ppm)  in gene
expression.  We hypothesize that the increase  in
CO2 diffusive flux may  not be enough  to trigger
the  regulatory change  in CCM genes  and  concur-
rent  metabolic shifts.  At 800 ppm  CO2, there was a
marked  decrease  in expression  of putative biophys-
ical  CCM  genes  (Fig.  5)  consistent with the findings
of  Ji et al. (2018)  for  a H. akashiwo bloom and a
decrease  in most  core metabolic pathways  similar
to  the observations  of decreased metabolic  rates
for  the diatom  T. pseudonana (Hennon  et al. 2014,
2015). Cells grown in 800 ppm  CO2 had the fastest
growth  despite decreases  in many  core  metabolic
gene  expression pathways such  as  the light and
dark  reactions  of photosynthesis.  One pathway that
displayed  the opposite  trend  at  800  ppm  was the
tricarboxylic  acid cycle (TCA), which had  increased
expression.  The  gene  expression  of H. akashiwo  at
800  ppm also suggests  enhanced  expression  of cell
cycle,  DNA  replication  and DNA  repair (Fig.  5). Ele-
vated  expression  of  motility  genes  was also  seen
at  both 800  and  1000 ppm,  which is consistent
with  previous  observations  of enhanced  swimming
behavior  (Kim et al. 2013),  but warrants  further
study.  Cells  grown  at 1000  ppm  displayed  a simi-
lar  decrease  in biophysical CCM  genes to 800 ppm
(Fig.  5), yet with slower growth  (Table 1, Fig. 1),
potentially  due to the inhibitory  effects of acidifi-
cation.  Cells grown  at 1000 ppm  also had weaker
increases  in  cell  cycle, DNA  replication  and repair
and  no  increase  in the  TCA cycle. These  gene
expression  changes  indicate  a non-linear  response
to  elevated CO2 with potential thresholds  around
different  future  emissions scenarios,  mirroring the
non-linear  growth  response  of H.  akashiwo  to CO2.
These  genetic changes from H. akashiwo  integrate
the  alga’s  responses  to the CO2 treatment  as well
as  any shifts  in the co-cultured  bacterial community
due  to  CO2 which have been shown  to be  signifi-
cant  (Bunse  et al. 2016; Hennon et al. 2018). This
study  therefore represents  a holistic view of how
this  harmful alga responds to rising  CO2 as part of
the  microbial  community.  These  genetic responses
demonstrate  the complexity  underlying the  mech-
anisms  driving  phytoplankton responses  to  future
CO2 and point to differences  in  future  HAB risk that
are  dependent  on CO2 concentration  pathways.

Conclusions

Although single  condition  studies that focus on
phytoplankton  responses  to ambient versus ele-

vated CO2 are  increasingly  common  (e.g.: Fu  et al.
2008;  Hennon  et  al. 2017), there are fewer stud-
ies  that identify responses  over  a range of future
CO2 concentration  scenarios. Here we identified
an  optimum  CO2 concentration  for H. akashiwo
growth  around  600–800  ppm.  This  new functional
response  curve  for H. akashiwo could be used
in  numerical  models  to  improve  HAB prediction,
and  such response  curves along  with estimates of
evolutionary  potential  will be critical for  accurately
parameterizing  models  of future  ocean phytoplank-
ton  biogeography.  The gene  expression changes
support  the  observation  of  a shift in  cell state
between  600 and  800 ppm  with a decrease in many
core  metabolic  pathways and an  increase in cell
cycle  and DNA  replication  pathways.  Of the dozens
of  putative CCM  genes  in H.  akashiwo,  three beta-
CAs  and a few other CCM  genes were significantly
negatively  correlated  with CO2, suggesting that
these  genes may  be central  to the response  of
this  raphidophyte  to changes in CO2.  Motility genes
were  also significantly  correlated with CO2 con-
centration,  which may  drive changes  in swimming
behavior  at elevated CO2. This  work highlights the
potential  of whole  transcriptome  data for  elucidating
mechanisms  of environmental  response in eco-
logically  important species  such as H.  akashiwo.
Moving  forward, the use of a  range  of treatments
is  essential to uncover  non-linear  responses in
physiology  and  gene expression  where processes
such  as CO2 limitation  and inhibition  may be
occurring  simultaneously  and where  there may be
environmental  thresholds  for  gene  activation and
suppression.

Methods

Cultures  and  acclimation:  Unialgal,  non-axenic  cultures  of
Heterosigma  akashiwo  (CCMP2393)  were  grown  in  L1  medium
(without  silicate)  made  with  a  Long  Island  Sound  seawater  base
collected  from  Avery  Point,  CT,  USA  (salinity  32)  at  18 ◦C  with
a 14:10  (light:dark)  cycle  with  an  irradiance  of  approximately
100 �mol  m−2 s−1.  Cells  were  acclimated  in  exponential  growth
phase  to  different  carbonate  chemistries  in  1.2  L  of  L1  media  in
2.5-L polycarbonate  bottles.  To  control  the  carbonate  chemistry
of the  water,  the  headspace  of  each  bottle  was  purged  con-
tinuously  with  a  custom  gas  mixture  of  ∼21%  oxygen,  ∼79%
nitrogen  and  either  200,  400,  600,  800  or  1000  ppmv  CO2
(TechAir,  NY).  The  gas  streams  were  pre-filtered  through  0.2-
�m HEPA  filters  and  directed  through  a  sterile  glass  pipette
to break  the  boundary  layer  of  the  media  without  contacting
the surface.  The  bottles  were  not  bubbled  to  avoid  the  adverse
effects of  turbulence  on  phytoplankton  growth  (Juhl  and  Latz
2002;  Thomas  and  Gibson  1990).  The  bottles  were  rotated
gently  (80  rpm)  on  an  orbital  shaker  during  acclimation.  The
headspace  of  each  bottle  was  purged  for  at  least  one  day  prior
to inoculation  and  continuously  during  the  acclimation.  Cells
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were  acclimated  for  three  days  in  each  of  the  five  CO2 concen-
trations  prior  to  the  start  of  the  experiment.  Cell  concentrations
were kept  below  ∼105 cells  mL−1,  as  estimated  by  relative
fluorescence,  to  prevent  alteration  of  carbonate  chemistry.

CO2 growth  rate  experiment:  After  acclimation,  approxi-
mately  5  ×  104 cells  in  ∼100  mL  were  transferred  to  triplicate
2.5-L  bottles  with  1.2  L  of  L1  media  that  had  been  purged
with the  same  gas  mixture  as  described  above  for  a  start-
ing concentration  of  ∼200–400  cells  mL−1 determined  by  cell
counts.  At  approximately  the  same  time  each  day,  each  cul-
ture was  thoroughly  mixed  and  sub-sampled  for  cell  counts,
relative  fluorescence,  and  pH.  During  the  experiment,  growth
was monitored  by  relative  fluorescence  using  an  AquaFlash
handheld  fluorometer  (Turner  Designs,  San  Jose,  CA).  At  the
end of  the  experiment,  growth  calculations  were  derived  from
cell counts.  For  cell  counts,  1  mL  of  each  triplicate  culture  was
preserved  in  2%  Lugol’s  solution  (final  concentration)  at  room
temperature  and  counted  within  a  month  of  preservation  under
a microscope.  Growth  rates  were  calculated  from  the  slope  of
the natural  log  of  cell  concentration  versus  time  and  fit  to  all
time points  (Supplementary  Material  Fig.  S1).  The  exception
to this  was  for  one  replicate  from  each  of  the  CO2 treatments
for 800  and  1000  ppm,  where  only  the  last  four  points  were
used due  to  evidence  of  an  initial  lag  phase.  The  natural  log  of
cell concentration  increased  linearly  over  time  with  R2 >  0.93
for all  replicates  (Supplementary  Material  Fig.  S1).  pH  was
tracked using  the  method  described  below.  After  five  days,
the cultures  reached  the  target  concentration  of  ∼104 cells
mL−1,  determined  by  preliminary  experiments  to  have  negli-
gible impact  on  the  carbonate  chemistry,  and  were  harvested
for RNA  sequencing,  hydrogen  peroxide  concentration,  in  vitro
chlorophyll  concentration,  and  elemental  composition.

Carbonate  chemistry  measurements:  During  the  exper-
iment, daily  samples  were  collected  and  pH  was  measured
using the  m-cresol  purple  method  (Dickson  et  al.  2007)  at  25 ◦C
using a  Shimadzu  UV-1800  spectrophotometer  (Kyoto,  Japan).
Samples  for  total  alkalinity  were  collected  at  the  start  and  end
of each  experiment  and  measured  with  the  closed-cell  titration
method  (Dickson  et  al.  2007).  Briefly,  about  180  mL  of  culture
or sterile  media  was  collected  in  a  glass  bottle  with  a  ground
glass stopper  and  poisoned  with  20  �L  of  saturated  mercuric
chloride  solution  and  stored  at  room  temperature  for  up  to  two
weeks  before  analysis.  Approximately  100  mL  of  each  sample
was run  on  a  Metrohm  Titrando  titrator  (Herisau,  Switzerland),
calibrated  with  certified  reference  materials  from  the  Dickson
lab (Scripps  Institution  of  Oceanography,  La  Jolla,  CA).  The  total
alkalinity  and  pH  measurements  were  then  used  to  calculate  the
daily CO2 concentration  in  the  media  using  CO2Calc  software
(Lewis  and  Wallace  1998).  Due  to  variability  in  the  aqueous  CO2
concentrations  within  some  replicate  bottles  over  the  five  days
of the  experiment,  replicates  were  discarded  from  further  anal-
ysis if  the  standard  deviation  of  pCO2 within  a  bottle  exceeded
90 ppm  over  the  course  of  the  experiment.  The  replicates  that
met quality  control  thresholds  were  analyzed  from  two  separate
runs to  include  three  biological  replicates  per  CO2 treatment,
totaling  fifteen  experimental  replicates  (Supplementary  Material
Table  S1).

Physiology  and  elemental  analysis:  At  the  time  of  harvest,
samples  were  collected  for  chlorophyll  a,  elemental  composi-
tion, and  hydrogen  peroxide  concentration.  For  chlorophyll  a,
150 mL  (∼6  ×  106 cells)  was  filtered  on  to  a  5  �m  polycarbon-
ate filter  (25  mm).  Chlorophyll  a  concentration  was  determined
according  to  Strickland  and  Parsons  (1972).  Briefly,  the  samples
were  extracted  in  10  mL  of  90%  methanol,  vortexed for  15  s,  and
stored in  the  dark  at  −20 ◦C  for  12  h.  The  fluorescence  in  the
supernatant  was  then  measured  on  a  Turner  Designs  Aquafluor

fluorometer  before  and  after  acidification  with  0.1N  hydrochlo-
ric acid.  The  fluorometer  was  calibrated  with  chlorophyll  a  from
Anacystis  nidulans  (Sigma).  For  elemental  composition  (POC
and PON),  150  mL  (∼6  ×  106 cells)  was  filtered  on  to  duplicate
pre-combusted  glass  fiber  (GF/F)  25  mm  filters,  and  stored  in
pre-combusted  foil.  Filters  were  stored  at  −80 ◦C  until  analysis.
Prior to  analysis,  filters  were  dried  at  60 ◦C  for  12  hours,  weighed
and quartered.  Elemental  analyses  were  performed  using  a
Costech  ECS4010  elemental  analyzer  EA  (Costech  Analyti-
cal Technologies  Inc.,  Valencia,  CA),  interfaced  with  ConFlo  IV
and Thermo  Delta  V  plus  mass  spectrometer,  and  calibrated  by
acetanilide.  To  correct  for  the  carbon  content  of  a  clean,  com-
busted  GF/F  filter,  7.35  �g  (the  mean  C  content  of  two  blanks)
was subtracted  from  the  C  value  of  each  sample.  For  hydro-
gen peroxide  concentration,  1  mL  of  each  replicate  culture  was
transferred  to  a  snap-cap  tube,  stored  in  the  dark  at  room  tem-
perature,  and  analyzed  within  3  hours.  Samples  were  measured
using the  Amplex  Red  Hydrogen  Peroxide/Peroxidase  Assay  Kit
(ThermoFisher  Scientific,  Waltham,  MA).  H2O2 concentrations
were normalized  per  cell  for  each  replicate  culture.

RNA  extraction  and  sequencing:  At  the  point  of  har-
vest, 150  mL  (∼6  ×  106 cells)  were  filtered  on  to  5  �m  pore
size,  25  mm  polycarbonate  filter  and  flash  frozen  in  liquid
nitrogen.  Genetic  material  from  samples  was  extracted
with the  RNeasy  Mini  kit  (Qiagen,  Valencia,  CA)  and  DNA
was removed  on-column  using  the  RNase-free  DNase  Set
(Qiagen),  yielding  total  RNA.  Total  RNA  extracts  of  the
triplicate  cultures  were  quantified  on  a  2100  Bioanalyzer
(Agilent,  Santa  Clara,  CA).  Libraries  were  prepared  using
poly-A pull  down  with  the  TruSeq  Stranded  mRNA  Library  Prep
kit (Illumina,  San  Diego,  CA).  This  pull  down  step  precluded
a joint  analysis  of  bacterial  responses,  but  allowed  for  more
targeted  sequencing  to  track  H.  akashiwo  responses.  Library
preparation,  barcoding,  and  sequencing  from  each  library
was performed  by  the  JP  Sulzberger  Columbia  University
Genome  Center  (New  York,  NY).  Samples  were  sequenced
on an  Illumina  HiSeq  2500  to  a  depth  of  60  million  paired-end
reads (2  ×  100  bp).  The  sequencing  data  are  archived  with
NCBI (BioProject:  PRJNA377729,  SRA:  SRX4737278-
SRX4737292).  Reads  were  aligned  using  Bowtie2  (Langmead
and Salzberg  2012)  to  the  MMETSP  consensus  contigs  for  Het-
erosigma  akashiwo  CCMP2393  (https://omictools.com/marine-
microbial-eukaryotic-transcriptome-sequencing-project-tool).
Relative  gene  expression  patterns  were  determined  by  tabulat-
ing read  counts  for  each  contig,  normalizing  for  differences  in
sequencing  effort,  and  calculating  the  fold  change  in  expression
with the  biological  variation  of  the  replicates  described  in  the
Statistics  section  below  and  in  McCarthy  et  al.  (2012).  While
these  expression  patterns  were  not  independently  validated
with an  alternative  approach  like  qRT-PCR,  previous  work  with
other algae  has  established  that  similar  analytical  pipelines
have  reconstructed  independently  verified  expression  patterns
(Dyhrman  et  al.  2012;  Wurch  et  al.  2011).

Statistics:  Exponential  growth  rates  from  this  study  and
from other  available  studies  with  H.  akashiwo  measured  under
∼200–1000  ppm  CO2 (Bianco  et  al.  2016;  Fu  et  al.  2008;
Hennon  et  al.  2017;  Kim  et  al.  2013;  Stewart  et  al.  2015)  were
fit with  a  modified  CO2 limitation-inhibition  model  (Equation  (1))
modified  from  Bach  et  al.  (2015).

�  = a  ∗  CO2

b  +  CO2
−  e(c∗CO2) (1)

Where  growth  rate  (�)  is  a  function  of  the  Monod-limitation
by CO2 with  the  maximum  growth  rate  (a)  and  half-saturation
of growth  with  CO2 (b)  and  the  inhibition  of  growth  by  high
CO2 (c).  The  best  fit  was  calculated  using  the  non-linear  least

https://omictools.com/marine-microbial-eukaryotic-transcriptome-sequencing-project-tool
https://omictools.com/marine-microbial-eukaryotic-transcriptome-sequencing-project-tool
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squares  function  (nls,  R)  with  starting  guesses:  a  =  1,  b  =  100,
c =  1  ×  10−5.  To  calculate  a  standard  deviation  envelope  for
the model  fit,  uncertainties  were  propagated  by  the  Monte
Carlo method,  wherein  the  non-linear  model  was  fit  in  1000
simulations  by  drawing  each  point  randomly  from  a  Gaussian
distribution  with  the  standard  deviation  reported  for  the  uncer-
tainty  in  growth  rate  and  CO2 concentration.

Significant  differences  between  physiological  parameters
by CO2 treatment  were  assessed  with  analysis  of  variance
(ANOVA)  and  Tukey’s  honestly  significant  differences  test  (aov
and TukeyHSD,  stats,  R).  Differential  expression  of  genes  in
any CO2 treatment  compared  to  modern  was  determined  using
the general  linear  model  (GLM)  exact  test  (edgeR,  R).  Briefly,
the read  counts  were  normalized  by  trimmed  mean  of  M-
values (TMM)  using  the  function  calcNormFactors,  tagwise
dispersions  were  calculated  with  the  function  estimateGLMTag-
wiseDisp,  a  GLM  was  fit  using  glmFit,  and  log2 fold  change
(logFC) for  each  treatment  was  calculated  relative  to  average
expression  at  modern  CO2.  P-values  from  likelihood  ratio  tests
were corrected  for  multiple  testing  using  the  false  discovery
method  (fdr).  To  measure  changes  in  whole  pathway  expres-
sion, genes  were  annotated  by  Kyoto  encyclopedia  of  genes
and genomes  (KEGG)  ID  with  the  online  tool  GhostKOALA
(Kanehisa  et  al.  2016)  and  differences  in  distributions  of
KEGG pathway  gene  expression  relative  to  400  ppm  CO2
were  assessed  with  a  Kolmogorov-Smirnov  test  (ks.test,  stats,
R). The  predicted  localization  of  genes  products  were  deter-
mined by  SignalP  (http://www.cbs.dtu.dk/services/SignalP/)
version  4.1  and  ASAFind  (http://rocaplab.ocean.washington
.edu/tools/asafind/)  with  default  confidence  thresholds.  To
characterize  genes  of  unknown  function  and  determine  co-
expression  patterns  of  genes,  the  genes  were  hierarchically
clustered  (hclust,  fastcluster,  R)  based  on  Pearson  distance
(pearson.dist,  hyperSpec,  R),  and  cut  at  an  arbitrary  height  to
yield 500  clusters  (cutree,  stats,  R).  Individual  genes  and  gene
clusters  were  tested  for  significant  correlations  to  both  CO2 con-
centrations  and  growth  rate  using  the  Pearson  test  (cor.test,
stats,  R).
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