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11 Abstract: When planning group-randomized studies probing mediation, effective and efficient sample allocation is governed by several
12 parameters including treatment-mediator and mediator-outcome path coefficients and the mediator and outcome intraclass correlation
13 coefficients. In the design stage, these parameters are typically approximated using information from prior research and these approximations
14 are likely to deviate from the true values eventually realized in the study. This study investigates the robustness of statistical power under an
15 optimal sampling framework to misspecified parameter values in group-randomized designs with group- or individual-level mediators. The
16 results suggest that estimates of statistical power are robust to misspecified parameter values across a variety of conditions and tests.
17 Relative power remained above 90% in most conditions when the incorrect parameter value ranged between 50% and 150% of the true

18 parameter.
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21
22 When investigating a treatment that operates within a hier-
23 archical structure, experimental designs that assign groups
24 to treatment conditions often ameliorate ethical concerns,
25 more appropriately suit extant organizational structures,
26 and better reflect the contexts in which the results would
27 be generalized while maintaining a rigorous basis for causal
28 inference (Raudenbush, 1997; Spybrook & Raudenbush,
29 2009). One of the primary questions in the planning stages
30 of these studies is the sample size required to detect the
31 expected treatment effect with a reasonably high probabil-
32 ity. Sampling more groups almost always increases the
33 power or probability to detect an effect in group-rando-
34 mized studies (see Figure 1A) but this strategy typically
35 incurs substantial additional costs (Kelcey & Phelps, 2013,
36 2014; Raudenbush, 1997). Optimal sample allocation
37 frameworks balance these concerns by introducing cost
38 parameters in the design phase that incorporate cost con-
39 siderations directly into study planning. In turn, such frame-
40 works identify a sample of individuals per group and groups
41 that maximize power given study-specific conditions and a
42 designated budget and cost structure (see Figure 1B; e.g.,
43 Hedges & Borenstein, 2014; Kelcey, Phelps, Spybrook,
44 Jones, & Zhang, 2017).

45Despite the conceptual utility of the optimal sampling
46framework, a key constraint in its practical implementation
47is a priori knowledge of the parameter values that govern
48power for a particular estimand. In the planning phase,
49the values of these parameters are typically not precisely
50available, so researchers may utilize previous empirical
51results to infer a range of plausible values. It is likely that
52these initial parameter estimates will deviate to some extent
53from the true parameter values because estimates from the
54literature are almost always based on outcomes and popu-
55lations that differ in overt and subtle ways from the out-
56come and sample to be used in the new study (e.g.,
57Korendijk, Moerbeek, & Maas, 2010).
58For these reasons, prior literature has investigated the
59robustness of designs in terms of their relative efficiency
60to various types of parameter value misspecifications in
61the planning phase (e.g., Korendijk et al., 2010). This
62research has largely been confined to the loss of efficiency
63regarding estimation of the main effect. Recent research
64has, however, promoted studies that are intentionally
65designed to probe a more comprehensive set of effects that
66unpack the theory of action underlying the treatment
67effects using mediation (e.g., Gottfredson et al., 2015;
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69 tion, & National Science Foundation, 2013; Authors, B
70 [Author: Please provide full reference details]). Yet, little
71 is known regarding the robustness of power in these
72 designs when parameter values are misspecified.
73 In this study, we advance the literature base regarding
74 the robustness of multilevel designs to parameter value
75 misspecifications in the context of mediation and optimal
76 sampling. More specifically, we incorporate study costs
77 and budget into the planning phase using an optimal sam-
78 pling framework in order to contrast the power of two com-
79 peting designs – one design that yields the maximum level
80 of power and an alternative design that yields a sub-optimal
81 level of power because of parameter value misspecifica-
82 tions. We limit our considerations regarding sampling
83 design to the relative sample sizes at the individual- and
84 group-level.
85 To illustrate these differences, consider Figure 1B, it pre-
86 sents power as a function of the individual-level sample size
87 (n1) under an optimal sampling framework. The peak of the
88 power curve represents the most efficient use of resources
89 (i.e., sample of individuals per group and sample of groups)
90 which maximizes attainable power given study-specific con-
91 ditions. An “*” identifies this optimal design and serves as
92 an appropriate benchmark for comparing alternative
93 designs because any deviation from the optimal design is
94 an inefficient use of limited resources and achieves less
95 power. This study tracks the consequences of using mis-
96 specified parameter values in the study planning phase by
97 comparing power rates for an optimally designed study (*
98 in Figure 1B) to one planned with misspecified parameter
99 values (� in Figure 1B). Consequences are represented by
100 the distance between the true (*) and misspecified (�) opti-
101 mal individual sample allocation in Figure 1.
102 Specifically, we estimate the power of a study design
103 when true parameter values were used to determine the

104optimal sample allocation and compare it to power rates
105when the study employs a sample allocation based on mis-
106specified parameter values. We probe studies examining
107the effect of a group-level treatment on an individual-level
108outcome through a group-level mediator or an individual-
109level mediator with different sampling cost structures and
110three tests of the mediation effect. We refer to these medi-
111ated effects by the level of the treatment, mediator, and
112outcome (i.e., 2-2-1 and 2-1-1 mediated effects). Sampling
113design considerations are limited to the relative sample
114sizes at the group- and individual-level and assume an
115equal number of groups in each of the two treatment con-
116ditions. The paper is divided into two major sections based
117on these design types (i.e., 2-2-1 and 2-1-1). Both represent
118investigations of multilevel mediation as the mediated
119effect operates across levels of a hierarchy with the numer-
120ical notation identifying the level of the treatment-media-
121tor-outcome variables, respectively. For each design, we
122outline the key components of the optimal sampling frame-
123work, describe the scope of our investigation, and detail our
124results. We conclude with a brief discussion.

125Group-Level Mediator

126Analytic Model

127In 2-2-1 designs groups are randomized to one of two treat-
128ment conditions (T) to examine treatment impacts on an
129individual-level outcome (Y) operating through a group-
130level mediator (M). We adopt a typical multilevel mediation
131path formulation with parameters estimated using maxi-
132mum likelihood (e.g., Authors, D[Author: Please provide
133full reference details]; Zhang, Zyphur, & Preacher,
1342009). The mediator path model at the group-level can
135be expressed as

(A) (B)

Figure 1. Power of a group-randomized study to detect group-level mediation using the Sobel test as a function of (A) group sample size (n2) and
(B) individual sample size (n1) under an optimal sample allocation framework. *True optimal individual sample size while a dot marks the optimal
individual sample size based on a misspecified value.

Methodology (2019) �2019 Hogrefe Publishing

2 K. Cox & B. Kelcey, Robustness of Optimal Designs



un
co

rre
cte

d p
ro

of 

- n
ot 

for
 di

str
ibu

tio
n

Mediatormodel Level 2ð Þ : Mj ¼ π0 þ aTj þ ɛj ɛj

� N 0; σ2
Mj

� �
: ð1Þ137137

138 The mediation model (i.e., Equation 1) captures the treat-
139 ment-mediator relationship and describes variation in the
140 group-level mediator as a function of a group-level treat-
141 ment. We useMj as the mediator for group j, Tj as the treat-
142 ment assignment coded as 0.5 and �0.5 for the treatment
143 and control condition, respectively. Coefficient a represents
144 the treatment-mediator relationship with ej as the normally
145 distributed mediator error with a mean of zero and variance
146 σ2

Mj conditional on Tj.
147 The outcome model captures the relationship between
148 the group-level mediator and individual-level outcome such
149 that

Outcomemodel Level 1ð Þ : Yij ¼ β0j þ eij eij

� N 0; σ2
Y

� �
; ð2aÞ151151

152

Level 2ð Þ : β0j ¼ γ00 þ bMj þ c
0
Tj þ u0j u0j

� N 0; τ2Yj
� �

: ð2bÞ154154

155 Here, Yij is the outcome for individual i in group j. At the
156 individual-level, eij represents the normally distributed error
157 term with a mean of zero and variance σ2

Y . At the group-
158 level, b is the conditional relationship between the mediator
159 and the outcome, while c0 captures the direct effect of the
160 treatment on the outcome while controlling for the media-
161 tor, and u0j is the normally distributed group-specific ran-
162 dom effect with a mean of zero and variance τ2Yj
163 conditional on Tj and Mj. A combined mediator and out-
164 come model from Equations 1 and 2can be expressed as

Yij ¼ γ00 þ bπ0ð Þ þ baþ c
0� �
Tj þ bɛj þ u0j þ eij: ð3Þ166166

167 Finally, we utilize a standardized outcome and mediator
168 such that each has a mean of zero and unit variance. Under
169 this formulation σ2

M ¼ 1 and τ2Y þ σ2
Y ¼ 1. This implies

170 τ2Y ¼ ρ and τ2Y þ σ2
Y ¼ ρþ ð1� ρÞ when ρ is the uncondi-

171 tional intraclass correlation coefficient for the outcome
172 defined as

ρ ¼ τ2Y
σ2
Y þ τ2Y

: ð4Þ
174174

175 Conditional and unconditional ρ values capture variance
176 in the outcome attributable to the group-level or the corre-
177 lation among individuals on the outcome within the same
178 group.
179 This formulation places the a and c0 path coefficients on a
180 Cohen’s d or standardized group differences scale and

181formats the b path coefficient as a standardized regression
182coefficient.

183Mediation Test Statistics and Power

184We estimate the 2-2-1 multilevel mediation effect (ME)
185using the typical product of coefficients method: ME = ab
186with the a coefficient representing the treatment-mediator
187path (Equation 1 and the b coefficient representing the
188mediator-outcome path (Equation 2b. To determine the sig-
189nificance of this effect we consider the Sobel, joint, and
190Monte-Carlo interval tests because they can be employed
191before the collection of data (i.e., during study planning).
192Performance of these tests in terms of power converges
193with large sample sizes but under sample sizes typical for
194studies in the social sciences there are substantial differ-
195ences (e.g., Authors D[Author: Please provide full refer-
196ence details]). Additionally, the optimal sample allocation
197for a study can differ based solely on the selected mediation
198test (Authors A[Author: Please provide full reference
199details]). These factors necessitate the inclusion of multiple
200mediation tests representing various approaches.
201The historically popular Sobel Test compares the ratio of
202the estimated mediation effect to its estimated standard
203error. In recent years, the test has been heavily criticized
204because of its imprecision in small-to-moderate sample
205sizes. We outline the test for illustrative and comparative
206purposes and recommend the use of alternative tests subse-
207quently outlined. The Sobel test statistic is

zSobelab ¼ ab=
ffiffiffiffiffiffiffi
σ2
ab

q
: ð5Þ 209209

210Here, σ2
ab represents the error variance of the mediated

211effect and ab is the ME defined above. Based on prior liter-
212ature we can estimate this error variance as a function of
213individual paths and their individual error variances and
214form the Sobel Test statistic for the mediation effect as
215(Sobel, 1982)

zSobelab ¼ ab=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2σ2

a þ a2σ2
b

q
: ð6Þ 217217

218The test statistic has an asymptotically normal distribu-
219tion allowing inferences with large sample sizes to be drawn
220based on a comparison of the test statistic (e.g., zSobelab ) to a
221critical value (e.g., zcritical = 1.96) in a standard normal dis-
222tribution (Φ) at the associated type one error rate (e.g., 0.05
223for 1.96).
224When the alternative hypothesis is true, the test statistics
225follow a non-central distribution with the ratios as the non-
226centrality parameter. Power to detect the mediation effect
227is then determined with
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P zSobelab

�� �� > zcritical
� � ¼ 1�Φ zcritical � zSobelab

� �
þΦ �zcritical � zSobelab

� �
: ð7Þ229229

230 An alternative to the Sobel test is the joint test which
231 avoids the direct estimation of the mediation effect and
232 its distribution. Rather, it uses a composite null approach
233 that considers the treatment-mediator and mediator-out-
234 come paths separately to determine the significance of a
235 mediated effect. The two concurrent sub-tests compare
236 the ratio of the path estimate and its standard error to a
237 normal or t-distribution. Only after rejecting the null
238 hypotheses of each individual path is the mediation effect
239 considered statistically significant. Avoiding the distribu-
240 tional assumptions of the Sobel test allows the joint test
241 to perform well in terms of power and type one error rate
242 in a variety of settings (e.g., Hayes & Scharkow, 2013; Kel-
243 cey, Dong, Spybrook, & Shen, 2017).
244 The statistical test of the a path representing the treat-
245 ment-mediator association is

za ¼ a=σa; ð8Þ247247

248 and the test of the b path representing the mediator-out-
249 come association is

zb ¼ b=σb: ð9Þ251251

252 With σ2
a and σ2

b indicating the error variances of the a
253 path and b path respectively. Power to detect the mediation
254 effect using the joint test is simply the product of the power
255 to detect each path which we formulate as

P zaj j > zcritical andð jzb > zcriticalj Þ
¼ 1�Φ zcritical � zað Þ þΦ �zcritical � zað Þð Þ

� 1�Φ zcritical � zbð Þ þΦ �zcritical � zbð Þð Þ; ð10Þ257257

258 with Φ() as the normal cumulative density function.
259 The Monte-Carlo (MC) interval test resamples a and b
260 path values with sampling variability equal to the error vari-
261 ance of the respective paths (Preacher & Selig, 2012). Max-
262 imum likelihood estimation identifies path coefficient
263 estimates with an assumed multivariate normal distribution
264 with means, variances, and covariances based on the max-
265 imum likelihood estimates (Preacher & Selig, 2012). For the
266 2-2-1 analytic models described above, we draw a and b
267 path values using

a#

b#

� 	
� MVN

â

b̂

� 	
;

σ̂2
â σ̂â;b̂

σ̂â;b̂ σ̂2
b̂

 ! !
: ð11Þ

269269

270 An approximation of the sampling distribution of the
271 mediated effect is formed using the product of each set
272 of a# and b#. Inferences regarding the mediated effect are
273 drawn based on the inclusion of zero in the asymmetric

274confidence intervals constructed from the sampling distri-
275bution. Power of the MC interval test is simply the propor-
276tion of asymmetric confidence intervals that exclude zero.

277Optimal Sample Allocation

278Theoretically, optimal sample allocation provides research-
279ers a means to identify the sampling strategy that maxi-
280mizes power under specific constraints on design and
281budget (e.g., Kelcey, Phelps, et al., 2017). The process
282begins with the identification of the optimal sample of indi-
283viduals per group (nopt

1 ) and then a simple function of this
284value, budget, and sampling costs identifies the optimal
285number of groups nopt

2 .
286Throughout this study, we apply the conventional linear
287cost formulation (Raudenbush, 1997) such that

T ¼ c2n2 þ c1n2n1: ð12Þ 289289

290where T is the total funds available to collect data for a
291study, c1 is the cost to enroll each individual after sam-
292pling the group, and c2 is sampling cost for each additional
293group. Each is typically measured in monetary units (e.g.,
294dollars). For our optimal sample allocation formulas, we
295assume an equal number of groups in two treatment con-
296ditions (i.e., treatment and control conditions) and equal
297cost across conditions.
298Like group-randomized studies of main effects, optimal
299sample allocation under the Sobel test is derived by mini-
300mizing the error variance (Raudenbush, 1997). With a stan-
301dardized mediator and outcome, the optimal individual
302sample size for the Sobel test in terms of path coefficients
303is (Authors, A[Author: Please provide full reference
304details])

nopt
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
c1

� 	
a2 1� ρð Þ

4b2 1� a2
4

� �2 þ a2 ρ� abþc0ð Þ2
4 � b2 1� a2

4

� �� 	 ;

vuuut
ð13Þ 306306

307with the optimal sample of groups determined by substi-
308tuting nopt

1 in nopt
2 ¼ T=ðc2 þ c1n1Þ.

309The structure of the joint test complicates the calculation
310of an optimal individual sample size because there is no
311mediation effect error variance to minimize. Rather, one
312must directly maximize power to determine nopt

1 under
313the joint test. There is no simple closed-form expression,
314but one is possible through numerical methods (see Elec-
315tronic Supplemental Material, ESM 1; Authors, A [Author:
316Please provide full reference details]).
317Like the joint test, the MC interval test does not have a
318closed form solution for nopt

1 but can be approximated by
319the Sobel and joint test formulations in larger samples
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320 (Authors, A). However, there are typical conditions (e.g.,
321 large sampling cost ratios; c2/c1) in which the nopt

1 values
322 under the Sobel and joint test substantially diverge from
323 the values for the MC interval test (Authors, A). Such con-
324 ditions would introduce a confounding effect into this
325 investigation because we could not determine if differences
326 in power from inefficient sample allocation were due to
327 parameter value misspecification or a misalignment
328 between the Sobel and joint test nopt

1 and the true nopt
1 for

329 the MC interval test. We avoid these confounding effects
330 by numerically estimating nopt

1 for the MC interval test using
331 a linear search algorithm under the specified design and
332 budget.

333 Power of 2-2-1 Mediation Studies

334 Path coefficients (a, b, c0), the unconditional intraclass cor-
335 relation coefficient (ρ), and cost structure (c2/c1) all influ-
336 ence optimal sample allocation. Given that the parameter
337 values employed in the study design phase will not precisely
338 match their true values, we compare power rates when opti-
339 mal sample allocation is determined using true and mis-
340 specified parameter values. Power is determined
341 analytically using the tests and formulations above and path
342 coefficient error variance formulations that utilize budget
343 and sampling cost values. Assuming balanced random
344 assignment, we formulate these error variances such that
345 (Authors, A; Authors D [Author: Please provide full refer-
346 ence details])

σ2
a ¼

4ð1� ða2 þ 4ÞÞ
T=ðc2 þ c1n1Þ ð14Þ

348348

349 and

σ2
b ¼

ρ� ðabþc
0 Þ2

4 � b2 1� a2
4

� �� �
þ ð1� ρÞ=n1

1� a2
4

� �ðT=ðc2 þ c1n1ÞÞ
: ð15Þ

351351

352 These formulations employ parameters common to plan-
353 ning group-randomized mediation studies (Authors, B;
354 Authors D) and, under an optimal sampling framework,
355 allow power analyses using only nopt

1 . Cost and budget infor-
356 mation has replaced n2 values.
357 Borrowing from Korendijk et al. (2010), we refer to the
358 true but unknown parameter values as population values,
359 denoting them with * (e.g., a*, b*, c0*, ρ*), and labeling
360 the true optimal individual per group sample size as nopt�

1 .
361 The estimated or predicted misspecified values used in
362 the study design phase are referred to as the initial values
363 (e.g., a, b, c0, ρ) with the optimal individual per group sam-
364 ple size based on these values retaining the nopt

1 notation.

365We defined the robustness of statistical power under an
366optimal sampling framework against misspecified parame-
367ter values in terms of the relative loss of statistical power:

Relative Power ¼ Initial Design Study Power
PopulationDesign Study Power

:

ð16Þ 369369

370To determine the power of a design under the population
371values, we identified the optimal individual sample size
372using the true population values (nopt�

1 ) and then calculated
373the implied power to detect the mediation effect. Similarly,
374to determine the power of a design under the initial values,
375we identified the optimal individual sample size using the
376initial misspecified parameter values (nopt

1 ) and then calcu-
377lated the implied power to detect the mediation effect. Rel-
378ative power examines the loss of power associated with an
379nopt

1 based on a misspecified parameter value and has a
380maximum value of one when the initial and population
381parameters are equal (i.e., nopt�

1 ¼ nopt
1 ). Imprecision in our

382linear search algorithm for the MC interval test did produce
383some relative power values exceeding one but these erro-
384neous values only reflect noise in the estimation of initial
385and population MC interval test power. They do not bias
386the overall robustness of power results or interpretations.
387Without clear benchmarks regarding what constitutes a
388scale for relative power, we borrowed from the optimal
389design literature regarding relative efficiency and interpret
390a relative power value of .9 and above (i.e., 10% loss of
391power or less) to be good and values between .8 and .9
392as acceptable (e.g., Korendijk et al., 2010). Our general
393descriptions of robustness are based on relative power
394meeting or exceeding these benchmarks when the misspec-
395ified parameter values are between 50% and 150% of the
396true population value. Specific levels of acceptable power
397loss and parameter misspecification are a study-specific
398consideration.
399Our investigation included three different path coeffi-
400cient ratios (a/b = 0.3/0.3, 0.5/0.3, 0.6/0.2), three intra-
401class correlation coefficient values (ρ = .3, .4, .5), and
402three group to individual sampling cost structures (c2/c1 =
4035/1, 10/1, 100/1). We employed a fully crossed design
404resulting in a total of 27 conditions with various power rates
405and nopt

1 values. Under each condition, we found relative
406power when incorrect initial a values ranged from 0.05 to
4070.9, incorrect initial b values ranged from 0.05 to 0.5,
408and incorrect initial intraclass correlation coefficient values
409ranged from 0.15 to 0.9 all using an interval of 0.025.
410While not comprehensive, these explicit comparisons
411reflect a range of substantive applications. It is also possible
412to examine the robustness of statistical power to optimal
413sample allocation based on misspecified parameters values
414analytically. We found the analytic expressions to be
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415 complex and unable to provide clear, intuitive, and descrip-
416 tive context for the properties of statistical power robust-
417 ness in these settings when compared to our explicit
418 comparisons. We provide an example analytic analysis in
419 ESM 1.
420 While the direct effect or c0 is also included in the optimal
421 sample allocation formulas it has little influence on nopt

1 and
422 relative power. It is held constant at c0 = 0.1 throughout the
423 analyses and not discussed further (see ESM 1). Addition-
424 ally, the total funds (T) do not play a role in determining
425 the optimal individual sample size so T was set as a func-
426 tion of group cost (T = 100c2; see Authors, A).

427 Results

428 Results are presented by misspecified parameter (a, b, and
429 ρ) with a focus on the general patterns involving robustness
430 of power to capture the essences of the analysis. The com-
431 plete results for the fully crossed design can be found in
432 ESM 1, Tables 2, 3, and 4.

433 Incorrect Initial Intraclass Correlation Coefficient
434 We examined power when nopt

1 was determined using ρ val-
435 ues ranging from .15 to .9 with true population values of ρ*
436 = .3, .4, and .5. Overall, power was very robust to incorrect ρ
437 values under stated conditions. With ρ from 50% to 150%
438 of ρ*, relative power remained greater than .9 in nearly
439 every condition (see Table 1 for an example of complete
440 results when ρ* = .5). This indicates designs with a misspec-
441 ified ρ value suffered less than a 10% loss in power due to
442 inefficient sample allocation.
443 A few noteworthy patterns emerged from these results.
444 First, larger a/b path coefficient ratios decreased the
445 robustness of power to incorrect ρ values. Second, over-
446 and underestimated ρ values had similar influence on rela-
447 tive power. In other words, the loss of power associated
448 with using incorrect ρ values to determine nopt

1 was fairly
449 symmetric. This symmetric power loss was consistent
450 across each test. Lastly, when the group-to-individual cost
451 ratio (c2/c1) was small, power was more susceptible to inef-
452 ficient sample allocation from misspecified ρ values (see
453 Figure 2B). As c2/c1 increased, designs became more robust
454 with relative power remaining well above .9 across a wide
455 range of predicted ρ values in designs with the highest cost
456 ratio.

457 Incorrect Initial a Path Coefficient
458 Our examination found relative power when nopt

1 was deter-
459 mined using a values ranging from .05 to .9 with true pop-
460 ulation values of a* = .3, .5, and .6. Overall, power was very
461 robust to incorrect initial a path coefficient values under
462 stated conditions. When a ranged from 50% to over
463 150% of a*, relative power remained greater than .9 in

464almost every condition. While results are similar, power
465was generally more robust when misspecified a values were
466used to determine nopt

1 and less robust using misspecified ρ
467values.
468Effects of misspecified a values (see Figure 3B) varied by
469mediation test with designs using the MC interval test pro-
470viding the greatest degree of robustness followed closely by
471the joint test. Relative power in designs utilizing these tests
472remained above .95 across nearly the full range of a values.
473One exception were the reductions in relative power under
474the joint test when a overestimated a*. The inverse was
475true when using the Sobel test, inefficient sample allocation
476caused by a values that underestimated a* were more detri-
477mental to power.
478Similar to our examination of incorrect ρ values, power
479was more robust to incorrect a values when the design
480had larger (c2/c1) values (see Figure 3B). Additionally,
481power in designs with greater ρ values was more robust
482to inefficient sample allocation based on incorrect a values.

483Incorrect Initial b Path Coefficient
484We examined power when nopt

1 was determined with b val-
485ues from .05 to .5 and true population values of b* = .2 and
486.3. Like previous results, power under the optimal sampling
487framework was robust to incorrect b values. When b was
488anywhere from 50% to 150% of b* relative power remained
489above .9.
490Overall, c2/c1 and ρ values did little to influence the
491robustness of power when incorrect b values were used to
492determine nopt

1 but we again found relative power varied
493by test (see Figure 4B). Relative power using the Sobel test
494and MC interval test was similar with notable differences
495occurring mostly in designs with smaller ρ values and larger
496c2/c1 values. Under those conditions power using the Sobel
497test decreased at a greater rate when the b value used to
498determine nopt

1 underestimated b*. Designs using the joint
499test also demonstrated robustness to incorrect b values
500but when b significantly overestimated b* inefficient sample
501allocation caused power rates to fall sharply.

502Individual-level Mediator

503Analytic Model

504We next consider a group-randomized design with an indi-
505vidual-level mediator. Here, we again have intact groups
506assigned to a treatment condition (T) and an individual-
507level outcome (Y) but the relationship under examination
508flows through an individual-level mediator (M). For this
509design parameters are also estimated using maximum like-
510lihood but a multilevel model is needed for the media-
511tor such that (Authors, B; Pituch & Stapleton, 2012;
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512 Raudenbush & Bryk, 2002; VanderWeele, 2010; Zhang
513 et al., 2009)

Mij ¼ π0j þ ɛMij ɛMij � N 0;σ2
M

� �
;

π0j ¼ ζ00 þ aTj þ uM0j u
M
0j � N 0; τ2Mj

� �
;515515

516 with a combined mediator model formulation
517 expressed as

Mij ¼ ζ00 þ aTj þ uM
0j þ ɛMij ; ð18Þ519519

520 where Mij represents the mediator value for individual i in
521 group j, Tj as the treatment assignment coded as 0.5 and
522 �0.5 for the treatment and control condition, respectively
523 with associated path coefficient a, ɛMij as the normally dis-
524 tributed error term with a mean of zero and variance σ2

M,
525 and uM0j as the group-specific random effects that follow a
526 normal distribution with mean zero and variance τ2Mj con-
527 ditional on Tj. Conceptually, a maps out how exposure to

528the treatment produces changes in the individual-level
529mediator. For the 2-1-1 design, the outcome model is

Yij ¼ β0j þ b1 Mij � �Mj

� �þ ɛYij ɛ
Y
ij � N 0;σ2

Yj
� �

;

β0j ¼ γ00 þ B �Mj þ c
0
Tj þ uY

0j u
Y
0j � N 0; τ2Yj

� �
;

ð19Þ
531531

532with the combined outcome model formulation expressed
533as

Yij ¼ γ00 þ B �Mj þ c
0
Tj þ uY0j

� �
þ b1 Mij � �Mj

� �þ ɛYij ;

Yij ¼ γ00 þ B� b1ð Þ �Mj þ b1Mij þ c
0
Tj þ uY

0j þ ɛYij :

ð20Þ 535535

536We retain Yij as the outcome for individual i in group j,
537and use Mij � �Mj as the group-centered individual-level
538mediator with coefficient b1, �Mj as the mean of the media-
539tor in group j with path coefficient B, c0 as the treatment-
540outcome conditional path coefficient, and uY

0j and ɛYij as

(17)

Table 1. Relative power of group-randomized studies of 2-2-1 mediation with misspecified intraclass correlation coefficients when ρ*=.5

Conditions ρ

c2:c1 a:b Test .2 .3 .4 .5* .6 .7 .8 .9

S .993 .997 .999 1.000 .999 .993 .978 .935

0.3:0.3 JT .986 .992 .998 1.000 .996 .981 .943 .840

MC .976 .955 1.006 .980 1.000 1.012 .918 .828

S .986 .993 .998 1.000 .997 .988 .963 .898

5 0.5:0.3 JT .986 .992 .998 1.000 .996 .982 .945 .848

MC .993 .995 1.011 1.006 .994 1.005 .952 .848

S .966 .985 .996 1.000 .995 .979 .942 .854

0.6:0.2 JT .937 .973 .993 1.000 .993 .969 .919 .809

MC .923 .944 .985 1.004 .992 .984 .943 .786

S .995 .997 .999 1.000 .999 .994 .983 .948

0.3:0.3 JT .996 .997 .999 1.000 .998 .989 .963 .885

MC 1.025 1.014 1.042 .997 1.031 1.015 .987 .879

S .989 .995 .999 1.000 .998 .990 .971 .918

10 0.5:0.3 JT .997 .998 .999 1.000 .998 .990 .965 .893

MC 1.003 1.009 1.002 1.012 .991 .985 .983 .876

S .972 .988 .997 1.000 .996 .983 .952 .876

0.6:0.2 JT .953 .979 .995 1.000 .994 .974 .930 .830

MC .955 .993 1.006 1.016 1.014 .997 .974 .839

S .998 .999 1.000 1.000 1.000 .998 .993 .980

0.3:0.3 JT .997 .999 1.000 1.000 1.000 1.000 .997 .984

MC 1.002 1.031 1.011 1.051 1.017 1.023 1.023 1.006

S .996 .998 .999 1.000 .999 .996 .989 .969

100 0.5:0.3 JT .996 .999 1.000 1.000 1.000 1.000 .997 .985

MC 1.012 1.002 .999 1.003 1.018 1.008 1.003 .991

S .989 .995 .999 1.000 .998 .993 .980 .945

0.6:0.2 JT .996 .995 .998 1.000 .998 .990 .972 .926

MC 1.008 1.006 1.008 1.015 .998 1.017 .988 .949

Notes. S = Sobel; JT = Joint, MC = Monte-Carlo. *True population parameter value. Full results with an interval of 0.025 between incorrect initial values are
available in ESM 1, Table 2.
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(B
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(A
)

Figure 2. Relative power of group-randomized studies of 2-1-1 (A) and 2-2-1 (B) mediation using the Sobel (dash), joint (dot), and MC interval test
(solid) as a function of incorrect intraclass correlation coefficient values with different group to individual cost ratios and a total budget of 100
times the cost ratio when a = .5, b (or B) = .3, c0 = 1, and the true intraclass correlation value is a .4. Vertical lines mark incorrect initial parameter
values that are 50% and 150% of the true value and a horizontal line marks the 90% relative power benchmark.

(B
)

(A
)

Figure 3. Relative power of group-randomized studies of 2-1-1 (A) and 2-2-1 (B) mediation using the Sobel (dash), joint (dot) and MC interval test
(solid) as a function of incorrect a path coefficient values with different group to individual cost ratios and a total budget of 100 times the cost
ratio when b (or B) = .3, c0 = 1, all intraclass correlation values are .5, and the true a path coefficient value is a* = .5. Vertical lines mark incorrect
initial parameter values that are 50% and 150% of the true value (a*) and a horizontal line marks the 90% relative power benchmark.
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541 the level-two and level-one error terms. Both error terms
542 are normally distributed with variances of σ2

Yj conditional
543 on ðMij � �MjÞ for ɛYij and τ2Yj conditional on �Mj and Tj for
544 uY

0j. Conceptually, the mediator-outcome relationship
545 occurring at the individual-level is represented by b1 and
546 at the group-level by (B � b1) with B representing the total
547 individual- and group-level relationship. A combined medi-
548 ator and outcome model for 2-1-1 mediation can be
549 expressed as

Yij ¼ γ00 þ b1ζ00ð Þ þ B� b1ð Þ �Mj þ b1aþ c
0� �
Tj

þ b1uM0j þ b1ɛMij þ uY
0j þ ɛYij ; ð21Þ551551

552 which allows a clear comparison of the 2-2-1 and 2-1-1
553 analytic models.
554 In group-randomized studies of 2-1-1 mediation, there
555 are two intraclass correlation coefficients. The first, ρY, cor-
556 responds to the ρ described for group-randomized studies
557 of 2-2-1mediation and captures the correlation among indi-
558 viduals on the outcome within the same group. The second,
559 ρM, is introduced as a result of the multilevel nature of the
560 mediator model in the 2-1-1 design. It captures the correla-
561 tion among individuals on the mediator within the same
562 group and we formulate the unconditional intraclass corre-
563 lation coefficient of the mediator as

ρM ¼ τ2M
σ2
M þ τ2M

: ð22Þ
565565

566We use a standardized outcome and mediator similar to
567that described for ρ under the 2-2-1 model resulting in sim-
568ilar scaling for the a, c0, b1, and B paths (i.e., a and c0 as stan-
569dardized group differences and b1 and B as standardized
570regression coefficients).
571Our utilization of group-mean centering operationalizes B
572to capture the total influence of the mediator on the out-
573come. We focus on this cumulative or overall mediation
574estimated using the typical product of coefficients method:
575ME = aB (Pituch & Stapleton, 2012, VanderWeele, 2010;
576VanderWeele & Vansteelandt, 2009). The 2-1-1 model also
577captures the relationship between the treatment and out-
578come as it operates through a mediator at the group-
579(B � b1) and individual-level (b1). The a(B � b1) estimate
580of the mediated effect in the 2-1-1 model is conceptually
581equivalent to the ab mediated effect of the 2-2-1 model
582(Pituch & Stapleton, 2012).

583Power and Optimal Sample Allocation

584The general form of the mediation tests and subsequent
585power formulations presented for the 2-2-1 design are sim-
586ilar for 2-1-1 design. The error variances associated with
587each path and the error variance of the mediated effects
588do change substantially but formulations utilizing path coef-
589ficients, budget, and sampling cost are available in the liter-
590ature along with related optimal sample allocation
591formulations (see ESM 1; Authors, B; Authors C).

(B
)

(A
)

Figure 4. Relative power of group-randomized studies of 2-1-1 (A) and 2-2-1 (B) mediation using the Sobel (dash), joint (dot) and MC interval test
(solid) as a function of incorrect b (or B) path coefficient values with different group to individual cost ratios and a total budget of 100 times the
cost ratio when a = .5, c0 = 1, all intraclass correlation values are .5, and the true b (or B) path coefficient value is 0.3. Vertical lines mark incorrect
initial parameter values that are 50% and 150% of the true value (b* or B*) and a horizontal line marks the 90% relative power benchmark.
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592 Unlike 2-2-1 designs, there is no simple closed form solu-
593 tion for nopt

1 under the Sobel test. We can, however, deter-
594 mine nopt

1 for the Sobel test numerically (see ESM 1;
595 Authors, C [Author: Please provide full reference
596 details]). Similar processes are used to determine nopt

1

597 under the joint test for 2-1-1 and 2-2-1 designs. Using the
598 cost function formulations for n1 and the error variance
599 path formulations, we directly maximize the power function
600 (see ESM 1; Authors, C). The nopt

1 values from the Sobel and
601 joint test formulations approximate those of the MC inter-
602 val test for 2-1-1 designs but we again use a linear search
603 algorithm to identify nopt

1 values for the MC interval test
604 to avoid possible confounding effects.

605 Power of 2-1-1 Mediation Studies

606 We now repeat our investigation but for group-randomized
607 studies of 2-1-1 mediation. For this design, we investigate
608 the robustness of power against misspecified a, B, ρM,
609 and ρY values in the nopt

1 formulation. Procedures and con-
610 ditions are similar to those described for the 2-2-1 design
611 with the B parameter assuming the same values as those
612 assigned to b, and the unconditional intraclass correlation
613 coefficient of the mediator (ρM) and outcome (ρY) assuming
614 the same values as those assigned to ρ. Results from an ini-
615 tial simulation with differing values for the misspecified val-
616 ues were not qualitatively different from those presented
617 below so we constrained ρM and ρY to be equal. That is,
618 ρM* = ρY* when we set the population values and ρM =
619 ρY as we varied the initial intraclass correlation coefficient
620 values. The initial simulation did suggest that the ρY value
621 is likely the more influential parameter in terms of relative
622 power. Complete results for the 2-1-1 investigation can be
623 found in ESM 1, Tables 2, 3, and 4.

624 Results

625 Incorrect Initial Intraclass Correlation Coefficients
626 We examined power when nopt

1 was determined using ρM
627 and ρY values ranging from .15 to .9 with true population
628 values of ρM* and ρY* = .3, .4, and .5. Overall, power was
629 very robust to incorrect ρM and ρY values under stated con-
630 ditions. In nearly every situation, relative power remained
631 above .9 when ρM and ρY ranged from 50% to nearly
632 200% of ρM* and ρY*.
633 Over- or underestimating ρM* and ρY* led to similar
634 amounts of lost power due to inefficient sample allocation
635 with power loss slightly greater in designs using the joint
636 test. Power was more robust to nopt

1 based on misspecified
637 parameter values when the design had higher sampling cost
638 ratios (i.e., c2/c1; see Figure 2A) or larger path coefficient

639ratios (i.e., a/b). The influence of the path coefficient ratio
640was less pronounced when using the joint test. Additionally,
641higher c2/c1 muted the benefits of larger path coefficient
642ratios.

643Incorrect Initial a Path Coefficient
644Our examination found relative power when nopt

1 was deter-
645mined using a values ranging from 0.05 to 0.9 with true
646population values of a* = .3, .5, and .6. Overall, power
647was robust to misspecified a values that led to inefficiencies
648in sample allocation. Across the different mediation tests
649and conditions, a values ranging from 50% to 150% of a*
650almost always maintained relative power above .8. While
651robust when compared to our 80% relative power bench-
652mark, misspecifying a values when determining the nopt

1

653for a group-randomized 2-1-1mediation study led to the lar-
654gest reductions in power across the conditions and designs
655considered here.
656Results indicated that power decreased at a smaller rate
657when a underestimated a* in the determination of nopt

1 .
658Conversely, power rates were less robust when a overesti-
659mated a* when determining nopt

1 , especially in designs that
660utilized the joint test (see Figure 3A). This relationship
661became stronger in designs with larger ρM and ρY values
662and a/b ratios. Misspecified a values in the nopt

1 formulation
663had similar detrimental effects on power across designs
664with different a/b ratios but effects varied across designs
665with different ρM and ρY values. Here, relative power was
666greater in designs with larger ρM and ρY values.
667For the a parameter, we found a unique relationship
668between relative power and c2/c1. Power was more robust
669to misspecified a values in the nopt

1 formulation, when 2-1-
6701 designs had smaller c2/c1 ratios (see Figure 3A). In all
671other conditions and with different parameters, the
672converse was true.

673Incorrect Initial B Path Coefficient
674We examined power when nopt

1 was determined with B val-
675ues ranging from 0.05 to 0.5 and true population values of
676B* = 0.2 and 0.3. Following previous results, power under
677the optimal sample allocation framework was very robust
678to incorrect B values under stated conditions. Relative
679power remained at or above .9 across tests and under
680nearly every condition when B was 50–150% of B*.
681When using the joint test or MC interval test, power was
682even more robust to misspecified B values in the nopt

1 formu-
683lation and over a greater range of B values. However, in
684designs that used the Sobel test, power decreased rapidly
685due to inefficient sample allocation when B was less than
686B*. Larger c2/c1, ρM and ρY values did offset some of the
687detrimental effects of incorrect B values on Sobel test
688power. Designs using the joint or MC interval test had such
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689 high relative power across the range of B values that their
690 parameter-power relationships were practically concealed
691 (see Figure 4A).

692 Influence of Mediation Test and Analytic Model
693 Results revealed several differences in the robustness of
694 power across analytic model, mediation test, and type of
695 misspecified parameter value which deserve some atten-
696 tion. First, the overall robustness of power under an optimal
697 sampling framework is less surprising when considering nopt

1

698 is typically small and relatively stable across these models
699 and the typical conditions included in this study (Author
700 A, Author C). Put differently, nopt

1 is often small (e.g.,
701 < 10) across a variety of typical conditions and true param-
702 eter values. Therefore, using misspecified parameter val-
703 ues, even with large discrepancies, still results in a small
704 nopt

1 values, likely < 10. Because the actual nopt
1 value

705 remains fairly stable, it is reasonable to find only minor
706 change in power rates. Additionally, previous research has
707 shown that study design conditions with less stable nopt

1 val-
708 ues and therefore an increased likelihood of large differ-
709 ences between nopt

1 and nopt�
1 , are the same conditions in

710 which these differences have little influence on power
711 (Author A, Author C). In other words, when minor changes
712 in parameter values influence nopt

1 values, deviations from
713 nopt

1 do not influence power and under conditions where
714 deviations from nopt

1 are detrimental to power, nopt
1 values

715 tend to be so similar (e.g., < 10) power is not substantially
716 influenced.
717 Another consistent result across models and tests was the
718 influence of unconditional intraclass correlation coefficient
719 values (see Figure 2). The consistent influence of ρ (or ρM
720 and ρY) on the robustness of power under the optimal sam-
721 pling framework is directly related to the consistent influ-
722 ence of ρ on nopt

1 values (Author A, Author C). If the ρ
723 value is wrong (i.e., misspecified) then it is likely we have
724 poorly estimated nopt

1 resulting in inefficiencies and a sub-
725 stantial loss of statistical power. This is especially true in
726 designs with larger ρ values but less so in designs with large
727 c2/c1 ratios.
728 Relative power did vary across models and tests when
729 the path coefficients were misspecified with the exception
730 of the MC interval test for which power demonstrated con-
731 sistent robustness. The MC interval test result can be traced
732 back to stable nopt

1 values when using the test even with dif-
733 ferent a and b path coefficient values (Author A, Author C).
734 Conversely, power under the optimal sampling framework
735 for the joint and Sobel test varied in robustness to misspec-
736 ified a and b path coefficient values across models reflect-
737 ing the conditions in which these parameters influenced
738 nopt

1 values for that specific test. For example, in a group-
739 randomized study of 2-2-1 mediation using the joint test,
740 changes to the b path coefficient resulted in substantial

741changes to nopt
1 values suggesting that misspecified b path

742coefficient values will influence optimal sample allocation
743and therefore power (Authors A).

744Illustrative Example

745Pulling from an investigation of the Every Classroom,
746Everyday (ECED) program by Early et al. (2016), we illus-
747trate the process described above. ECED aims to improve
748student academic achievement, an individual-level out-
749come, through improvements in teaching practice and
750curriculum alignment. The ECED program represents a
751group-level treatment as it is implemented across whole
752schools. For our illustration, we also include a group-level
753mediator that captures the degree of program implementa-
754tion within a school, a crucial factor in the success of these
755programs (Desimone, Porter, Garet, Yoon, & Birman,
7562002). We now have a two-level group-randomized study
757examining a 2-2-1 mediation effect. To test the significance
758of this effect, we employ the joint test and for study plan-
759ning purposes predict the relationship between the ECED
760program and our measure of program implementation is
761a = 0.5, the relationship between program implementation
762and student outcomes is b = 0.2, the conditional direct
763effect of the ECED program on student outcomes is c0 =
7640.1, the correlation of student outcomes within a school is
765ρ = 0.3, with a budget of T = US$175,000 and a school
766to student sampling cost ratio of c2/c1 = 2,000. Under these
767conditions, the optimal individual sample size is 38 students
768per school with a sample of 86 schools (i.e., nopt

1 ¼ 38 and
769nopt

2 ¼ 86). However, in the empirical results of our hypo-
770thetical study the true a path value was a* = 0.65 indicating
771we underestimated the a path during study planning and
772therefore did not use the most efficient sample. The true
773optimal design would have included a sample of 48 stu-
774dents per school in 85 schools (i.e., nopt�

1 ¼ 48 and
775nopt�

2 ¼ 85). As conducted, power to detect the 2-2-1 medi-
776ated effect was � 81.99% using the incorrect nopt

1 ¼ 38. If
777we had perfectly predicted parameters during study plan-
778ning and employed the true optimal design, study power
779would have been � 82.07%. Mirroring our results above,
780the misspecified a value influenced nopt

1 but the inefficien-
781cies were inconsequential to the relative power of the study.

782Discussion

783Group-randomized studies of mediation effects probe the
784mechanisms presumed to operate within treatment condi-
785tions that are implemented in extant hierarchical structures.
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786 These studies can be efficiently planned by utilizing optimal
787 sample allocation to identify the sample of individuals per
788 group and sample of groups that maximizes power while
789 considering costs. Determining the optimal sample alloca-
790 tion depends on the estimation of several parameters dur-
791 ing study planning and these estimates are likely to
792 deviate from the true population values observed once data
793 are collected. To understand the consequences of these
794 deviations, we examined the robustness of power under
795 an optimal sampling framework to parameter value mis-
796 specification in group-randomized studies of mediation.
797 We found power rates in 2-2-1 and 2-1-1 designs to be
798 robust to misspecified parameters ranging from 50% to
799 150% of their true value although results varied by media-
800 tion test, design cost structure, path coefficient values, and
801 the unconditional intraclass correlation coefficient values.
802 For example, across all conditions group-randomized
803 studies of 2-1-1 mediation were the most susceptible to
804 power loss when nopt

1 was identified with a misspecified a
805 path coefficient value. In group-randomized studies of
806 2-2-1mediation, utilizing a misspecified ρ value when deter-
807 mining nopt

1 was the most detrimental to power. In these
808 conditions, researchers need stronger theoretical and
809 empirical guidance to predict parameter values in order
810 to ensure accurate power analyses. Conversely, in group-
811 randomized studies of 2-1-1 mediation misspecified ρM
812 and ρY values had the least detrimental influence on power.
813 Minimal theoretical and empirical guidance is sufficient to
814 estimate these parameter values because inaccuracies will
815 have only minor consequences to subsequent power
816 analyses.
817 An extension of this implication is a call to prioritize
818 investigations and empirically based collections (e.g.,
819 Hedges & Hedberg, 2007) of those parameters that are cru-
820 cial to accurate power analyses. If the theoretical and
821 empirical support to accurately predict a parameter is
822 lacking in a substantive area, the scope of study design pos-
823 sibilities is limited. Given the utility and feasibility of group-
824 randomized studies of multilevel mediation this presents a
825 serious limitation to research.
826 This study, like all simulation studies, is limited by the
827 number and combination of factors that can be manipu-
828 lated and examined. We are confident in the robustness
829 of power under the optimal sampling framework to mis-
830 specified parameter values when detecting mediated effects
831 in 2-2-1 and 2-1-1 group-randomized studies, but this is a
832 relatively narrow set of models and conditions. The broader
833 takeaway from this investigation is the blueprint for consid-
834 ering the robustness of power under the optimal sampling
835 framework in studies of multilevel mediation. The process
836 involves identifying the two statistical power rates used to
837 determine relative power (see Equation 16). First, research-
838 ers identify the optimal sample allocation and power to

839detect the effect in question using the most plausible
840parameter estimates available. This power rate can serve
841as the true or population study power (i.e., denominator
842in Equation 16. Second, the researcher considers alternative
843parameter values to determine another optimal sample
844allocation and uses this sample with the original (i.e., most
845plausible) parameter values to conduct a second power
846analysis. This second power analysis serves as the initial
847or incorrect study power (i.e., numerator in Equation 16).
848Results from such an undertaking provide researchers with
849a range of possible sample allocations, power under each
850sample allocation, and at least some notion of the conse-
851quences to study power when employing an optimal sam-
852pling scheme based on misspecified values. Researchers
853conducting their own simulation ensure maximum confor-
854mity to their main study and allow interpretation of results
855in a study-specific context. For example, simulation results
856indicating minor power loss from employing an inefficient
857sample allocation is of little concern if the study design is
858well powered (e.g., > 90%) but the same power loss in a
859design with barely adequate power (e.g., � 80%) can be
860practically significant.
861Effective studies utilize sample sizes that ensure ade-
862quate power and efficient studies make proper use of lim-
863ited resources. The optimal sample allocation framework
864is an excellent means to investigate study power and max-
865imize available resources. That said, we caution readers to
866examine their study-specific factors when applying our
867results or conducting their own simulation and remind
868them that optimal sampling strategies provide a theoretical
869guide rather than a strict set of rules.

870Electronic Supplementary Material

871The electronic supplementary material is available with the
872online version of the article at https://doi.org/10.1027/
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875This document contains supplemental derivations, tables of
876complete results, and additional figures.
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