
ARTICLE OPEN

Genetic interactions derived from high-throughput
phenotyping of 6589 yeast cell cycle mutants
Jenna E. Gallegos1,7, Neil R. Adames1,6,7, Mark F. Rogers2, Pavel Kraikivski3, Aubrey Ibele1, Kevin Nurzynski-Loth1, Eric Kudlow1,
T. M. Murali4, John J. Tyson 5 and Jean Peccoud1,2✉

Over the last 30 years, computational biologists have developed increasingly realistic mathematical models of the regulatory
networks controlling the division of eukaryotic cells. These models capture data resulting from two complementary experimental
approaches: low-throughput experiments aimed at extensively characterizing the functions of small numbers of genes, and large-
scale genetic interaction screens that provide a systems-level perspective on the cell division process. The former is insufficient to
capture the interconnectivity of the genetic control network, while the latter is fraught with irreproducibility issues. Here, we
describe a hybrid approach in which the 630 genetic interactions between 36 cell-cycle genes are quantitatively estimated by high-
throughput phenotyping with an unprecedented number of biological replicates. Using this approach, we identify a subset of high-
confidence genetic interactions, which we use to refine a previously published mathematical model of the cell cycle. We also
present a quantitative dataset of the growth rate of these mutants under six different media conditions in order to inform future
cell cycle models.
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INTRODUCTION
Eukaryotic cells grow and divide using a highly conserved and
integrated network of positive and negative controls that ensure
genomic integrity and maintain cell size within reasonable
bounds. Proper control of the cell division cycle is essential for
competitive fitness, embryonic development and maturation, and
tissue homeostasis. Failure in these control mechanisms may
result in cell death, developmental defects, tissue dysplasia, or
cancers. One of the foremost model organisms for unraveling the
molecular mechanisms of cell cycle control is the budding yeast
Saccharomyces cerevisiae. Several hundred yeast mutants, gener-
ated in dozens of research laboratories over the past 40 years,
have led to the discovery and characterization of many genes and
proteins that regulate progression through the cell cycle1. Because
of the intense labor involved in these experiments, individual
laboratories have tended to focus on small numbers of genes and
proteins involved in subsections of the extensive network of gene/
protein interactions that control cell cycle events. This reductionist
approach was necessary in the early stages of identifying and
characterizing the molecular regulatory system, but it carries with
it the danger of missing higher levels of network organization and
their phenotypic consequences2–4.
In contrast to a detailed, reductionist experimental approach,

which builds a regulatory network from the bottom up, a systems-
level approach seeks to provide a more global and less biased
view of regulatory networks. Systems biologists can uncover key
regulatory interactions and network architectures that bottom-up
practitioners may have missed5,6. Unfortunately, the top-down,
pan-genome approach, while good for generating hypotheses, is
usually poor for testing hypotheses because the experiments are
mostly correlative, and the data is often plagued by problems of
accuracy and reproducibility. Combining a variety of ‘omics’
studies may help to overcome these challenges, but it is often

difficult to integrate disparate data sets into a single network
model7–10. Ideally, one should combine top-down and bottom-up
data, but huge discrepancies of scale between these two data
types present barriers to integrating and understanding the
hypotheses derived from each approach11–17.
To mitigate these problems, many researchers, including

ourselves, have developed detailed mathematical models that
integrate top-down and bottom-up approaches in order to
describe the molecular mechanisms that underlie cell cycle
regulation in budding yeast4,17–22. The governing equations of
the model are simulated on a computer, and the model (the
‘wiring diagram’ of molecular interactions) is adjusted until it
generates dynamic behaviors that reflect the documented
molecular changes and general network behaviors observed in
cells (e.g., cell viability, timing of cell cycle events, cell size at birth,
and response to DNA damage or chromosome misalignment at
mitosis)23–26. Often, the documented data is missing detailed
molecular information, such as protein concentrations and rate
constants of crucial reactions, but fitting the model (i.e., fine-
tuning the parameter values) to extensive sets of phenotypic data
usually introduces strong constraints on these unknown para-
meters19,27. In this way, mathematical models can refine our
understanding of the molecular mechanisms underlying cell cycle
progression and test if the proposed network architecture and
kinetic rate-constant estimates are consistent with both bottom-
up and top-down observations.
One of the major problems when developing large mathema-

tical models of the cell cycle has been the lack of consistent data
sets. It has been challenging to compare data collected on cell
cycle mutants that often have different genetic backgrounds,
whose phenotypes are usually descriptive rather than quantita-
tive, and whose phenotypes are assessed under inconsistent
conditions. These problems leave the modeler with the difficult
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task of curating, interpreting and consolidating inconsistent, and
sometimes unreliable experimental results.
A particularly pernicious example of this problem is the use of

the ‘synthetic lethal’ (SL) phenotype of double-mutant yeast cells
in the development and calibration of mathematical models of the
budding yeast cell cycle. Synthetic lethality arises when viable
yeast strains carrying deletions of two different genes are crossed
to produce inviable, double-mutant progeny (i.e., gene1Δ and
gene2Δ mutant strains are viable separately, but the double-
mutant gene1Δ gene2Δ strain is inviable). Because they impose
strong constraints on the control system, SL gene combinations
are exceptionally useful in deducing the network wiring diagram
and estimating the rate constants in the mathematical model. On
the other hand, if the incomplete or inaccurate identification of SL
combinations of genes can wreak havoc on a model by forcing the
modeler to make adjustments that are unwarranted. Problems
arise because the experimental identification of SL gene
combinations is plagued by false-positives and false-negatives
and by the fact that some synthetic-lethal interactions are
dependent on the genetic background of the parental strain.
Hence, for the purpose of modeling cell cycle control in budding
yeast, it is crucial to have a reliable, well documented,
independently confirmed set of SL gene combinations observed
in a uniform genetic background.
We have addressed this problem by reconsidering the

identification of SL gene combinations of ‘cell-cycle control’ genes
in budding yeast through a disciplined construction of replicate
double-mutant strains based on a synthetic gene array (SGA)
technology28 pioneered by Tong and Boone29 and the E-MAP28

workflow described by Schuldiner30.
We focused on a set of only 36 cell cycle genes, most of which

are functionally well-characterized (Fig. 1). This list comprises all
the nonessential genes included in a recent mathematical model
of the yeast cell cycle (herein referred to as the ‘Kraikivski’
model)19, as well as genes whose protein products have
redundant functions or interact with the proteins represented in
the model. In order to estimate the reproducibility of our data, we
performed four different crosses to produce each of the 630
double mutants and we tested both mating types. We managed
to produce and characterize a library of 6589 genetically distinct
yeast strains. The unprecedented number of biological replicates
included in this library and the variability of the phenotypic data it
produced are raising new modeling challenges.
We first analyze the variability of SL screen results in our library

and compare it with previously published SL interactions listed on
The Saccharomyces Genome Database (SGD)31, and then we
validate our conclusions by tetrad analysis (TA). We generate lists
of ‘high confidence’ and ‘low confidence’ SL interactions. Next, we
compare these high-confidence SL interactions with the predic-
tions of our most recent and extensive mathematical model of
budding-yeast cell-cycle controls19. We find that, in its present
state, the model’s predictions of SL interactions are not very
accurate because the predictions were based on parameter values
estimated from a collection of SL gene combinations that
misidentified some crucial genetic interactions. From our new
collection of high-confidence and low-confidence SL gene
combinations we reparametrize the model to get much better
agreement with the data. We expect this newly parametrized
version of the model will give more reliable predictions about the
phenotypes of other types of budding yeast mutants as well.
Furthermore, we characterized the growth rates of our mutants

under six different media conditions expected to differentially
influence cell cycle progression, providing quantitative fitness
data that can be used in the future development of more refined
and stochastic models of the cell cycle.

RESULTS
Identification of SL interactions
To assess all possible combinations of 36 cell cycle knockouts
across multiple biological replicates, we generated 8 sets of
independent parent lines to be used in 4 crosses. To avoid
suppressor mutations—a feature of the commercial yeast haploid
gene deletion collections—we generated 110 parent strains by
tetrad dissection of commercial heterozygous diploid gene
deletion strains (either before or after switching the kanMX
marker to natMX), and we generated four parent strains by de
novo gene deletion in BY4741 or BY4742. Neither the commercial
SSA1/ssa1Δ strain nor any diploids produced by crosses with any
de novo ssa1Δ mutant parent were able to sporulate, indicating
that two copies of this HSP70 chaperone gene is essential for
meiosis. Interestingly this was not the case for the Ssa1 co-
chaperone, Ydj1. We also generated SGA haploid selection marker
strains by mating and tetrad dissection of the aforementioned
strains with the SGA strain developed by the Boone lab29 or by de
novo gene deletion in that strain (55 and 70 parent strains,
respectively). Each set of parent strains carried at least two
differently marked deletions in all or most of the 36 genes for each
of two different markers. According to the workflow described in
Fig. 2, single mutant parent strains with opposite markers were
crossed, and both MATa and MATα using SGA29 haploid selection
markers. Overall we performed four series of 36*36 crosses and
collected both mating types for each crosses. Out of the 10,368
cell lines that experimental design could generate, we obtained
6589 mutants corresponding to 36*35/2= 630 double-mutant
combinations.
Examining these 6589 mutants, we first flagged potential SL

interactions by scoring each cross as ‘growth’ or ‘non-growth’, i.e.,
each double-mutant haploid colony as ‘present’ or ‘absent’ on
double mutant haploid selection plates (Fig. 3).
No combination of genes produced the same results in every

cross. In fact, the results among biological replicates varied
considerably (Fig. 3, Table S4). Hence, we set a threshold for
defining likely SL interactions. If evidence for synthetic lethality
was observed four or more times irrespective of which parent
strain the deletions were derived from, we flagged the combina-
tion as ‘likely SL’ in Fig. 4. The complete results for all progeny are
compiled in Fig. 5.
A threshold of four was selected, because it ensures that the

interaction was seen in at least two of the independent sets of
crosses performed. This threshold also provided for the highest
level of agreement between our screen and previously published
results (discussed in the following section). For our set of 630
combinations, we observed 29 that exhibited synthetic lethality in
at least four biological replicates.

Comparing the results of our screen with previously reported SL
interactions
In Fig. 4, we compare our results to the 36 SL gene combinations
documented on SGD for the 36 genes in our data set (excluding
several curation errors which are listed in the supplement) and to
the predictions of Kraikivski’s published model19. There are 58
lines in Fig. 4, referring to 58 (out of 630 possible) gene
combinations for which one or more of the following statements
is/are true:

1. the combination is documented as SL on SGD,
2. the combination is observed in our screen as likely SL, and
3. the combination has been predicted to be SL by

Kraikivski’s model.

A Venn diagram indicating the overlap of these 58 gene
combinations is provided in Fig. 5b.
Of the 36 gene combinations documented as SL on SGD, 16

were observed as likely SL in our screen (Fig. 5b). Meanwhile, 13 of
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our observed SL gene combinations are not listed on SGD. Hence,
the overlap between the previously published SL interactions, and
the combinations in our screen that exhibited synthetic lethality in
at least four replicates is only ~50%. Dropping the threshold for
likely SL interactions in our screen from four to three would have
resulted in the identification of only one additional previously
documented SL interaction (lte1Δ sic1Δ), while adding 13 SL
interactions that are not supported by the literature. Increasing
the threshold to 5 would have excluded an additional 13 SL
interactions that have been previously observed.
As a check on these comparisons, we performed TA on at least

one cross for all of the combinations listed in Fig. 4 except for one
(cdh1Δ ssa1Δ) from which we failed to recover tetrads. Of the 13 SL
gene combinations that we observed for the first time in this
study, 6 were not SL by TA (bck2Δ cdh1Δ, bub2Δ cdc55Δ, bub3Δ
swi4Δ, cdc55Δ nrm1Δ, cdc55Δ swi4Δ, and swi6Δ whi3Δ). The other
seven (bub1Δ swi6Δ, bub3Δ swi6Δ, cdc55Δ cdh1Δ, cdc55Δ clb5Δ,
cdc55Δ lte1Δ, cd55Δ whi3Δ, and cdh1Δ swi6Δ) exhibited variable

results or low spore viability regardless of genotype in at least one
of the crosses, complicating the interpretation of the results. Of
the 20 ‘documented’ SL interactions that were not observed in our
screen, 17/20 tested by TA were viable. The other three (lte1Δ
sic1Δ, lte1Δ ydj1Δ, and msn5Δ swi6Δ) varied by replicates or
exhibited low spore viability overall, and thus remain ambiguous.
In summary, our screen identified 13 new potential SL

interactions, but none of these were definitively validated by TA.
Our screen failed to validate 20 previously published SL
interactions. By TA, we determined that at least 17 of these are
likely not SL. Of the 16 double-mutant combinations that were
both ‘documented’ SL on SGD and ‘likely’ SL according to our
screen, TA confirmed that nine combinations are indeed inviable.
The other seven remain ambiguous.
Based on these comparisons, we re-classify the 58 gene

combinations in Fig. 4 as ‘high-confidence synthetic-lethal’
combinations (shaded orange), ‘high-confidence viable’ double-
mutants (shaded blue), and ‘uncertain’ (unshaded). Of those that

Fig. 1 Genes used in this experiment. List of 36 cell cycle regulator genes used in the crosses.
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remain uncertain, for five gene combinations which all include
swi4Δ or swi6Δ (bub3Δ swi6Δ, clb5Δ swi6, msn5Δ swi4Δ, msn5Δ
swi6Δ, and swi4Δ swi6Δ) additional replicates were attempted, but
no tetrads were recovered.
Some of the variability observed between replicate tetrad

analyses of the same genotype, as well as apparent meiotic
defects, may be the result of chromosome loss. For instance, Bub1
and Bub3, which are involved in regulating the SAC and tension
sensing in spindles32,33, exhibited unusual behavior in halo assays
indicative of chromosome loss (see additional data).

Using our screen to refine a previously published model of the cell
cycle
In addition to SGD, we compared our ‘likely’ SL interactions with
those that were predicted by Kraikivski’s model19. Of the 22
predicted SL gene combinations in Fig. 4, 10 are both
documented and confirmed by our screen, two (bck2Δ swi6Δ
and cln3Δ swi4Δ) were documented but not observed by us, and
one (cdh1Δ swi6Δ) was observed by us but not documented on
SGD. Nine predicted SL gene combinations were neither observed
by us nor documented on SGD. We tested eight of these by TA
and found six to be viable, while two (cdh1Δ lte1Δ and cdh1Δ
ydj1Δ) remain uncertain (Fig. 4). Five of these ‘orphan’ predictions
involve cdh1Δ, suggesting an overemphasis of Cdh1 activity in the
model. We tested four of these combinations by TA and found
that two were viable (cdh1Δ clb5Δ and cdh1Δ cln3Δ), while two
remain uncertain (cdh1Δ lte1Δ and cdh1Δ ydj1Δ). Six SL gene
combinations that were both documented and observed by us
were not analyzed in Kraikivski’s model.
In summary, Kraikivski’s model makes 37 predictions (22 SL+

15 V) concerning the genetic interactions listed in Fig. 4. Of these
predictions, 16 are consistent with our ‘high-confidence’ SL/V
phenotypes, 7 are inconsistent (bolded in Fig. 4), and 14 are
ambiguous. Hence, the accuracy of the published model is ~50%,
comparable to the agreement between our screen and the
literature.

The limited accuracy of the model’s predictions is likely due to
the fact that the parameter values in the model were estimated by
fitting the model to ‘documented’ SL gene combinations that are
themselves unreliable. To correct this problem, we have re-
parametrized the model in light of the ‘high confidence’ SL and
viable (V) interactions (shaded orange and blue, respectively in
Fig. 4), allowing for some flexibility for the uncertain interactions.
In reparameterizing the model, we had two intentions: (a) to

maximize the number of correctly explained mutant phenotypes
in Fig. 4, and (b) to simulate correctly those mutant strains with
well-characterized phenotypes that were previously explained by
the model. Guided by these two criteria, we manually adjusted 13
parameter values in the model (Fig. S3), as follows:

● Because of the central roles played by SBF, MBF, and Cln3 in
the START transition of the budding yeast cell cycle, we
addressed our new results suggesting a viable phenotype for
swi4Δ cln3Δ double-mutant cells in opposition to previous
reports that swi4Δ cln3Δ is a SL strain25. To ‘rescue’ swi4Δ cln3Δ
cells, we significantly increased the activation of MBF (Swi6:
Mbp1) by Bck2 (the only activator of MBF in the absence of
Cln3), while simultaneously increasing the inactivation of MBF
by Clb2 and decreasing slightly the activation of MBF by Cln3,
in order to keep the level of MBF activity similar to that of the
previous model, thus minimizing the perturbations to all other
mutants that were previously explained by the model.
Because Ydj1 is a regulator of Cln3 activity, the phenotype
of swi4Δ ydj1Δ agreed with new data too.

● The viability of swi6Δ clb2Δ suggests that Swi4 alone (without
Swi6) can successfully initiate the START transition, and then the
cell cycle can be completed without Clb2 (with Clb1 alone). To
correctly simulate this mutant, we had to significantly increase
the weight of Swi4 in the transcriptional regulation of the START

transition.
● We also made adjustments to account for the five mutant

strains involving cdh1Δ that our original model did not predict
correctly (Table S6). In the model, cell division (upon exit from

Fig. 2 Simplified representation of experimental workflow. Example of a single cross plate where two MATa ‘bait’ strains in which the gene
of interest (GOI) was knocked out (KO) with a kanamycin resistant marker (kanMX, also confers resistance to G418) are each crossed to the 36
MATa ‘hit’ strains in which the gene of interest was knocked out with a nourseothricin-resistant marker (natMX). Heterozygous diploids were
selected for on media containing both antibiotics, and then sporulated on standard sporulation media. The sporulated colonies were pinned
onto a series of specialized SGA media that select for MATa and MATα haploid progeny. Positions on the double mutant haploid plates that
would have resulted in ‘monogenic crosses’ (where the same gene of interest was knocked out in both parents) or ‘single parent crosses’
(where one of the parent positions was empty) were monitored for potential false-negatives. The double mutant haploid progeny were used
to identify synthetic lethal interactions and then pinned in quadruplicate on a fresh YPD plate. WT controls were added, and the resulting
master plate was pinned onto six different media types for phenotyping. Phenotyping plates were imaged every 12 h to monitor growth rates.
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mitosis) is determined by Clb2 activity dropping below a
certain threshold, which is in turn governed by Cdh1 (involved
in Clb2 degradation during telophase) and Sic1 (an inhibitor of
Clb2-dependent kinase activity as cells return to G1). Hence,
the inviability of cdh1Δ sic1Δ cells is the crucial mutant

defining the cell-cycle exit threshold, and it was correctly
predicted by the original model. In this double-mutant, Clb2-
dependent kinase activity is down-regulated in anaphase only
by Cdc20-dependent degradation of Clb2. (In reality, of
course, Clb2 activity depends on many upstream regulators
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—such as Ydj1, Clb5, Ssa1, Cln3, and Swi6—that affect cell
mass at division.) Our new assessment of SL interactions
allows for better ‘tuning’ of the parameters that govern Clb2
regulation by Cdh1, Cdc20, and Sic1. In addition, when
originally constructing and parametrizing our model, we did
not have many lte1Δ mutant strains to constrain Lte1-related
parameters, so we adjusted parameters to correctly explain
lte1Δ mutants.

The revised model is provided as SBML34 file in the Figshare
dataset (see Data availability). The 2015 model is robust enough
that the dynamics of WT and most mutants is the same for both
models. Only some mutants show the different phenotype and
distinct time course of cell cycle variables (Fig. S4). We have
updated the list of mutant phenotypes predicted by the revised
model and compared it with the predictions of the 2015 model
(Fig. S5). We simulated the phenotype of 38 new mutants included
in our experimental design. The predicted viability of 12 mutants
changed as a result of the parameter adjustment and 15 mutants
exhibit inconsistencies between the predicted and observed
viability 321 simulated mutants. Most of these discrepancies
involve specific types of mutations (multiple gene copies, GAL-
inducible genes, and destruction box deletions) that are known to
be less reproducible than simple deletions. In addition, the
predicted viability of these mutants can be very sensitive to the
parameters introduced in the model to capture the quantitative
effects of these mutations.
Predictions of the newly parametrized model are given in the

last column of Fig. 4. Our expertize in cell cycle regulation and
mutant behavior allowed us to make these parameter adjust-
ments manually; however, computational algorithms for repar-
ameterization may be required if a larger number of novel mutant
phenotypes becomes available in the future.

Inherent limitations of synthetic lethality screens
The SGA process relies on efficient production of double mutant
haploid progeny from crosses. Mating defects, low sporulation
efficiencies, meiotic defects causing poor spore viability, poor
spore germination, or technical problems with the pinning
process can prevent the transfer of double mutant cells during
haploid selection, resulting in false positives (i.e., poorer growth
than there should be29,35). Genetic interactions resulting in
reduced fitness are also subject to significant selection for genetic
mishaps that improve fitness, resulting in false negatives (i.e.,
better growth than there should be29,35). Genetic mishaps
resulting in false negatives can include spontaneous mutation to
introduce a suppressor mutation36, or disomy. Disomy can result
from chromosome nondisjunction during sporulation, or gene
conversion resulting in escape of heterozygous diploids from
haploid selection35,37. False negatives can also result from
contamination from outside sources or cross-contamination
during replica-pinning.
Following the presence or absence of colonies throughout the

SGA process, we found that all crosses produced diploids (see
Additional data). Therefore, failure to mate did not produce any
false positives. False positives can also result from inefficient
pinning or systematic problems with the parents resulting in

overall low viability. Parent lines that resulted in fewer than 12/36
viable haploid progeny were excluded from the analysis, but some
false positives likely persisted. For instance, seven of the SL gene
combinations observed in our screen involved cdc55Δ, which was
problematic in most genetic contexts due to inconsistent pinning
(cells were very dry and clumpy and did not adhere well to pins).
By TA, we identified 6 out of 29 SL gene combinations observed in
our screen to be definitive false positives.
Our experimental design makes it possible to get rough

estimates of false negative rates by monitoring positions on each
plate that should have been empty for growth. We designed our
screen such that ‘hit’ strains were arrayed the same way
(alphabetically by the gene knocked out) for every cross, leaving
empty spaces for any parent that was not generated (Fig. 2). In this
way, some positions in the cross had only one parent crossed to
an empty position (‘single parent’ in Fig. 2), and some positions
had two parents that were mutant for the same allele (‘monogenic
cross’ in Fig. 2). Neither of these ‘crosses’ should result in colonies
during the final round of double-mutant haploid selection, as they
will not contain both of the antibiotic resistance markers. Colonies
at ‘single parent’ or ‘monogenic cross’ positions are indicative of a
false-negative event (red cells in Fig. 3).
To estimate the contribution of contamination to false

negatives, we identified colonies in empty plate positions. All
plates were devoid of contaminating colonies in empty positions
(Table S3). In positions containing only one parent strain, only 3/
570 positions on the haploid progeny plates had any contaminat-
ing colonies (Table S3). Therefore, contamination is a negligible
contributor to observed false negatives.
To identify false negatives arising from genetic mishaps, we

identified colonies produced by crosses between two strains
carrying deletions of the same gene. Out of 202, 77 monogenic
crosses resulted in progeny on the final haploid selection plates
(Table S3), indicating a coarsely estimated false-negative rate
of 38%.
These false-negative events occurred more frequently for

MATαATcurred more MATa progeny (Table S3). This is to be
expected, because MATa progeny can escape selection for
MATαATogeny can escape selection for expecteSTE3pr-LEU2 and
leu2Δ0, but gene conversion cannot occur between STE2pr-SpHIS3
(Schizosaccharomyces pombe orthologue) and his3Δ1 to allow
MATα cells to escape MATa selection29,35. If MATa progeny persist
through the MATα selection due to gene conversion, they can
mate with the neighboring MATα progeny producing diploids that
are heterozygous for both markers.
Although few SGA or E-MAP studies report them, it is well-

established that these screens have high, but variable, false-
negative and false-positive rates from 17% to 70%30,37–40 and 5%
to 90%39,41–44, respectively. The false-positive and -negative rates
observed in our study are thus in the normal range for large
genetic screens.

Quantifying fitness and genetic interactions across six media types
As the most extreme genetic interaction, synthetic lethality has a
powerful influence on models of cell-cycle regulating genes.

Fig. 3 Binary assessment of colony growth for double mutants in all four sets of crosses. Figures on the left were derived from MATa
progeny. Figures on the right were derived from the sister MATα progeny. MATa parents are organized along the x-axis and MATα parents are
organized along the y-axis alphabetically by the gene that was knocked out. Rows or columns shaded light gray indicate positions on the
plate that should have been empty, because the parent was never generated. The diagonal in each heat map indicates a cross between two
parents in which the same gene was knocked out. These should not result in growth under selection. Red cells indicate unexpected growth
and are an indication of the false negative rate. Rows and columns shaded dark gray indicate parents that were never generated or were
excluded from the analysis, because at least one-third of the progeny resulting from that parent failed to grow. Duplicates of the same gene/
marker combination within the same cross are not shown. Total number of crosses (excluding monogenic)= 7350. a, b Cross 1. c, d Cross 2. e,
f Cross 3. g, h Cross 4.
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Fig. 4 Curation of synthetic lethal interactions. For previously documented SL interactions, it is noted whether they were manually curated
or derived from a high-throughput (HTP) screen. The ‘SL score’ highlights the number of crosses in our screen that support synthetic lethality
out of the total number of replicates. Double mutant combinations are reported as synthetic lethal (SL), viable (V), or having reduced viability
(RV). More than one reported TA result indicates that the TA was repeated for two or more crosses. Results marked with an asterisk are lower
confidence due to poor spore viability. Cases where spore viability was too low to determine synthetic lethality are marked MD to indicate a
possible meiotic defect. Rows shaded orange mark likely synthetic lethal interactions. Rows shaded blue mark likely viable interactions.
Instances where the model does not support the ‘high confidence’ interactions are bolded.
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However, due to the limitations of synthetic lethality screens more
accurate models call for more nuanced phenotypic markers.
To identify interactions between the 36 genes that do not result

in synthetic lethality, we monitored the growth rate of the viable
double mutants over a time course. Each mutant was assigned a
fitness score according to how the growth rate compared with
wild-type controls on the same plate. Using this approach, we
identified ~100 gene combinations that were not SL but had
fitness scores more than six standard deviations below wild-type
under normal growth conditions (Fig. 6).
More importantly, by comparing fitness scores of the double

mutant progeny with those of their single mutant parents, we
calculated genetic interaction (GI) scores for all viable mutants. GI
scores45–47 are a function of the parent and progeny fitness and
illustrate the direction (positive or negative) and the magnitude of
the interaction for each of the ~600 viable gene combinations.
Non-zero GI scores indicate a possible epistatic relationship.
Negative GI scores suggest that the genes involved may have
redundant functions, while positive GI scores indicate that one
mutation may have a rescuing effect over the other.
As with synthetic lethality, we observed a considerable amount

of variability in fitness scores and GI scores for mutants of the
same genotype in different crosses (biological replicates, Fig. 6). To
identify trends within the variability, GI scores for a given
genotype were sorted into different bins, and the bin that
contained the largest number of biological replicates was used to
determine a consensus GI score which is represented in Fig. 7 and
Fig. 8. From the distribution of overall GI scores for a given media,
we flagged those with a consensus score at the extreme positive
and negative ends. Those gene combinations with consensus GI

scores in the top or bottom 5% of all GI scores are reported
in Fig. 8.
To further identify GIs among our set of cell cycle regulator

genes that may not be apparent under standard growth
conditions, we also calculated fitness and GI scores for all double
mutant progeny and single mutant parents in the presence of two
different carbon sources and in the presence of three checkpoint
activating drugs (Figs. S6–S10).
YPDextrose served as a control (mass doubling time ~100min).

Mass doubling times are longer on YPGalactose (~150 min) and
even longer on YPRaffinose (~200min)48. Slower growth rates can
enable positive regulators to build up such that mutants which
would normally grow very slowly due to the stochasticity of cell
cycle transitions can exhibit some level of rescue on YPG or
YPR23,49.
The distribution of GI scores that we observed was comparable

for YPD and YPG, but the GI scores occupied a narrower range for
mutants grown on YPR (Fig. 7), suggesting that the very slow
growth rate provided by YPR might allow the growth of mutants
that have more extreme phenotypes on YPD to normalize on YPR.
The drugs Benomyl (Ben), camptothecin (CPT), and hydroxyurea

(HU) activate checkpoints50–60. Mutants defective in these
checkpoints will rush through the cell cycle and accumulate
genetic/chromosome defects leading to slower growth due to
decreased viability. We expect known checkpoint mutants to
exhibit reduced fitness under these conditions, but interactions
with other cell cycle regulators (including other checkpoint genes)
can enhance or suppress the checkpoint defects32,61–67.
In several cases, gene combinations that had a GI score within

the normal distribution on YPD, showed a much more extreme GI
on one or more of the other five media types (Fig. 8). For instance,

Fig. 5 Likely synthetic lethal interactions determined by compiling data from all crosses. a Table documenting how many crosses
supported synthetic lethality (no growth of the double mutant progeny). Synthetic lethal interactions that we designate as ‘high-confidence’
in Fig. 4 are outlined in black. b Venn-Diagram comparing observed SL interactions with those that have been previously documented and/or
predicted by the Kraikivski model. Note: clb2Δ clb5Δ is excluded as these genes are linked.
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the GI score for fkh1Δ fkh2Δ on YPD was negative, but not
remarkably so. However, on YPD+ Ben and YPD+ CPT, the
consensus GI scores for fkh1Δ fkh2Δ were in the lower 5% and
2.5%, respectively. Fkh1 and Fkh2 both promote the transition

from G2 to M, so the double mutant is likely to cause stalling at
G2. Ben prevents spindle assembly while activating the spindle
assembly checkpoint, so that cells move forward to M phase
despite not properly forming a mitotic spindle. CPT causes DNA

Fig. 6 Comparison of fitness scores for double mutants in all four sets of crosses on YPD media. Figures on the left were derived from
MATa progeny. Figures on the right were derived from the sister MATα progeny. MATa parents are organized along the x-axis and MATα
parents are organized along the y-axis alphabetically by the gene that was knocked out. Rows and columns shaded dark gray indicate crosses
that were not performed or were excluded from the analysis. a, b Cross 1. c, d Cross 2. e, f Cross 3. g, h Cross 4. Fitness heatmaps for the
remaining five media types are available is Figs. S3–S7. Duplicates of the same gene/marker combination within the same cross are not shown.
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Fig. 7 Genetic interaction scores on each media type determined by compiling data from all crosses. Heat maps show the distribution of
binned genetic interaction (GI) scores for each mutant combination. Brighter green and darker red squares correspond to higher positive and
lower negative GI scores, respectively. Gray squares denote gene combinations for which three or fewer crosses were generated. Histograms
show the overall distribution of GI scores for each media type. The dotted red lines distinguish the lower and upper 5% of interactions. a YPD,
b YPD+ raffinose, c YPD+ galactose, d YPD+ benomyl, e YPD+ camptothecin, f YPD+ hydroxyurea.
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Fig. 8 Genetic interaction score outliers for each media type. Consensus genetic interaction (GI) scores are reported for each gene
combination that had a score in the top or bottom 5% of overall GI scores for one or more media types. The number reported reflects the
midpoint of the bin occupied by the largest number of biological replicates. Red and green shading highlights negative and positive scores,
respectively. The top 2.5% and 5% are shaded light and dark green, respectively. The bottom 2.5% and 5% are shaded light and dark red,
respectively. Interactions which we determined to be very likely synthetic lethal are shown in bold. ‘ND’ indicates GI scores that were not
determined.
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damage during M phase. So, cells that make it to M phase in an
fkh1Δ fkh2Δ mutant would likely arrest in the presence of Ben or
CPT, thus exacerbating the mutant phenotype.
Relative GI scores for a family of gene combinations also reflect

the role of those genes within the cell-cycle regulatory network.
For instance, Bub1 and Bub3 function along with Mad1, Mad2, and
Mad3 to arrest cells in metaphase in response to defective
attachments of kinetochores to spindle microtubules—a mechan-
ism called the spindle assembly checkpoint (SAC)32,33. However,
Bub1 and Bub3 also have a role in tension sensing in spindles
independent of their role in the SAC32. This can be seen in the
observation that bub1/3 mutants have lower GI scores in benomyl
than mad1–3 mutants (Fig. 8).
Interestingly, several other mutants did not show reduced

fitness in benomyl but did display a chromosome loss phenotype
(Fig. 8). These mutants were also SL or synthetic sick with bub1/3
mutants. Clb5 is one such mutant and has previously been
predicted to have a role in tension sensing32,33, which the GI
suggests works independently of Bub1/Bub3. Interestingly,
although Sic1 works to inhibit CDK-Clb68–70, including Clb5, the
sic1Δ phenotypes were similar to those of clb5 mutants. Since Sic1
is important for suppressing CDK/Clb activity and is activated by
the mitotic exit network, we hypothesize that elevated CDK/Clb
may prolong anaphase resulting in spindle positioning defects, or
defects in SAC silencing.
Although slow growth of swi6Δ mutants made it difficult to

assess halos, like clb5Δ and sic1Δ mutants, they also appeared to
increase chromosome loss. However, unlike Clb5 and Sic1, Swi6
has no direct role in mitosis. Nevertheless, reduced viability in
bub1/3 swi6 double mutants suggests some interaction. We
propose that reduced activity of the MBF and SBF at START
perturbs expression of proteins important for spindle function or
chromosome cohesion, exacerbating the chromosome segrega-
tion defects of the bub1/3 mutants.
It is important to note that not all of the gene combinations that

we identified as ‘high-confidence’ SL had remarkably negative GI
scores in our screen. There are two plausible explanations for this
discrepancy. First, the use of in-plate wild-type controls prohibited
the use of antibiotics in the phenotyping screen, so false negatives
(growth where growth is not expected) due to contamination are
more likely. Second, for gene combinations that are truly SL, any
living colonies are necessarily the result of false negatives due to
genetic mishaps. These gene combinations are thus more prone
to result in outliers with higher than expected GI scores and
should be interpreted with caution.

DISCUSSION
The selective pressure applied by SL screens leads to genetic
mishaps that rescue mutants that would otherwise be lethal29,35;
conversely, the low fitness of many of the single mutant parents
can add up and result in offspring with such a low fitness that they
may be interpreted as SL. These false-negative and false-positive
events lead to very high levels of variability (see Table S5 for an
example). We accounted for this variability by probing a relatively
small number of genes with an unprecedented number of
biological replicates. While E-MAP screens generally incorporate
four biological replicates24, and SGA screens rely on technical
replicates alone29, most of the GIs tested in this study included
between 8 and 16 independent biological replicates (Table S4).
We also compared our results with previous publications and
resolved discrepancies via TA in order to generate a list of ‘high
confidence’ SL interactions which informed a new iteration of a
previously published cell cycle model.
Variability in SL screens is a major challenge for modelers. The

~100 tetrad analyses performed in this study demonstrate an
unexpectedly high level of variation even among low-throughput,
manual experiments. For this reason, synthetic lethality may not

be the best marker for parameterizing models. In addition, models
based on synthetic lethality are inherently deterministic; yet, it is
well-known that many of the processes governing progression
through the cell cycle are stochastically regulated. Modeling
stochasticity will require a more fine-grained dataset that provides
quantitative phenotypes based on parameters such as growth
rate, rather than deterministic phenotypes such as lethality or
checkpoint arrest.
The scope of the 2015 Kraikivski model represents a subset of

the genes involved in cell proliferation71–73. It would have been
desirable to add new genes to the model so that the revised
model could predict the phenotype of all the mutants included in
our experiment. Some of the genes are not immediately related to
the cycle regulatory network. Adding them to the 2015 model
would require an extensive modeling effort. In addition, account-
ing for the variability of synthetic lethality data and the fitness
estimates would require a very substantial modification of the
2015 modeling framework that can only predict viability and is
unable to account for growth rates.
The results presented here demonstrate that quantitative cell

phenotyping can be readily performed in a high-throughput
workflow. By comparing colony sizes over time, we generated a
quantitative picture of growth rates for over 6500 mutants. This
more sensitive approach enabled us to identify interesting GIs
with less extreme phenotypes than synthetic lethality (e.g., whi3Δ
ydj1Δ) and gene combinations that provided a rescue effect (e.g.,
bub3Δ cdh1Δ). We also show that our workflow can be expanded
to include different test conditions. By quantitatively phenotyping
our mutants on six different media types, we demonstrate that our
approach is sensitive enough to capture environmental variability.
Data for the ~40,000 gene-by-media combinations is available in
the supplement and can be used to develop more elaborate
models of cell cycle regulatory control.
This potential for rapid generation of complex datasets

capturing cellular response to multifactorial perturbations makes
it considerably more challenging to build and update models that
can explain the data and make testable, novel predictions. At one
end of the spectrum are approaches that can use gene expression
measurements to predict growth rates74,75. These methods can be
trained rapidly but do not provide insights into underlying
molecular mechanisms. In contrast, detailed, kinetic models such
as the Kraikivski model encompass a wealth of molecular
mechanisms. They can make predictions on the effect of
multigene perturbations. However, they are challenging to
parameterize, and it can be expensive to update and expand
them in the face of new datasets. In order for the analysis of data
and modeling to keep up with the rapid acceleration of data
production it will be necessary to develop more scalable
frameworks. In order for the analysis of data to keep up with
the rapid acceleration of data production, it will be necessary to
adopt more scalable modeling frameworks73,76.

METHODS
Experimental workflow
To generate the double mutants, we used a modified epistasis miniarray
profile (E-MAP) workflow30. The E-MAP workflow is a modification of the
synthetic genetic array (SGA) protocol30. In a typical SGA screen, a single
query strain is crossed to all viable deletion strains (over 4000)29,41. The
query strain includes a set of reporter genes that allow selection of haploid
progeny of one mating type or another. E-MAP screens use the same series
of selection conditions, but generally involve a few hundred deletion
strains crossed to produce every possible combination of double-gene
deletions30.
Our experimental design most closely follows the E-MAP approach but

with a few significant differences. First, we focused on a set of only 36 cell
cycle genes. Second, we used eight sets of parent strains in four sets of
crosses, increasing the number of biological replicates to eight from four in
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a standard E-MAP or one in a standard SGA (which use technical
replicates29,30):

(1) MATa/genei::kanMX (5) MATa/genei::kanMX/SGA

(2) MATa/genei::natMX (6) MATa/genei::natMX/SGA

(3) MATα/genei::kanMX (7) MATα/genei::kanMX/SGA

(4) MATα/genei::natMX (8) MATα/genei::natMX/SGA

genei::kanMX refers to genei knocked-out with a kanamycin-resistance
marker, genei::natMX refers to genei knocked-out with a nourseothricin-
resistance marker, and ‘SGA’ refers to the haploid-selection markers can1Δ::
STE2pr-Sphis5 and lyp1Δ::STE3pr-LEU2 used in SGA screens. Details for how
each of the parent strains were generated can be found in the online
supplement. These parent strains were confirmed by PCR and used in four
sets of crosses:

Cross 1: Strain(1, genei) × Strain(8, genek)
Cross 2: Strain(2, genei) × Strain(7, genek)
Cross 3: Strain(3, genei) × Strain(6, genek)
Cross 4: Strain(4, genei) × Strain(5, genek)

From these crosses, we selected double-mutant progeny of both mating
types, further increasing the biological replicates to 16. (SGA and E-MAP
screens select only MATa progeny29,30). All media were standard recipes for
SGA29 (see online supplement). Mating type of the double mutant progeny
and the single mutant parents was confirmed via Halo assays77 (See online
supplement). With this protocol, we generate (in principle) 16 biological
replicates of each double-mutant, geneiΔ genekΔ. In certain cases, two
parents of the same genotype were generated independently, such that
the total number of biological replicates is up to 20 for some double
mutant combinations.
We measured colony growth rates on three different growth media

(YPD, YPG, and YPR) and in the presence of three different checkpoint
activating drugs: Benomyl (Ben), Camptothecin (CPT), and Hydroxyurea
(HU). Ben disrupts attachment of kinetochores to the mitotic spindle and
activates the spindle assembly checkpoint (SAC; dependent on Bub1,3 and
Mad1–3)50,78,79. CPT inhibits topoisomerase resulting in DNA entangle-
ments and double strand breaks upon chromosome segregation80,81. HU
inhibits ribonucleotide reductase82, which leads to replication fork
stalling83.
We first derived 384 template arrays from 96 array of the haploid

progeny (which were in 96 array) using a Rotor HDA (Singer Instruments,
Somerset, UK). The 96 progeny array and the 384 template array were
grown on YPD+G418(600 µg/ml)/nat(150 µg/ml). Rows A, B, I and J were
left empty for in-plate wild-type controls colonies. At the same time, we set
up YPD plates with the wild-type parent strains BY4741 and BY4742
arrayed at 384 density, occupying positions in rows A, B, I, and J. We
incubated both sets of plates at 30 °C for 2 days.
We then replica pinned the wild-type controls onto new YPD plates

(using a new source plate whenever the colonies began to look depleted).
After visual inspection of the plates to ensure even transfer of the wild-
type controls, we replica pinned the set of double mutant colonies to the
templates. Plates were imaged after 12, 24, 36, 48, and 60 h of growth at
30 °C (Fig. S1A).
We imaged all diploid selection plates, final haploid progeny selection

plates, halo assay plates, and phenotyping plates using the Phenobooth
(Singer Instruments, Somerset, UK) imaging platform and software. To
maintain consistency, all images were collected in the same order at the
same resolution and camera settings, and were batch processed to crop
the image, perform background subtraction and colony identification
whenever possible. We then exported the raw colony size data for analysis.
The yeast mutants are available upon request to the corresponding

author under the terms of the OpenMTA.

Data analysis
Plate-to-plate variation was accounted for by normalizing colony size using
in-plate wild-type controls. Edge-effects were accounted for by adjusting
the growth rates such that the mean growth rates of edge-adjacent
colonies and internal colonies were comparable (Fig. S1B and Fig. S2). Jack-

knife filtering was used in a small number of cases to remove colonies that
behaved as outliers within quadruplicates (four technical replicates).
Growth rates, fitness scores, and GI scores45–47 were calculated using a

linear model for growth rate according to the following equations:

Growth rate rð Þ : st ¼ r � t þ s0
Fitness score Wð Þ : W ¼ rmutant=rWT

Genetic interaction score εð Þ : ε ¼ WAB �WAWB

;

WAB= fitness score for the double-mutant progeny, WA= fitness score for
the MATa parent, WB= fitness score for the MATα mutant, st= colony size
at time t, and s0= colony size at time 0.
A histogram binning procedure was used to estimate the mode for GI

scores across biological replicates (up to 20 independent crosses). The
‘consensus’ GI score reported in Figs. 7 and 8 is the midpoint of the bin
containing the maximum number of values (additional details in the
Supplement).

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The complete set of data and scripts to extract genetic interactions data are available
from Figshare84.
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