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INTRODUCTION: Decision-making in complex
environments relies on flexibly combining
stimulus representations with context, goals,
and memories. A central component of cogni-
tive flexibility is to selectively retrieve infor-
mation from memory and utilize the retrieved
information to make decisions. The medial
frontal cortex (MFC) plays a critical role in
this process by representing task sets, context,
and outcomes. During decision-making, the
MFC is thought to selectively engage mem-
ory retrieval by representing memory-based
choices and mediating interactions between
the frontal lobes and the hippocampus and
amygdala (HA) through phase-locking of MFC
activity to oscillations in the HA. It remains
unknown what features of decisions and con-
text are represented in the human MFC and
what functional interactions between the MFC
and HA mediate dynamic memory retrieval
during a task.

RATIONALE: We recorded single neurons and
local field potentials in the human MFC and
HA in patients implanted with depth elec-
trodes. Subjects switched between two tasks:
recognition memory and categorization. To
identify signatures of task demands, we com-
pared the strength of encoding of stimulus
familiarity, category, and choices between tasks
and tested whether decoders trained in one
task generalized to the other task. Such cross-
task generalizability would indicate abstract
representations of the underlying variables.
We hypothesized that this approach would
reveal neural signatures of the representations
and functional interactions that permitmemory-
based decisions.

RESULTS:Werecorded from1430 singleneurons
in the HA and MFC [dorsal anterior cingulate
cortex (dACC) and the pre-supplementary
motor area (pre-SMA)] across 13 patients.

Subjects made “yes” or “no” decisions using
button presses or saccades (eye movements)
to indicate whether an image was novel or
familiar, or whether an image belonged to a
given visual category. Instructions were given

before each block of trials,
explaining the task and
response modality to use
(i.e., task set). Examining
the underlying neural rep-
resentations at the single-
neuron and population

levels revealed the following: (i) Cells in the
MFC represented task set during baseline pe-
riods. These contextual signals emerged rapidly
after a task switch and generalized across all
response and task-type combinations in the
MFC but not the HA. (ii) The strength and
geometry of representations of familiarity
were task-insensitive in the HA but not in the
MFC. The responses of these memory-selective
cells were a reflection of memory strength
rather than decisions about the memory.
(iii) The visual category of stimuli was repre-
sentedmore strongly during thememory task in
both theMFCandHA. This encoding of category
generalized across tasks fully in the HA but
not the MFC. (iv) Choices in both tasks were
most strongly represented by cells in the
MFC. This choice representation differed in its
population-level geometry between the two
tasks but was insensitive to response modality
(button press or saccade). One subset of MFC
cells signaled only memory-based choices, and
these cells signaled decisions about the mem-
ory. (v) MFC cells phase-locked their activity
to theta-frequency band oscillation in the
HA preferentially in the memory task, with
memory-choice cells also phase-locking in the
gamma-frequency band. The strength of this
interareal phase-locking in both frequency
bands of the MFC cells that signaled memory-
based choices was predictive of behavior.

CONCLUSION: We leveraged the opportunity
to record from single neurons in humans to
identify representations of choices, task sets,
stimulus category, and familiarity in the human
MFC and HA. We found that neuronal pop-
ulations within the MFC formed two separate
decision axes: one for memory-based decisions
and another for categorization-based decisions.
MFC-HA theta-frequency functional connect-
ivity was selectively enhanced during memory
retrieval. This work reveals a neuronal mecha-
nism in the human brain whereby oscillation-
mediatedcoordinationofactivitybetweendistant
brain regions and accompanying changes in
strength of representation and/or geometry im-
plements task-dependent retrieval of memory.▪
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used by the two tasks, establishing a memory-specific decision axis. (E) Theta- and gamma-band coherence
of MFC choice cells with HA LFPs increased during the memory task.
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Decision-making in complex environments relies on flexibly using prior experience. This process depends
on the medial frontal cortex (MFC) and the medial temporal lobe, but it remains unknown how these
structures implement selective memory retrieval. We recorded single neurons in the MFC, amygdala, and
hippocampus while human subjects switched between making recognition memory–based and
categorization-based decisions. The MFC rapidly implemented changing task demands by using different
subspaces of neural activity and by representing the currently relevant task goal. Choices requiring
memory retrieval selectively engaged phase-locking of MFC neurons to amygdala and hippocampus field
potentials, thereby enabling the routing of memories. These findings reveal a mechanism for flexibly and
selectively engaging memory retrieval and show that memory-based choices are preferentially
represented in the frontal cortex when required.

B
ehavior in complex environments re-
quires decisions that flexibly combine
stimulus representations with context,
goals, and memory. Two key aspects of
cognitive flexibility are the selective uti-

lization of relevant information depending on
task demands and the retrieval of information
frommemory, when needed (1). We are begin-
ning to understand the neural mechanisms
that underlie flexible decisions in the case of
perceptual decision-making (2–4), with evi-
dence for both early gating, mediated by top-
down attention (5), and late selection of relevant
features in the prefrontal cortex (3). In contrast,
little is known about the decisionmechanisms
that also depend on associated category knowl-
edge and memory. In particular, it is not clear
how memory retrieval is selectively engaged
when decision-relevant information needs to
be actively searched for in memory (6–8).
The medial frontal cortex (MFC) is critical

for complex behavior and registers cognitive
conflict, errors, and choice outcomes (9–11).
It supports flexible decision-making in two
ways: (i) by representing task sets (12–14) and
context (15), and (ii) by selectively engaging
memory retrieval through functional inter-
actions with other brain areas (16–18), specif-
ically the hippocampus (19–21) and amygdala

(22, 23). A mechanism that facilitates such in-
terareal interactions is phase-locking of MFC
activity to osciollations in the hippocampus or
amygdala. This mechanism has been exten-
sively investigated in rodents during spatial
behavior (24–26) and fear conditioning (27, 28),
but its broader function remains poorly under-
stood (29), particularly in humans. Similarly,
human neuroimaging studies indicate that the
MFC is involved inmemory search (8, 18, 30–34)
and that patterns and level of activity and con-
nectivity assessed by functional magnetic re-
sonance imaging (fMRI) vary as a function of
retrieval intentionality (35–38). It is not yet
known what features of decisions and context
are represented in the human MFC, whether
memory retrieval selectively engages synchrony
between theMFC and the hippocampus and/or
amygdala, and whether synchrony can be
engaged dynamically when required. This lack
of knowledge stands in stark contrast to the
patent behavioral ability of humans to flexibly
recruitmemory processes in everyday life (39,40)
and to our detailed knowledge of memory rep-
resentations in the human hippocampus and
amygdala, where cells represent aspects of
declarative memories, such as the familiarity
and the identity of a stimulus (41–43). To ad-
dress these open questions, we used simulta-
neous recordings of single neurons and local
field potentials (LFPs) in the humanMFC, hip-
pocampus, and amygdala.

Task and behavior

We recorded from 1430 single neurons across
four brain areas (Fig. 1, C and D; see table S1;
33 sessions in 13 subjects): n = 203, 460, 329,
and 438 neurons from anterior hippocampus
(HF), amygdala (AMY), dorsal anterior cingu-
late cortex (dACC), and pre-supplementary
motor area (pre-SMA), respectively. For brevity,

we refer to HF and AMY together as HA (n =
663 neurons) and to dACC and pre-SMA to-
gether as MFC (n = 767 neurons).
Human subjects viewed a sequence of

320 images, grouped into eight blocks of
40 images each, in each session (Fig. 1, A and
B). At the beginning of each block, subjects were
instructedwhich decision to make and which
responsemodality to use to communicate their
decision. Subjectsmade a “yes” or “no” decision
for each trial to indicate whether an image be-
longed to agiven visual category (“categorization
task”) or whether an image had been seen before
in the task or not (“memory task”). No feedback
was provided (see Materials and methods sec-
tion for details on the task). Each image shown
belonged to one of four visual categories: hu-
man faces, monkey faces, fruits, or cars. In each
block, half of the images shown were repeated
and half were novel (except in the first block,
in which all images were novel).
Subjects indicated choices using either sac-

cades (leftward or rightward eye movement)
or button press while maintaining fixation
at the center of the screen (Fig. 1, E and F;
mean ± SD, 94 ± 15% of all gaze positions fell
within the image shown). Reaction times
(RTs) were significantly longer in the mem-
ory task than in the categorization task
[Fig. 1G, mean RT of 1.48 ± 1.1 s versus 1.19 ±
1.2 s, respectively, P < 1 × 10−20, two-sample
Kolmogorov-Smirnov (KS) test, mean ± SD
across all trials in a given task]. Subjects
performed with an average accuracy of 97 ±
6% versus 71 ± 6% in the categorization and
memory tasks, respectively (mean ± SD across
n = 33 sessions). This difference in accuracy
remained after we matched for RT between
the two tasks (96 ± 6% versus 72 ± 8% with
matchedRTs of 1.23 ± 0.60 s versus 1.24 ± 0.60 s
for the categorization andmemory task, respec-
tively). Even without RT matching, the initial
response in terms of arousal was not different
between tasks, as assessed by pupillometry
(fig. S1, J to L). In the memory task, accuracy
increased as a function of how many times an
image had been shown (Fig. 1H, bappearances =
0.56, P < 1 × 10−20, mixed effects logistic
regression; also see fig. S1, C and D, for effect
of target versus nontarget on memory per-
formance). Subjects had shorter RTs on “yes”
(seen before) decisions than on “no” (novel
stimulus) decisions in the memory task (fig.
S1A, see legend for statistics), as expected from
a medial temporal lobe (MTL)–dependent re-
cognition memory task (41). In the categori-
zation task, RT was not significantly different
between the two responses (fig. S1A), showing
the absence of oddball effects.

Effects of task type and response modality
in the MFC

Instructions about the task type and response
modality were shown at the beginning of each
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block (Fig. 1, A and B). Cells showed significant
modulation of their firing rate during the
baseline period as a function of task type
(Fig. 2, A andB, shows an example in pre-SMA).
At the single-neuron level, significantly more
cells were modulated by task type in the MFC
than in the HA: 25% of MFC cells (165/767, 82
in dACC, 83 in pre-SMA; see fig. S2B) versus

12% ofHA cells (79/663, 21 inHF, 58 in AMY),
c2 test of proportions, P < 1.5 × 10−6. Similarly,
at the population level, population decoding
accuracy was significantly higher in the MFC
than in the HA [Fig. 2C; 90% versus 70%, re-
spectively; P< 1 × 10−3; true difference (Dtrue) =
20% versus empirical null distribution; see
Materials and methods], a conclusion that held

regardless of the number of neurons used (fig.
S2H). Cells also modulated their activity as a
function of responsemodality during the base-
line period (fig. S2E shows an example). As
with task-type encoding, significantly more
cells encoded response modality in the MFC,
and this signal could be decoded with higher
accuracy in theMFC than in theHA (14%versus
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Fig. 1. Task, electrode locations, and behavior. (A) Task structure. A
session consisted of eight blocks of 40 trials. The task switched with each
block (blue = categorization, red = memory), and the response modality
switched halfway through each block (saccade or button press, randomly
assigned at the beginning of the block). The subject was instructed about
the task at the beginning of each block (purple arrows) and how to respond at
the beginning and halfway points of each block (green arrows). (B) Example
of screens shown to subjects for two example trials. (C and D) Electrode

locations. Each dot is the location of a microwire bundle in one subject.
Coordinates are in Montreal Neurological Institute (MNI) 152 space.
(E and F) Eye tracking data from one session from the button press (E) and
eye movement (F) trials. (G) Reaction times as a function of task across
all sessions (memory, m ± SEM, 1.27 ± 0.02 s; categorization, 0.90 ± 0.02 s;
P = 7.6 × 10−228, two-sample KS test). (H) Memory performance improves
over the course of the experiment (b = 0.56, P = 8.42 × 10−130, logistic mixed
effects model). See fig. S1 for an extended summary of the behavior.
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10% of cells; 84/593 versus 59/586 in the MFC
andHA, respectively; 33 in ACC, 51 in pre-SMA,
27 in HF, 32 in AMY; c2 test of proportions,
P = 0.03; population decoding performance
72% versus 64%, Fig. 2D; P < 0.05, Dtrue = 8%
versus empirical null distribution); this con-
clusion held regardless of number of neurons
used (fig. S2I).
After a task switch, contextual signals

emerged rapidly within one to two trials in
the new context in theMFC (Fig. 2H). This was
not a result of ongoing poststimulus process-
ing, because the task could still be decoded
even if only considering the subset of task cells
in theMFC,which did not differentiate between
the tasks around response time (see fig. S2G).
Task-switching costs were also reflected in the

subjects’ longer reaction times shortly after a
change in task or effector type (fig. S2A). Task-
type representations during the baseline period
were stronger on trials where the subject sub-
sequently produced a fast response than on
those where the response timewas slow (Fig.
2I), indicating behavioral relevance. We also
tested whether the two types of contextual
signals were sufficiently robust to avoid inter-
ferencewithoneanother, using a cross-condition
generalization decoding analysis (44) (Fig. 2E).
We first trained a decoder to discriminate task
type on trials where the subject was instructed
to reply with a button press, and thenwe tested
the performance of this decoder on trials where
the subject was instructed to use saccades
(and vice versa). The two decoders generalized

in theMFC but not in the HA (Fig. 2, F and G).
For this reason, we focused on the MFC when
conducting the analysis above.

Cross-condition generalization of familiarity
and image category

Next, we examined whether the neural repre-
sentations of image category and familiarity
are sensitive to task demands. We assessed
two consequences of task demands: gener-
alization across tasks and strength of repre-
sentations within each task. At the single-unit
level, we examined visually selective (VS) cells
(42), whose responses are thought to reflect
input from high-level visual cortex, andmemory-
selective (MS) cells (41), whose response signals
stimulus familiarity (Fig. 3, A and B, shows
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Fig. 2. Representations of task type and response modality. (A and
B) Example pre-SMA neuron. (B) Average firing rate during the baseline
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is shown. (C and D) Population decoding of task type (C) and response
modality (D). (E) Cross-condition decoding approach. The background
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(H) Decoding performance as a function of trial number relative to a task

type switch (green arrows in Fig. 1A; transitions from categorization to
memory and vice versa were pooled). Error bars indicate SD in all panels,
with the exception of (B), where they indicate SEM. (I) Baseline decoding
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four groups). See fig. S2 for additional analyses that break down context
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Fig. 3. Representations of image category and familiarity (new versus
old). (A and B) Example cells that (A) represent image category and (B)
differentiate between new and old stimuli. (C) Decoding accuracy of image
category from all recorded cells was significantly higher in the HA relative to
the MFC (Dtrue = 49%, P < 0.001). (D) Decoding of new versus old (ground
truth) was similarly accurate in the HA and MFC (Dtrue = 7%, P = 0.13). For
new versus old decoding, trials with images of monkeys were excluded,
because the recognition performance for these images was at chance (fig.
S1B). (E) Population activity of all recorded HA (left) and MFC (right) cells,
plotted in 3D using MDS. Individual points show the mean activity of the
population for that specific condition. The highlighted plane contains all
locations of state space occupied by a given task for the case of fruits
versus faces as the binary category distinction (for illustration only; all
analysis uses all categories). The geometry of the representation allows for
a decoder that is trained on one task to generalize to the other task
(see fig. S4C for example decoder hyperplanes). (F) Approach used for
the cross-condition generalization analysis. Color indicates task (blue =
categorization, red = memory). (Top) We trained a decoder to discriminate
between new and old trials on categorization trials and then tested its

performance on new and old stimuli encountered during the memory
condition (and vice versa). (Bottom) Similarly, a decoder that is trained to
discriminate between image categories (in this example, faces versus fruits;
all results include all six possible pairs) on categorization trials was tested on
memory trials. (G) Cross-condition generalization performance for image
category. (H) Cross-condition generalization performance for new versus old.
(I) Difference in cross-task generalization decoding accuracy for familiarity
and image category between HA and MFC. Difference is computed between
the average cross-task performances in each area (i.e., average of
memory→categorization and categorization→memory). The null distribution
for the average was estimated from the empirical null estimated by shuffling
the labels used to train the decoders. For both variables, decoding from
HA had significantly greater cross-task generalization performance than
decoding from MFC (the difference in both cases is positive and outside of the
95th percentile of the null distribution). (J) Generalization index (see
Materials and methods) for memory (two data points on the left) and image
category (two data points on the right). For both image category and
familiarity, generalization across task was higher in the HA population than
in the MFC population (see figure for statistics; D, difference).
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examples). Of the HA cells, 40% were visually
selective (264/663, 35 in HF and 229 in AMY)
and 11% were memory-selective (73/663, 10 in
HF, 63 in AMY; 24/73 were old>new selective
and 49/73 were new>old selective; see Ma-
terials and methods for selection model). In
the MFC, 13% (103/767) of the cells were
visually selective and 11% (84/767) werememory-
selective. First, we performed single-neuron
analysis of the selected HA cells. Visual and
memory selectivity were present in both the
memory and categorization blocks (figs. S3,
D, E, H, and I). MS cell responses reflected a
memory process: they strengthened over blocks
as memories became stronger (fig. S3G), and
they differed between forgotten old (false nega-
tive, FN) and correctly identified new (true
negative, TN) stimuli for both new>old (n = 49)
and old>new (n = 24) preferring MS cells
(fig. S10F). Furthermore, these memory signals
were behaviorally relevant: new/old decoding
was significantly weaker in incorrect trials than
in correct trials (fig. S10G).
To answer the question of whether coding

for visual and memory information general-
izes across tasks, we took a population-level
approach (over all single units, without se-
lection). We used decoding performance on
individual trials and single-neuron analysis
(fig. S4, D and E) to assess whether the neural
encoding of visual category and/or familiarity
of a stimulus depended on task demands. In
both the HA and MFC, image category could
be decoded (Fig. 3C, 98 and 49% in the HA
and MFC, respectively; chance level = 25%).
Category decoding performance was signifi-
cantly higher in the HA than the MFC (Dtrue =
49% versus empirical null distribution, P < 1 ×
10−3). In the HA, the ability to decode category
was not significantly different between the
two tasks (Fig. 3C, 96% versus 99% in catego-
rization and memory, respectively; Dtrue = 3%,
P = 0.25) and could be decoded above chance
in both the HF and AMY (fig. S4, A and B). At
the single-neuron level, HA neurons encoded
significantly more information about category
in the memory task (fig. S4D), an effect that
decoders were not sensitive to because of satu-
ration. In theMFC, decoding accuracy for image
category was significantly higher in thememory
task (Fig. 3C, 60%versus 36%,Dtrue = 24%versus
empirical null distribution, P < 0.001). Memory
was decodable in both the HA and MFC (Fig.
3D, 69% versus 76%, respectively), with no sig-
nificant difference in decoding accuracy be-
tween the two tasks in the HA (Fig. 3D, 67%
versus 71% in categorization andmemory trials,
respectively; Dtrue = 4%, P = 0.3) and signifi-
cantly better decoding ability in the MFC in
the memory task (Fig. 3D, 86% versus 61%;
Dtrue = 25% versus empirical null, P = 0.001).
Single-neuron analysis confirmed the impres-
sion fromdecoding that the strength ofmemory
signals in the HA was not modulated by task

demands, whereas in theMFC it was (fig. S4E).
In either task, at the population level, memory
decoding in the HA was only possible in the
amygdala (fig. S4B). The population-level de-
coding of memory in the HA was principally a
reflection of the signal carried by the MS cells
(fig. S10E) and was not due to repetition sup-
pression of VS cells (fig. S10, B and C), because
it was not possible to decode familiarity from
VS cells alone (fig. S10D).
To gain insight into the geometry of the

population-level representations, we assessed
whether the decoders trained to report famil-
iarity and the category of the stimuli in one
taskwould generalize to the other task (Fig. 3F
schematizes our approach). Cross-task gener-
alizability would indicate that familiarity and
visual category are represented in an abstract
format (44). First, cross-task generalization
performance was greater in the HA than MFC
for both image category (Fig. 3, G and I; 98%
versus 41%, averaged across the two cross-
condition decoding performances; Dtrue = 57%
versus empirical null, P < 1 × 10−3) and
familiarity (Fig. 3, H and I; 67% versus 55%,
Dtrue = 12% versus empirical null, P < 0.05).
Second, to help understand the geometry of
these neural representations, we projected the
average HA and MFC population activity for
all possible pairings of familiarity, image cate-
gory, and task (eight different conditions) into
a three dimensional (3D) state space usingmul-
tidimensional scaling. For illustration purposes,
we show this 3D state space for the two image
categories (fruits and faces) for which memory
performance was the best. In the HA (Fig. 3E,
left), the relative positions of a “new face”with
respect to an “old face” were preserved across
tasks (shown as differently colored planes). The
relatively parallel location of the subspace of
neural activity occupied by the two tasks per-
mits cross-task generalization for both image
category and familiarity. In contrast, in the
MFC (Fig. 3E, right), the relative positions of
the four conditions were not preserved. This is
consistent with the weaker cross-task gener-
alization performance observed in the MFC
relative to the HA (Fig. 3, G and H), resulting
in reduced generalization indices in the MFC
compared with the HA (Fig. 3J; this metric
takes into account different levels of within-
taskdecodingaccuracy,which is anupperbound
for the achievable generalization performance;
see the supplementary text section of the sup-
plementary materials for details).

Representation of choice

We next investigated how the subject’s choice
(yes or no) is represented by single neurons
(Fig. 4A shows examples) and the population.
Decoding accuracy for choices was highest
in the MFC, with an average population de-
coding performance of 89% compared with
68% in the HA (Fig. 4B; Dtrue = 19% versus

empirical null, P < 1 × 10−3; 61% in AMY and
57% in HF when trained separately; fig. S7G
shows this result as a function of number of
neurons used). Further single-neuron (fig. S11,
A and B) and population (Fig. 4E and fig. S11C)
analysis confirmed that the choice signal was
significantly stronger in theMFC regardless of
selection threshold and quantification method.
We therefore first analyzed choice information
in the MFC (see below for results in the HA).
Choice decoding in the MFC was strongest
shortly after stimulus onset, well before the
response was made (fig. S7A). To disassociate
representation of choice (yes or no) from the
representation of ground truth (old or new)
during the memory recognition task, we fit a
choice decoder to a subset of trials, half ofwhich
were correct and half of which were incorrect.
The activity of MFC cells predicted choice but
not the ground truth at levels significantly dif-
ferent from chance (Fig. 4C; choice decoding
is above the 95th percentile of the null distribu-
tion, whereas new/old decoding is not; see fig.
S7D for this analysis shown over time). Choice
could be decoded from the MFC separately for
both the correct and the incorrect trials (fig. S5I).
As a control for potential confounds due to RT
differences between tasks (see fig. S1A), we
acquired data from a separate control task in
which we eliminated RT differences behav-
iorally by adding a waiting period (six sessions
in five subjects; n = 180 and 162 neurons in the
HA and MFC, respectively; see Materials and
methods and fig. S6). As in the original task,
MFC cells represented the subject’s choice (fig.
S6, C to G), thereby confirming that this sep-
aration is not due to RT differences.
We used multidimensional scaling to visual-

ize the population activity for the eight com-
binations of choices, task types, and response
modality (Fig. 4D, and see Materials and me-
thods). The resulting geometrical configura-
tion indicates that choice decoding generalizes
across responsemodality (Fig. 4D, top) but not
across task types (Fig. 4D, bottom). We there-
fore computed the cross-task generalization
performance of a decoder trained on choices
during one task and tested on the other. We
performed this analysis across time (Fig. 4E;
see fig. S7B for this analysis shown separately
for pre-SMA and dACC) and also in a single
poststimulus time bin (Fig. 4F). To avoid con-
founds due to response time differences, we
performed the fixed window analysis (Fig. 4F)
only for the control task, where the timing
between tasks was identical (fig. S6B). While
the choice signal did not generalize across
task types (Fig. 4F), it did generalize across
response modality within the same task type
(Fig. 4G). Quantifying this observation with
the generalization index confirmed this im-
pression (Fig. 4H). We also examined choice
signals in the HA. Although choice signals
were comparatively weak in the HA (fig. S7E
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and Fig. 4B; see Fig. 4B for statistics), they
nevertheless exhibited a pattern of general-
ization similar to that seen in the MFC (fig.
S7, E and F).
To test the possibility that any task might

yield a distinctive choice axis that does not

generalize to any other task, we considered the
four subtasks that make up the categorization
trials in a given session (the target category
can be any one of the four possible image cate-
gories). We tested whether the choice signal
generalizes across these subtasks by training

and testing across blocks requiring different
categorizations. Choice decoding generalized
across all subtasks in the categorization task
but not the memory task (Fig. 4I). Next, we
compared the dynamics of the population ac-
tivity between the eight conditions arising

Minxha et al., Science 368, eaba3313 (2020) 26 June 2020 6 of 14

No, Memory
No, Category
Yes, Memory
Yes, Category
Stim onset

Dim 1

Dim 2

Dim
 3

N
,B
,C

Y
,B
,C

N
,S
,C

Y
,S
,C

N
,B
,M

Y
,B
,M

N
,S
,M

Y
,S
,M

Trajectory sim
ilarity

Choice = No, Yes
Effector Type = Button Press, Saccade
Task = Categorization, Memory

0.5

0.6

0.7

0.8

0.9

1
N,B,C
Y,B,C
N,S,C
Y,S,C
N,B,M
Y,B,M
N,S,M
Y,S,M

Stimulus Onset
A

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Categorization
Memory

Decoder trained on:

Memory choice

F

0 0.5 1 1.5

5
10
15

Fi
rin
g 
R
at
e 
[H
z]

-0.5 0 0.5 1

5

10

-0.5 0 0.5 1

2

4

100

200

300

Tr
ia
l N

um
be
r

-0.5
Time from stimulus onset [s]

No, Memory
No, Category

Yes, Memory
Yes, Category

Cell 1
preSMA

Cell 2
dACC

Cell 3
preSMA

-0.5 0 0.5 1 1.5
Time from stimulus onset [s]

0.4

0.6

0.8

1.0

Cross-condition
Cat choice
Cross-condition

Stimulus Onset
E

Decoder tested on:
Categorization
Memory

0.5

0.6

0.7

0.8

0.9

1.0
Button press
Saccade

Decoder trained on:

Decoder tested on:
Button press 
Saccades

All CatMem All Cat Mem

0.5

0.6

0.7

0.8

0.9

1.0

C
ho
ic
e 
de
co
di
ng
 a
cc
ur
ac
y

HA
MFC

B

C

Trial type

Choice decoder trained on

0.4

0.6

0.8

1.0

C
ho
ic
e 
de
co
di
ng
 a
cc
ur
ac
y

Ca
r

Fr
uit

Fa
ce

Mo
nk
ey

Choice decoding memory trials

Choice decoding averaged across
all targets except the one used to train

C
hance level

95   percentile
th

C
hance level

Choice New/Old

0.5

0.6

0.7

0.8

0.9

1.0

I

Ne
w C

hoice
decoder

Ye
s Ol

d

Ye
s

Ne
w
No

Ol
d
No

New/Old
decoder

C
hance level

4

-10
10

0

20

4

100

10

0
-10-10

-20

D
im
en
si
on
 3

Dimension 2
Dimen

sion 1

Button press
Saccade

0

00

44

1 “yes”, categorization
2 “no”,   memory
3 “no”, categorization
4 “yes”, memory

1

2

3

3

1

2

4

D

G

0 /8 /4 3 /8
( cat, mem)

0

5

10

15

N
um

be
r o

f c
el
ls

0.0120
0.004 0.008

cat

m
em

All cells (767)

0.012

0.008

0.004

J

top 25  percentile for
either task

th

-10
10

0

20
100

10

0-10-10
-20 Dime

nsion
 1

Dimension 2

D
im
en
si
on
 3 Categorization

Memory
1 “yes”, button press
2 “yes”,   saccade
3 “no”, button press
4 “no”, saccade

1

1

2

2
3

3

4

4

K

t = 200ms

Decoder trained on Button press Saccade
Decoder trained on

95th
percentile 95th

percentile

Tas
k

Res
po

ns
e t

yp
e-0.2

0

0.2

0.4

0.6

0.8

1

1.2

G
en
er
al
iz
at
io
n 
in
de
x

w
ithin = cross-condition

H

p < 0.001
  = 0.19

D
ec
od
in
g 
ac
cu
ra
cy

C
ho
ic
e 
de
co
di
ng
 a
cc
ur
ac
y

C
ho
ic
e 
de
co
di
ng
 a
cc
ur
ac
y

C
ho
ic
e 
de
co
di
ng
 a
cc
ur
ac
y

Fig. 4. Task-specific representation of choice. (A) Example MFC choice
cells, split by choice (yes or no) and task. (B) Population choice decoding
accuracy was significantly greater in MFC than in HA (across all trials,
Dtrue = 19% versus empirical null, P < 1 × 10−3). (C) MFC cells represent
choice and not the ground truth (i.e., new or old; memory trials only).
(D) Population summary (neural state space) of choice-related activity in
MFC, plotted in 3D space derived using MDS. (Top) Variability due to
response modality. The highlighted planes connect the points of state space
occupied by activity when using button presses (purple) or saccades (green).
(Bottom) Variability due to task type. The highlighted planes connect the
points of state space occupied by activity in the same task. (E) Choice-
decoders trained in one task do not generalize to the other task (bin size:
500 ms, step size: 16 ms). (F) Same as (E), but for a fixed 1-s time
window starting at 0.2 s after stimulus onset. (G) Choice decoding

generalizes across effectors [see (D)]. (H) Generalization index of choice
decoding (see Materials and methods) to summarize (F) and (G). The
representation of choices generalized across response modality but not task.
(I) Generalization between different subtasks of the categorization task
but not between task types. The colored bars indicate the 5th to 95th
percentile of the null distribution. (J) (Left) State-space trajectories for the
four conditions arising from the combination of response (yes or no) and
task (categorization or memory). (Right) Trajectory similarity, computed in
an 8D latent space (recovered using GPFA, see Materials and methods)
across the eight conditions arising from the combinations of choice, effector
type, and task. (K) Decoder weight of each cell for decoding choice during
the categorization and memory task. The cells in the top 25th percentile
are shown in black. The inset shows the angle created by the vector
½wcat

i ;wmem
i � with respect to the x axis of the cells marked in black.
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from the combination of choice, effector type,
and task in a state-space model recovered
using Gaussian process factor analysis (GPFA)
[(45), and see Materials and methods]. Com-
paring the pairwise similarity between the
trajectories in state space (Fig. 4J, left) within
the first 500 ms after the stimulus onset re-
vealed that the patterns of dynamics in state
space first cluster by task type (Fig. 4J, right;
see movie S1).
We next examined whether the population-

level analysis relied on different sets of neurons
to decode choice in each of the two tasks. We
determined how individual cells are recruited
by a linear decoder (44, 46). For each cell, we
quantified its importance (46) for both the
memory and categorization choice decoder
(Fig. 4K).We then plotted the degree of special-
ization for each cell on the basis of its impor-
tance in each task (seeMaterials andmethods).
Cells that report choice independently of task
should lie on the diagonal (i.e., an angle of p/4).
Instead, the distribution of angles was signif-
icantly bimodal across all cells (Fig. 4K, inset
plot;P< 1 × 10−5, Hartigan dip test), withmodes
centered away from the diagonal. Despite this
bimodality, we could still use the cells that are
the most “useful” in one task to train a new de-
coder that can predict choice well above chance
(although significantly weaker compared with
using all cells) in the other task (fig. S7C). This is
not an example of cross-task generalization,
because we are fitting a new decoder.

Task-dependent spike-field coherence between
MFC cells and HA LFP

It is thought that the selective routing of
decision-related information between the HA
and MFC is coordinated by interareal spike-
field coherence (24).We therefore askedwhether
MFC neurons phase-lock to ongoing oscillations
in the LFP in the HA and, if so, whether the
strength of such interactions is modulated by
task demands. We performed this analysis for
the 13 subjects and 33 sessions for which we
simultaneously recorded from both areas
(Fig. 5A). In the following, we only used neural
activity from the 1-s baseline period that pre-
cedes stimulus onset, to avoid confounds related
to stimulus onset–evoked activity. Individual
cells in the MFC showed strong task modula-
tion of MFC to HA spike-field coherence (Fig.
5B shows a single-cell example in the dACC).
At the population level, MFC cells showed sig-
nificantly stronger theta-band coherence with
HA oscillations during the memory task than
during the categorization task (Fig. 5C, 8822 cell
electrode pairs; P < 1.3 × 10−7, paired t test,
measured at 5.5 Hz; see fig. S9, B and C, for
additional controls). This was the case for both
MFC-hippocampus and MFC-amygdala inter-
actions (Fig. 5D, n = 3939 and 4884 and P =
8.8 × 10−4 and 4.3 × 10−5, respectively, paired
t test). This effect was due to changes in phase

preference, as there was no significant differ-
ence in HA LFP power between the tasks (Fig.
5E, P = 0.08, paired t test of signal power at
5.5 Hz, estimate across all 8822 cell-electrode
pairs). Of the 767 MFC cells, a significant sub-
set of ~100 cells were phase-locked to the
theta-band HA LFP (fig. S9A), with the largest
proportion preferring 3 to 8 Hz.
To determine whether there is a relation-

ship between the tuning of cells in MFC and
their interarea coherencewithHA,we selected
for choice cells independently in the categori-
zation and memory task (see Materials and
methods for selection model; note selection
controls for RT differences). This approach
revealed that 101/767 and 82/767 cells were
significantly modulated by choice during the
memory and categorization task, respectively
(P < 0.001 versus chance for both; see Fig. 4A,
cells 2 and 1, respectively, as an example).
Single-neuron decoding showed that it was
not possible to decode the subject’s choice
in the categorization task from choice cells
selected in the memory task and vice versa
(fig. S5, A to D). Single-neuron analysis re-
vealed that cells preferring either “no” or “yes”
choices were present in approximately equal
proportions in both tasks (fig. S5B). The re-
moval of the selected choice cells from a pop-
ulation decoding analysis with access to all
recorded neurons significantly diminished de-
coding performance (fig. S5, F andG). Notably,
each of the selected cells had a high impor-
tance index, as determined from population
decoding (Fig. 5F). Considering only the MFC
choice cells revealed that this subset of cells
similarly increased their phase-locking dur-
ing the memory task (Fig. 5G, top), with the
strongest effect, again, in the theta range [peak
frequency ( fpeak) = 5 Hz, P = 1 × 10−6, paired t
test]. Both categorization and memory choice
cells showed this pattern of modulation (Fig.
5G, bottom). The memory choice cells exhib-
ited an increase in gamma-band coherence
(Fig. 5G, fpeak = 38.5 Hz, P = 2 × 10−6, paired
t test). The extent of phase-locking of choice
cells following stimulus onset (0.2 to 1.2 s)
during the memory task was significantly
stronger for correctly retrieved trials than
for forgotten old trials, indicating behavioral
relevance formemory retrieval (Fig. 5H). Lastly,
to exclude the possibility that this interarea
effect was due to task-dependent changes within
the HA, we examined the phase-locking proper-
ties of HA cells to their own locally recorded
LFP (LFP and spiking activity is recorded on
separate electrodes; see Materials and meth-
ods). The spiking activity of 331/663 HA cells
was significantly related to the theta-frequency
band LFP (Fig. 5I, shown for f = 5.5 Hz). The
strength of this local spike-field coherence was,
however, not significantly different between
the two tasks (Fig. 5J,P= 0.61, paired t test,n=
2321 cell-electrode pairs).

Discussion
We investigated the nature of flexible decision-
making in the human brain by probing how
the strength and/or geometry (44) of neu-
ral representations of stimulus memory,
stimulus category, and choice is modified when
subjects switch between a memory and a
categorization task. We found evidence for
both kinds of neural representation changes
resulting from changing task demands for a
subset of the studied variables. In the MFC,
both the strength and geometry of represen-
tation of stimulus memory changed as a func-
tion of task demands. In contrast, in the HA,
both the strength and geometry of the repre-
sentation of stimulus memory were insensi-
tive to task demands (Fig. 3, D and H). Our
finding of memory signals in the amygdala
supports the hypothesis (47, 48) that the
amygdala contributes to recognition memory
by signaling stimulus familiarity. Representa-
tion strength of stimulus category in both the
HA and MFC was stronger in the memory
task, but the geometry of this representation
was also modulated by the task in the MFC
(Fig. 3G, right). Overall, these results show
that the geometry of the representations (as
assessed by cross-task generalization) of stim-
ulus familiarity and memory were significantly
less sensitive to task demands in the HA com-
pared with the MFC (Fig. 3, G and H).
At the population level in the MFC, choices

in both the memory and categorization task
were decodable with high reliability, but these
decoders did not generalize across the two
tasks. Choice decoding generalized across sub-
tasks of the categorization task and across
changes of response modality in both tasks,
indicating that changes in representationswere
due to switching between a task that requires
memory retrieval and one that does not. While
the choice signal was significantly weaker in
the HA, this same pattern of generalization
also held for the HA, suggesting the pos-
sibility that the task demand–dependent choice
representation we found in the MFC is widely
distributed in thebrain. Agroupof taskdemand–
dependent cells in the MFC were choice cells,
which preferentially signal behavioral decisions
for either memory or categorization decisions
irrespective of response modality and regard-
less of the ground truth of the decision. Thus,
from the point of view of downstream areas,
neurons formed two separate decision axes:
one for memory-based decisions and one for
categorization-based decisions. These two de-
cision axes were instantiated selectively so that
they were only present when required by the
current task.
These findings contrast with prior work on

task switching involving different tasks that
required purely perceptual decisions, which
found a single decision axis in the monkey
prefrontal cortex, with task-irrelevant attributes
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also represented (3). We found that memory-
based choices add a second decision axis, which
is present only when decisions engagememory
retrieval processes. Although task-sensitive re-
presentations of choice have been shown in

recordings fromrodentsandnonhumanprimates
during perceptual decision-making (2, 3, 49, 50)
and in human neuroimaging (51), our data
reveal choice representations that specifically
signal recognition memory–based choices at the

single-cell level. It has long been appreciated
that the frontal lobes are critical for initiating
and controlling memory retrieval (30, 52–54).
Neuroimaging reveals that patterns of activity in
some frontal and parietal areas are modulated
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Fig. 5. Modulation of interareal spike-field coherence by task demands.
(A) Analysis approach. Inset shows that only data from the baseline was used
[except in panel (H)]. (B) Spike-field coherence for a cell in dACC relative
to all channels in the ipsilateral hippocampus. (C) Phase-locking of MFC
cells to HA LFP. (Top) Average interarea PPC of all cell-electrode pairs for
each task. (Bottom) Significance of difference between tasks; peak difference
was at f = 5.5 Hz. Dashed line shows the threshold (P = 0.05/56, Bonferroni
corrected). (D) Difference in average interarea PPC at f = 5.5 Hz between
task conditions for all possible cell-electrode pairs (from left to right,
n = 8822 electrode pairs, P = 1.3 × 10−7; n = 3938, P = 8.8 × 10−4; n = 4884,
P = 4.3 × 10−5; paired t test). (E) Average spike-triggered power was
not significantly different between the two tasks (paired t test, n = 8822 cell
electrode pairs, P = 0.08). (F) Single-neuron analysis of choice cells.
Importance index assigned by the decoder to each cell for decoding choices
in either task. Selected choice cells are indicated in color. (G) MFC-HA
spike-field coherence for choice cells. (Top) Average PPC for all choice
cells in MFC (209 cells, 2384 cell-electrode pairs) for the two tasks.

(Bottom) Significance of difference between tasks, shown separately for
memory and categorization choice cells (n = 1176 and 906 cell-electrode
pairs, respectively). Only memory choice cells show a significant difference in
the gamma band (P = 2 × 10−6, t test). (H) Difference in spike-field coherence
between true-positive (correct retrieval) and false negative (incorrect
retrieval) trials measured in the [0.2 s, 1.2 s] window after the stimulus onset,
shown separately for memory choice cells (left panel) and categorization
choice cells (right panel) in the theta-frequency (4 to 10 Hz) and gamma-
frequency (30 to 80 Hz) bands. PPC was significantly stronger in correctly
retrieved trials in the theta band for memory choice cells (Dmem = 0.003,
P = 0.002; Dcat = −0.001, P = 0.3; paired t test) and in the gamma band for both
types of choice cells (Dmem = 0.002, P = 0.005; Dcat = 0.004, P = 7.2 × 10−8;
paired t test). (I) Spike times of HA cells are coherent with local theta-band
(3 to 8 Hz) LFP. (J) Average local PPC in the HA did not differ significantly as a
function of the task (f = 5.5 Hz; P = 0.51, paired t test, n = 2321 cell-electrode
pairs). Error bars in panels (D) and (H) denote the 95% confidence interval
(bootstrap, n = 10,000 iterations). All other error bars are SEM.
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bymemory retrieval demands (34, 35, 37, 38, 55),
whereas memory-related activity patterns in
the MTL are comparatively insensitive to re-
trieval demands (34). These findings have led
to the proposal that the memory retrieval net-
work consists of specialized processes separate
from those used for other kinds of decisions
(6, 56, 57). The memory-choice axis we de-
scribe is a potential cellular substrate for this
critical aspect of human cognitive flexibility.
Future work is needed to investigate whether
similar principles also apply to hippocampus-
dependent associate or source memory–based
(58–60) decisions, which we did not assess here
(we probed recognition memory).
A second group of cells that we characterized

in the MFC signal the currently relevant goal
(task type and response modality) throughout
the task. These cells switched their activity pattern
when instructions indicated a change in task
demands. Although these switches were rapid,
they were not instantaneous, likely reflecting
the cost of switching between memory retrieval
and categorization modes (61–63). We hypothe-
size that these cells facilitate the holding of
the active task set in working memory (64, 65)
and configure brain networks in preparation
for appropriate execution of the instructed
task (12, 34, 66, 67). Task-switching costs are
a much investigated aspect of cognitive flexi-
bility (39, 61–63), but how they arise and why
some task switches are more difficult than
others remain poorly understood. The MFC
cells we describe here offer an avenue to di-
rectly investigate these questions.
Finally, we uncovered a possiblemechanism

by which memory-based information can be
routed dynamically between the MFC and HA
when a task requires memory retrieval. Chang-
ing long-range synchronization of neural activ-
ity is thought to be a way by which functional
connectivity betweenbrain areas canbe changed
flexibly (68–71). Here, we reveal a specific in-
stance of this phenomenon at the cellular level in
humans in the form of changes in the strength
of cortico-hippocampal and cortico-amygdala
functional connectivity. Hippocampus–medial
prefrontal cortex (mPFC) functional connectivity
in rodents supports spatial working memory
(24) and is prominent during both navigation
and rest (72–74). Similarly, amygdala-mPFC
functional connectivity supports flexibly switch-
ing between aversive and neutral behaviors
depending on learned cues (75). But it is not
known whether these pathways serve a role in
long-term memory retrieval in humans and,
if so, whether this retrieval can be engaged
selectively. Similarly, in humans,MTL-PFC con-
nectivity changes, as measured by fMRI, have
been related to control demands over memory
retrieval (36, 76), but it remains unclear how
these indirect metrics relate to long-range syn-
chronization asmeasured in rodents. Here, we
show that MFC-HA connectivity is selectively

enhanced during the memory task, indicating
that patterns of interareal connectivity change
in preparation of initiating memory retrieval
(77, 78). The extent of synchrony after stimulus
onset is stronger when a memory is success-
fully retrieved compared with when it is forgot-
ten. Memory choice cells in the MFC exhibited
enhanced gamma-frequency band coordina-
tion of their spiking activity with the HA LFP,
and this modulation was behaviorally relevant
after stimulus onset, which reveals a specific
cellular-level instance of a role for gamma
oscillation–mediated coordination of activity
between distant brain regions (24, 79) in human
memory retrieval.

Materials and methods
Subjects

Subjects were 13 adult patients being eval-
uated for surgical treatment of drug-resistant
epilepsy that provided informed consent and
volunteered for this study (see table S1). The
institutional review boards of Cedars-Sinai
Medical Center and the California Institute
of Technology approved all protocols. We ex-
cluded potential subjects who did not have
at least one depth electrode inmedial frontal
cortex.

Electrophysiology

We recorded bilaterally from the amygdala,
hippocampus, dACC, and pre-SMA usingmicro-
wires embedded in hybrid depth electrodes
(81). From each microwire, we recorded the
broadband 0.1 to 9000 Hz continuous extra-
cellular signals with a sampling rate of 32 kHz
(ATLAS system,Neuralynx Inc.). Subjects from
which at least onewell-identified single neuron
could not be recorded were excluded.

Spike sorting and single-neuron analysis

The raw signal was filtered with a zero-phase
lag filter in the 300 to 3000Hz band, and spikes
were detected and sorted using a semiautomated
template-matching algorithm (82, 83). All PSTH
diagrams were computed using a 500-ms win-
dow with a step size of 7.8 ms. No smoothing
was applied.

Electrode localization (relevant for Fig. 1)

Electrode localization was performed based
on postoperative MRI scans. These scans were
registered to preoperative MRI scans using
Freesurfer’s mri_robust_register (84) to allow
accurate and subject-specific localization. To
summarize electrode positions and to provide
across-study comparability, we also aligned the
preoperative scan to theMNI152-aligned CIT168
template brain (85) using a concatenation of
an affine transformation followed by a sym-
metric image normalization (SyN) diffeomor-
phic transform (86). This procedure provided
theMNI coordinates that are reported here for
every recording location. The electrode loca-

tions shown on the Atlas Brain (Fig. 1, C and
D) are for illustration only. Apparent localiza-
tion outside the target area or in white matter
is due to usage of an Atlas Brain alone.

Eye tracking (relevant for fig. S1)

Gaze position was monitored using an infrared-
based eye tracker with a 500-Hz sampling rate
(EyeLink 1000, SR Research) (87). Calibration
was performed using the built-in nine-point
calibration grid andwas only used if validation
resulted in a measurement error of <1 degree
of visual angle (dva) (average validation error
was 0.7 dva). We used the default values for the
thresholds in the Eyelink system that determine
fixation and saccade (eye movement) onsets.

Task

Each session consistedof eight blocks of 40 trials
shown in randomized order. At the beginning
of each block, an instruction screen told subjects
verbally the task to be performed for the fol-
lowing 40 trials (categorization or recognition
memory), the response modality to use (but-
tonpresses or eyemovements), andwhich visual
category is the target (for categorization task
only; either human faces, monkey faces, fruits,
or cars; order was pseudorandom so that each
image type was selected as the target at least
once) (see Fig. 1). The task to solve was either
“Have you seen this image before, yes or no?” or
“Does this image belong to the target category,
yes or no.”Odd-numbered blocks (1, 3, 5, and 7)
werecategorizationblocks; evennumberedblocks
were memory blocks (2, 4, 6, and 8). Button
presses (yes or no) were recorded using a re-
sponse box (RB-844, Cedrus Inc.). Eye move-
ments to the left or right of the image served
as responses in the eye movement modality
(left = yes, right = no). The mapping between
button and screen side and yes/no responses
was fixed and did not change; “yes”was on the
left and “no” was on the right. Subjects were
reminded that left = yes, and right = no, at the
beginning of each of the eight blocks. In the
first block, all images were novel (40 unique
images). In all subsequent blocks, 20 new im-
ages were shown randomly intermixed with
20 repeated images (the “oldset”).The20 repeated
images remained the same throughout a ses-
sion. We used entirely nonoverlapping image
sets for patients that completed multiple ses-
sions. The response modality (button presses
or eye movements) was initially selected ran-
domly and then was switched in the middle
of each block (an instruction screen in the
middle of each block showed the response
modality to be used for the remainder of the
block). In sessions where eye tracking was not
possible because of problems with calibration
(five sessions in three patients; see table S1), all
trials used the button presses as the response
modality. No trial-by-trial feedback was given.
In between image presentations, subjectswere
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instructed to look at the fixation cross in the
center of the screen.

Control task (relevant for fig. S6)

In 5 of the 13 subjects in this dataset (6/33
sessions), we ran an additional control task
in order to help determine whether neural
responses reflected processing of stimuli, of
decision variables, or of motor response plans.
Unlike the standard task where the subjects
could respond at any time after the stimulus
onset (thus making it difficult to distinguish
decision from choice), in this control task the
subjects were instructed to wait until the re-
sponse cue in order to register their answer,
either with a button press or with a sac-
cade. The stimulus was presented for a fixed
amount of time (1-s duration) and after a
0.5-to-1.5-s delay period, the subjects were
asked to respond to the question relevant for
that block.

Mixed-effects modeling of behavior (relevant for
Fig. 1 and fig. S1)

For the group analysis of behavior, we used
mixed-effectsmodels of the form y =Xb + Zb +
e, where y is the response,X is the fixed-effects
design matrix, b is the fixed-effects coeffi-
cients, Z is the random-effects design matrix,
b is the random-effects coefficient, and e is the
error vector. In all analyses, we used a random
intercept model with a fixed slope. The group-
ing variable for the random effects was the
session ID. The reported P values in the main
text correspond to the fixed-intercept for the
relevant variable. In the case of measuring the
effect of number of expositions (i.e., number
of times an image was seen) on the subject’s
accuracy during the memory trials, we used
a mixed-effects logistic regression with the in-
dependent variable as an ordinal-valued whole
number ranging from 1 to 7. The response was
a logical value indicating success or failure on
each memory question. Prior to running any
analysis of reaction time data, we excluded out-
liers from the distribution using the following
procedure: A sample was considered an outlier
if it was outside the 99th percentile of the em-
pirical distribution.

Reaction time matching procedure

As a control, we matched for RTs between the
two tasks (categorization and memory) to ex-
clude for potential differences due to difficulty.
To achieve this, we first added noise to all re-
action times (SD = 1 ms), followed by locating
pairs of trials with RTs that were equal to
within a tolerance of 0.1 s. Matching pairs
were then removed, and this procedure was
repeated iteratively until no further matches
could be found. Unmatched trials were ex-
cluded (resulting in reduced statistical power
owing to fewer available trials). We only used
the resulting match if the RTs between the

two groups were not significantly different. If
not, the procedure above was repeated.

Selection of visually (VS) and memory-selective
(MS) cells (relevant for fig. S3)

A cell was considered a VS cell if its response
covaried significantly with visual category,
as assessed using a 1×4 analysis of variance
(ANOVA) test at P < 0.05. For each selected
cell, the preferred image category was set to
be the image category for which the mean
firing rate of the cell was the greatest. All trials
were used for this analysis. MS cells were
selected using the following linear model

frcelle1þ b1 • category þ b2 •new=old þ b3 • rt

where “category” is a categorical (1×4) va-
riable, “new/old” is a binary variable, and
“rt” is a continuously valued variable. A cell
was determined to be memory-selective if
the t-statistic for b2 was significant with P <
0.05. We excluded the first block of trials
(40 images) from the analysis, in order to
keep the number of new and old stimuli the
same. Spikes were counted for every trial in
a 1-s window starting at 200 ms after stimulus
onset.

Selection of choice cells (relevant for fig. S5)

Choice cells were selected using a regression
model applied to the firing rate in a 1-s-size
window starting 200 ms after stimulus onset.
We fit the following regression model

frcelle1þ b1• category þ b2 • response þ b3 • rt

where the response is binary (yes orno), category
is a categorical variablewith four levels, and RT
is the reaction time. We fit this model sepa-
rately to trials in the memory and categori-
zation condition, assuring independent selection
of cells. RT was included as a nuisance regressor
to control for reaction time differences between
the two possible responses (see fig. S1A). A cell
qualified as a choice cell if the t-statistic of the
b2 term was significant at P < 0.05 for at least
one of the two task conditions. The response
preference of significant cells for either yes
or no was determined based on the sign of
b2 (positive = yes, negative = no). Notice that
the selection process uses separate trials for
memory choice cells and categorization choice
cells. All trials, regardless of whether the an-
swer was correct or incorrect, were used for
selection. To estimate the significance of the
number of selected cells, we generated a null
distribution by repeating the above selection
process 1000 times after randomly reshuffling
the response label. We estimated this null dis-
tribution separately for choice cells in thememory
and categorization condition and used each to
estimate the significance of the number of se-
lected cells of each type.

Chance levels for cell selection (relevant for figs.
S2, S3, and S5)
To estimate the chance levels for cell selection,
we repeated above procedures for selection of
visual category, memory selective, and choice
cells after randomly scrambling the order of
the labels determining the category member-
ship being selected for (yes/no response, visual
category, and new/old ground truth, respec-
tively). We repeated this procedure 1000 times.

Single-cell decoding (relevant for fig. S5)

Single-cell decoding was done using a Poisson
naïve Bayes decoder. The features used were
spike counts in a 1-s window, in the interval
[0.2 s, 1.2 s] relative to stimulus onset. The
decoder returns the probability of a class label,
given the observed spike count. The class label
was binary (“yes” or “no”). The model assumes
that the spike count is generated by a univar-
iate Poisson distribution, and a separate mean
rate parameter (l) is fit to each feature-class
pair. For a new observation, class membership
is determined on the basis of the likelihood
value. Notice that we used a single spike count
as a feature, so the naïve assumption of the
decoder is no longer relevant in this case.

Population decoding (relevant for Figs. 2, 3, and
4 and figs. S2 to S5, S7, and S8)

Single-trial population decoding was performed
on a pseudo-population assembled across ses-
sions (88). We present decoding results for a
variety of task variables: (i) image category,
(ii) new versus old, (iii) choice during memory
trials, (iv) choice during categorization, (v)
task, and (vi) response type. In order to esti-
mate the variance of the decoding performance,
on each iteration of the decoder (minimum of
250 iterations), we randomly selected 75% of
the cell population that was being analyzed.
For example, to measure choice decoding in
MFC (as shown in Fig. 4), we would randomly
select 575/767 cells on each iteration of the
decoder. The total number of available cells
depended on the variable that was being de-
coded. For example, for response type decoding,
the number of cells in MFC was 593, because
28/33 sessions included both response types.
We matched the number of trials per condi-
tion contributed by each cell that was selected
to participate in the population decoding. For
most task variables (image category, new/old,
context, effector-type), the number of samples
from each cell was equal, because the task
structure remained the same across all sub-
jects and sessions. For choice decoding, how-
ever, the number of instances varied, because
the subjectswere free to respondwith a “yes” or
a “no” for each stimulus.We thereforematched
the numbers for the smallest group across all
subjects. This matching procedure can further
reduce the number of cells we included in
the decoding that do not have the minimum
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number of trials needed per condition. For the
population decoding and cross-condition gen-
eralization of familiarity presented in Fig. 3,
we used all image categories for which the
subjects showed above-chance recognition per-
formance (see fig. S1B). Therefore we used im-
ages of cars, fruits, and faces, excluding images
ofmonkeys from the analysis. For all other anal-
ysis, we used all available categories.
A series of preprocessing steps were carried

out before training the decoder. Firing rates for
each cell were first de-trended (to account for
any drift in the baseline-firing rate) and then
normalized (z-scored) using the mean and
standard deviation estimated from the training
set. We then performed 10-fold cross validation
using a linear support vector machine (SVM)
decoder to estimate performance, as imple-
mented by the “fitcecoc” function inMATLAB.
We used an SVM with a linear kernel and a
scale of 1. Decoding results are reported either
as a function of time or in a fixed timewindow.
Time-resolved decoding was done on spike
countsmeasured in a 500-msmovingwindow,
witha16-msstepsize.For fixed-windowdecoding,
we used spike counts in a 1-s window. The loca-
tion of the window depended on the analysis.
In Fig. 2, for example, we used a [−1, 0] window
relative to stimulus onset for task type and re-
sponse type decoding. In Fig. 3, we used spike
counts in a [0.2, 1.2]windowrelative to stimulus
onset for decoding image category andnew/old.

Null models for testing significance of
decoding performance

Throughout the manuscript, we compare the
performance of our decoders against the 95th
percentile of a null distribution. The way that
this null distribution is generated depends
on the variable being decoded. For variables
such as image category, new versus old, and
response (i.e., yes versus no), we used a simple
shuffling procedure for the labels. For varia-
bles such as task type, which had structure
over time (memory blocks were always pre-
ceded by categorization block), small drifts
in firing rate might lead to inflated decoding
accuracy. Therefore, for such variables, the shuf-
fling was done in such a way as to preserve
their temporal relationship. Specifically, we
offset (i.e., circular shift) the labels by a random
integer value (sampled from the range ±10 to
20 trials). In the case of task decoding from
the baseline firing rate, this is a very conser-
vative measure of the null decoding perform-
ance, because many trials retain their original
label, thereby inflating the accuracy. This also
means that the mean performance of the null
distribution will not be the theoretical chancel
level. In the case of task decoding, the theo-
retical chance level is 50% (binary classifi-
cation). Using the circular shift method for
scrambling labels, the mean of the null dis-
tribution was ~60%.

To compare the performance between dif-
ferent decoders, for example choice decoding
from the HA versus MFC population, we con-
structed an empirical null distribution from
the pairwise differences in the performance of
these two decoders trained using the shuffled
labels. For example, if we get N estimates of
the null performance (i.e., after shuffling the
labels) of the HA decoder and N estimates of
the null performance of the MFC decoder,
we construct a distribution of the N•N = N2

pairwise differences. We can then compute
the significance of the true difference in de-
coding performance between MFC and HA,
Dtrue, relative to this distribution. The vari-
ance of the null distribution is sensitive to
the number of trials available for decoding
because it changes the resolution (step size)
by which decoding accuracy can change. For
example, for 10 trials, the accuracy can take
values from 0 to 1 in increments of 0.1. This
results in different values for the 95th per-
centile of the null distribution and is the reason
why in some cases a given difference in decod-
ing accuracy is significant while it is not in
others. Unless otherwise specified, all P values
for comparing decoding performance between
conditions or brain areas are calculated using
this approach. In the one case where the num-
ber of trials in a condition was too low to re-
liably estimate the null distribution (fig. S5I)
and for comparing the generalization index
(fig. 3J) we used a bootstrap test for equality
ofmeans (89) to compare the two conditions to
assign a P value to the true difference (repeated
1000 times to estimate the null distribution).

Multidimensional scaling (relevant for figs. 3 and 4)

Multidimensional scaling (MDS) was used
only for visualization. We computed MDS
using Euclidean distances (MATLAB function
“mdscale’) on z-scored spike count data in the
[0.2 s, 1.2 s] window relative to image onset. In
Fig. 3E, for example, MDS was computed on
the activity across the entire population of HA
and MFC cells, averaged across the eight con-
ditions plotted (new/old � task� image cate-
gory, where� denotes the Cartesian product).
Here the image category was restricted to images
of human faces and fruits, for visualization
purposes. For the cross-condition generalization
performance, we use all four image categories.
In Fig. 4D we compute MDS on the population
of MFC cells, averaged across eight conditions
(response � task � effector, where � denotes
the Cartesian product). In all cases, we useMDS
to map the neural activity to a 3D space.

Normalized weight metric (relevant for Figs. 4
and 5 and figs. S5, S7, S8, and S10)

The normalized weight metric is computed
from the weight that a decoder assigns to a
particular cell for a given classification. This
weight is denoted as wt

i , where the index i

denotes the cell, and the index t denotes the
condition (for example, categorization or mem-
ory). The weight is converted into a normal-
ized measure called an importance index,
defined as

wt
i ¼

jwt
i jXn

1
i

jwt
i j

State-space analysis (relevant for Fig. 4I)

WeusedGaussian-process factor analysis (GPFA)
(45) to analyze the dynamics of the average
population activity for the eight conditions
arising from the combination of choice (yes,
no), responsemodality (button press, saccade),
and task (memory, categorization). The recov-
ered latent space was eight-dimensional (8D),
and all similarity measurements between tra-
jectories were performed in this space (not in
the 3D projections shown in the figure). The
activity was binned using 20-ms windows. All
analysis was computed and visualized using
the DataHigh (90) MATLAB toolbox. Similarity
measurements between two conditions were
computed and averaged over the first 500ms
after stimulus onset as follows

sim
�
r1ðtÞ; r2ðtÞ

�
¼ r′1ðtÞ

‖r′1ðtÞ‖
·
r′2ðtÞ
‖r′2ðtÞ‖

where r1(t) and r2(t) are the 8D state-space tra-
jectories for conditions 1 and 2 [r′1ðtÞandr′2ðtÞ
indicate the derivatives over time], respectively.

ANOVA model (relevant for figs. S4 and S11)

We used a single-cell ANOVA model to tease
apart the contributions of choice, visual cate-
gory, memory, and response time on the
firing rate of a cell. The model was of the fol-
lowing form

frcelleb1 • category þ b2 • familiarity þ b3 • choice þ b4 • rt

where frcell is the mean firing rate in a fixed
window (0.2 to 1.2 s following stimulus onset)
or a moving window of 500 ms to analyze the
time course. The ANOVA model is fit in-
dependently at each point of time. We then
compute the F-statistic for each of the regres-
sors and report the average F-statistic across
the entire population of recorded cells, fit twice
to each cell for the memory and categorization
task (figs. S4, D and E, fig. S11). To compare the
effects of task on the representation of indi-
vidual variables, we compare the distribution
of F-statistics estimated separately on each task,
for each cell in the population. We use this
approach as a measure of modulation in the
strength of representation for a variable in-
duced by task switching. This comparison does
not make predictions about generalizability
from one task to the next, because the model
is fit independently.
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Generalization index (relevant for Figs. 3 and 4)
To compare the within-condition decoding to
the across condition generalization, we used
a generalization index defined as following

g ¼ cross� chance

within� chance

where “within” is the decoding performance
within condition, “cross” is the decoding across
condition, and “chance” is the chance decoding
performance for the variable of interest (choice =
0.5, new/old = 0.5, familiarity = 0.5, image cate-
gory = 0.25).

Spike-field coherence analysis (relevant for
Fig. 5 and fig. S9)
LFP preprocessing

The local-field potential recordings were high-
pass filtered at 1 Hz. The raw recordings, sam-
pled at 32 kHz, were then downsampled to
500 Hz. The downsampling procedure was
donewith the “resample” command inMATLAB,
which applies the appropriate antialiasing filter
prior to reducing the sampling rate. For each
session, we screened all MFC and HA electro-
des in order to make sure that there were no
artifacts that could contaminate the spike-
field metrics. We excluded all electrodes with
interictal discharges (IEDs) visible in the raw
trace (by visual inspection). Specifically, in screen-
ing for IEDs, we looked for large stereotyped,
recurring transients in the raw recording that
did not correspond to cellular spiking activity.
The presence of such transientswoulddisqualify
an electrode from further consideration.

Spike-field coherence (SFC)

All spike-field coherence analysis was performed
on snippets of the LFP extracted around the
spike.We extract snippets for every cell-electrode
pair. For example, to measure interarea SFC
between a single cell in pre-SMA and HA LFPs,
we extracted n snippets each (n = number of
spikes) from each of the eight ipsilateral
electrodes in hippocampus and eight elec-
trodes in the ipsilateral amygdala. For ses-
sions where we used a local reference (i.e.,
bipolar referencing), we exclude the reference
wire. For intra-area coherence (for example,
HA spikes to HA field) we also exclude the
wire on which the cell was recorded to avoid
contamination by spike waveform. For each
snippet and for each cell-electrode pair, we
compute the spike-triggered spectrum using
the FieldTrip “mtmconvol”method,which com-
putes the Fourier spectrum of the LFP around
the spikes using convolution of the complete
LFP traces. The spectrumwas computed with
a single “hanning” taper, at 56 logarithmically
spaced frequencies ranging from 2 Hz on the
low end to 125 Hz on the high end. The length
of the snippet window was dynamic as a func-
tion of the frequency examined; the snipped

length was set to equal to two cycles of the
underlying frequency at which the spectrum
was estimated (i.e., 2 Hz→2 s snippet). We
estimated the phase for each snippet and for
each of the 56 frequencies from the complex-
valued Fourier coefficients (i.e., phasor). We
used the pairwise phase consistency (PPC)
metric as the measure of coherence. For the
spike-triggered power, we compute the mag-
nitude of the spectral coefficients returned by
the Fourier transform (also computed for each
cell-electrode pair) for each snippet and aver-
aged the spectra. Unless otherwise stated, all
SFC results in the paper are based on spikes
recorded during the baseline period between
trials (1-s window preceding stimulus onset).

Group comparisons using the SFC metric

When comparing two or more groups using
PPC (such as memory versus categorization),
we balanced the number of spikes between
the two groups. To reduce bias involved in
subsampling the larger group, we resampled
the spikes from the two groups 200 times
and computed the PPC metric on each itera-
tion. The final coherence measure for a given
cell-electrode pair was an average across all
200 iterations.
To ensure that the underlying local field po-

tential does not vary in a consistent way across
conditions, we compare the distribution of aver-
age voltage values for each of the conditions in
our spike-field coherence analysis. In the case
of the task contrast duringbaseline (i.e.,memory
versus categorization), we show the distribution
of area under the curve (AUC) values computed
separately for each electrode in the amygdala
and hippocampus (fig. S9D shows that there
was no significant difference). The AUC for
each electrode is computed using the average
baseline magnitude across memory and cate-
gorization trials. In the case of the spike-field
coherence results during the stimulus onset
(Fig. 5H), to reduce any potential confounds
related to event-related potentials, we used
only sessions with local referencing (bipolar).
The local reference (set to one of the eight
microwires in the electrode cluster implanted
in each brain area) significantly diminishes
the magnitude of any event-related potentials
after stimulus onset. To confirm this, we re-
peated the AUC analysis mentioned above, for
the contrast in Fig. 5H [i.e., true positive (TP)
versus false negative (FN)]. The results (shown
in fig. S9E) show that there is no significant dif-
ference between the two conditions of interest.
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