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Context-dependent representations of objects
and space in the primate hippocampus during
virtual navigation
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The hippocampus is implicated in associative memory and spatial navigation. To investigate how these functions are mixed
in the hippocampus, we recorded from single hippocampal neurons in macaque monkeys navigating a virtual maze during a
foraging task and a context-object associative memory task. During both tasks, single neurons encoded information about spa-
tial position; a linear classifier also decoded position. However, the population code for space did not generalize across tasks,
particularly where stimuli relevant to the associative memory task appeared. Single-neuron and population-level analyses
revealed that cross-task changes were due to selectivity for nonspatial features of the associative memory task when they
were visually available (perceptual coding) and following their disappearance (mnemonic coding). Our results show that neu-
rons in the primate hippocampus nonlinearly mix information about space and nonspatial elements of the environment in a
task-dependent manner; this efficient code flexibly represents unique perceptual experiences and correspondent memories.

he hippocampus is a phylogenetically ancient structure of the
mammalian cortex that has been shown to play an important
role in memory and spatial navigation. Theoretical attempts to
reconcile these functions have led some groups to suggest a primacy
for spatial coding in the hippocampus'~; others have suggested that
the fundamental role of the hippocampus is memory, with physi-
cal space as just one variable that must be conjunctively encoded in
episodic memory*’. Direct comparisons of spatial and nonspatial
representations in hippocampal neurons are challenging because
of methodological gaps between model species"*~". Furthermore,
extrapolating hippocampal coding schemes across species is com-
plicated by the diverse organizations of sensory systems and resul-
tant reorganization of sensory inputs to the hippocampus®’.

A wealth of experimental and incidental lesion literature has
implicated the hippocampus in associative memory across species'’.
In humans and nonhuman primates some hippocampal neurons
have been shown to differentially respond to unfamiliar and familiar
objects at certain locations''~"’; responses during initial presentation
are predictive of subsequent recognition'*. Furthermore, changes in
the selectivity of hippocampal neurons correlate with performance
changes" and trial outcome during associative memory tasks'®"".

In rodents, the discovery of place cells that fire action poten-
tials when animals occupy a specific location in an environment'
implicated the hippocampus in spatial navigation'. In primates,
analogous neurons have been reported, although these may be
modulated in ways that are species-specific. Several studies that
account for gaze position suggest that spatially specific firing in hip-
pocampal neurons is dependent on spatial view in monkeys* and

humans**>. Hippocampal place fields are sensitive to the configura-
tion of extramaze cues in monkeys>, while the activity of some neu-
rons is invariant to changes in the identity of distal environmental
cues and seems to encode their position relative to goal locations*.
Primate hippocampal activity may also be dependent on the previ-
ous sequence of events before entering the place field”. Individual
neurons in the primate hippocampus may fire in a spatially specific
manner but their activity is qualitatively distinct from place cells
observed in rodents; primate hippocampal neurons with spatial fir-
ing seem to be modulated by view, environmental, cognitive and
behavioral factors’.

An emergent view from this body of research is that some indi-
vidual neurons in the primate hippocampus exhibit selectivity
for elements of associative memory and some neurons fire in a
spatially specific manner. These activity patterns could be carried
out by separable populations of neurons, or a single population of
neurons may carry spatial and nonspatial information. The extent
to which this information may mix, and how sensory and mne-
monic components of cognitive tasks can drive spatial specificity,
have not been extensively investigated in primates. To examine
these issues, one would need to first examine the activity of sin-
gle neurons across different behavioral tasks in a common space.
Second, spatial and nonspatial features of the environment must
be parameterized and regressed against neural activity. Third, one
must analyze not only the information encoded by single neurons*
but apply multivariate analysis techniques that consider the mul-
tidimensional nature of the information encoded by populations
of neurons®.
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To this end, we recorded the activity of single neurons from the
right posterior hippocampi of rhesus macaques (Macaca mulatta)
while they completed two navigation tasks in a single virtual envi-
ronment: first, an associative memory task; second, a cue-guided
foraging task. In both tasks, neurons showed spatial response
fields; a linear classifier reliably decoded the animal’s position in
the maze from the population activity. However, the population
code for space did not generalize across tasks in the same environ-
ment, indicating that the spatial codes for the environment were
task-specific. To explain this lack of generalization, task-specific
activity was examined in the portion of the maze where the popula-
tion code for space was most divergent across tasks. We found that
hippocampal neurons encoded nonspatial features of the associa-
tive memory task (that is, contexts and objects) when they were vis-
ible in the environment and encoded these features mnemonically
after they were removed from the environment. Finally, using the
population activity, we decoded unique combinations of nonspatial
features in single trials.

Results

Single-neuron spatial information content (SIC) during each
task in the X-Maze. In these experiments, monkeys were seated in
a custom-built chair in front of a computer monitor and used a two-
axis joystick to complete tasks that required navigation through a
virtual reality environment called the X-Maze” (Fig. la). While
monkeys completed these tasks, we recorded the activity from
183 individual neurons from the superior aspect of the right mid-
posterior hippocampus (predominantly CA3; see Fig. 1b, Extended
Data Fig. 1, Extended Data Fig. 2 and Methods). Trajectories were
planned and verified during electrode insertion using magnetic
resonance imaging (MRI)-guided neuronavigation (Fig. 1b and
Extended Data Fig. 1).

The first task monkeys completed was an associative memory
task. Animals had to navigate to objects in the virtual environ-
ment in a context-dependent manner (Fig. lc, Extended Data
Fig. 3 and Supplementary Video 1). The objects were colored disks
that appeared at the ends of the X-Maze on each trial. The context
was defined by a texture applied to the maze walls. Each trial of the
associative memory task started in one end of the maze and included
five distinct trial epochs that occurred as animals navigated toward
the objects at the other end of the maze (in order: postreward, pre-
context, context appearance, object appearance, object approach; see
Fig. I¢c, Extended Data Fig. 3 and Methods). For analytical purposes,
we defined the trial end to be triggered when the subject reached the
goal object. The trial start was triggered after the reward was deliv-
ered. However, from the monkey’s perspective, navigation through
the maze was continuous. There was no break or intertrial interval.
During the postreward and precontext epochs, all maze walls were
gray and no rewarded goals were visible. When the animal entered
the central corridor, the ‘context appearance’ epoch began; the trial
context was cued by applying a wood or steel texture to the walls of
the corridor and arms of the maze (Extended Data Fig. 3b,c, posi-
tion a). When animals reached the branched point on the opposite
side of the maze (Extended Data Fig. 3b,c, position b), one of the
three potentially rewarded colored disks appeared in each arm of
the maze. This initiated the ‘object appearance’ epoch. The animal
could examine the objects in either arm of the maze freely and made
a choice to navigate toward one of the objects. The first turn toward

the chosen object triggered the start of the ‘object approach’ epoch,
which ended when the monkey reached the goal.

The context and the two objects were selected randomly on every
trial. In every session, a new set of three colored disks was used with
the same two contexts. Thus, a new conditional association between
context and objects was learned daily. Using a Bayesian state-space
analysis to estimate the learning state based on the binary trial out-
comes (see Methods), we estimated that the context-dependent
association between the highest and lowest object was learned after
an average of 59 trials across sessions (Extended Data Fig. 3d).

The second task monkeys performed each session was a for-
aging task. In the foraging task, animals navigated through the
X-Maze toward a red volume to receive a juice reward (Fig. 1c and
Supplementary Video 2). The red volume was randomly assigned
to one of 84 locations in the maze and randomly repositioned at a
different location every time the animal reached it. Importantly, the
virtual environment was unchanged across tasks.

A variety of spatial firing distributions could be seen across
recorded neurons and across tasks (see Fig. 1d and Extended Data
Fig. 4 for examples). Such changes were not due to changes in neu-
ronal isolation across tasks (Extended Data Fig. 2). To character-
ize whether individual neurons fired preferentially in certain parts
of the virtual environment, the X-Maze was spatially binned into
an isometric, two-dimensional pixel grid covering the entire maze.
This pixel grid was used to compute the SIC of each neuron, which
quantifies how many bits of information about the location of the
animal are transmitted per action potential®*~**. Shuffled control SIC
values were computed by circularly shifting the spike times relative
to the spatial positions for each trial; shuffled SIC was subtracted
from empirical SIC to yield a normalized SIC value (see Methods).

The distributions of normalized SIC values were not the same
across tasks (Fig. le; two-sample Kolmogorov-Smirnov test,
P=2.4%107*). In the associative memory task, 76.0% of neurons
(139 out of 183) showed significant SIC. In the foraging task, 27.3%
of neurons (50 out of 183) had significant SIC. Even among neurons
with significant spatial information, the distribution of SIC values
was not the same across tasks (two-sample Kolmogorov-Smirnov
test, P=0.013). This suggests that neurons contained more spatial
information during the associative memory task than during the
foraging task in the X-Maze.

In addition, we examined whether individual neurons had spa-
tial response fields in the X-Maze by determining whether firing
rates were elevated in any of the maze pixels using a permutation
test (see Methods). The number of neurons with firing rates that
were statistically elevated for each pixel in each task can be seen
in Fig. 2. The X-Maze was then divided into nine similarly sized
areas for further analyses (four maze arm areas, two branch areas,
three corridor areas). Spatial response fields for each neuron were
defined as any of the nine maze areas with statistically elevated fir-
ing in one or more pixels. In the associative memory task, 70.0%
of neurons had spatial response fields. In contrast with the for-
aging task, spatial response fields were not uniformly distributed
throughout the X-Maze (P<1x 1077, ¥*(8) =52.3; Fig. 2a, left). In
the foraging task, 55.7% of neurons had spatial response fields in at
least one maze area (102 out of 183 neurons) with a uniform distri-
bution throughout the maze (P=0.91, y*(8) =3.29; Fig. 2a, right).
The distribution of pixels with significantly elevated firing rates in
each task, as well as comparisons of individual neuron place field

>
>

Fig. 1| Behavioral tasks and individual neuron SIC. a, Monkeys were seated in front of a computer monitor and used a two-axis joystick to navigate
through the virtual reality X-Maze and complete two different tasks. b, Recording locations from the right hippocampi (green reconstruction) of two
monkeys. Scale bars, 5mm. ¢, Overhead view of the X-Maze and the animal's trajectory through the maze on two consecutive trials in the associative
memory and foraging tasks. d, Trajectory (transparent gray) and spike locations (transparent red dots) for six example neurons in both tasks in the
X-Maze. e, Cumulative distribution of SIC values for all neurons (n=183 per task) showed a statistical difference across tasks (two-sample Kolmogorov-

Smirnov test; two-sided P<1077).
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locations within and across tasks with pixel sizes four times larger, information about the position of the animal in the maze, and there
were qualitatively unchanged (Extended Data Fig. 5). From these = may be differences in the information content of the population of
two complementary analyses, it is clear that some neurons encode  neurons across tasks.

Monkey W

Associative memory task
Trial n Trial n+ 1

Wood
context context Trial start_Trial end

Monkey R

8
g‘ﬁ
ggl .
H [ J
Trial n Trial n+ 1
@ Rewarded
target Trlal start  Trial end
d Associative e
memory
1
P<107"
()
ol « g
= S 3} 0.8
& T I
q S =]
] = z
® e
o)
g g g o
S 06
kS
c
i<
g
o 0.4
o
0.2
«
s Associative memory
o
ol
3
=} 0 1 2 3
=

SIC

NATURE NEUROSCIENCE | VOL 23 | JANUARY 2020 | 103-112 | www.nature.com/natureneuroscience 105


http://www.nature.com/natureneuroscience

ARTICLES

NATURE NEUROSCIENCE

a
35
Ly
g
30 5
Il o
= e
25 © 9
[P
2] <
52 20 38
2y = o
=& =3
< 15 @ F
2 o
o Q
3
10
jo)
ES
5 <
0
* kK * Kk ok 90 (':l; )
S
6033
b R
038
0853
b place field place field N
locations per neuron locations per neuron  Probability (%)
100
NW arm
g 80
@Q .
§ N corridor
[=%
8
g S corridor
£ Sbranch
T sSwarm
SE arm
N
?
&
Additional place fields
[+

Proportion of selective neurons (%)

NW arm 100
c 80
k<]
g N corridor 60
o
2
‘o S corridor 40
(&)
S Shbranch
SW arm 20
SE arm o
&

place field location

Fig. 2 | Single-neuron spatial response fields in each task. a, Spatial
histogram showing the number of neurons with a statistically elevated firing
rate in each pixel in both tasks (top). The summarized histogram (bottom)
shows the number of neurons with at least one significant pixel in each
maze area. The asterisks indicates significantly different proportions across
tasks. McNemar's test of equal proportions; Bonferroni-corrected P< 0.05.
b, Locations of coincident place fields for all neurons with more than one
place field in each task. ¢, Location of coincident place fields for all neurons
with at least one place field in each task. N, north; S, south; W, west; E, east.

Population-level decoding of space within versus across tasks
in the X-Maze. The previous results show that individual neurons
encode information about space in each task. However, statistical

descriptions of selectivity in single neurons cannot capture the
wealth of information encoded by neural populations with mixed
selectivity’*~*. Furthermore, the stability of a population code for
space and the optimal spatial reference frame cannot be assessed in
single neurons. To better address these questions, we used the fir-
ing rates from the entire population of recorded neurons to decode
animal position in the X-Maze.

We used a multiclass support vector machine classifier with a lin-
ear kernel to decode the animal’s position in space using neuronal
firing rates (see Methods). This was done using allocentric and ego-
centric (direction-dependent) spatial reference frames (Fig. 3a) to
yield empirical (Fig. 3b, colored distributions) and shuffled control
(Fig. 3b, gray distributions) decoding accuracies. Statistical differ-
ences between accuracy distributions were assessed via a Wilcoxon
rank-sum test (see Methods).

The classifier predicted position in the maze above chance levels
in the associative memory task using an allocentric spatial reference
frame (Fig. 3b; 24.0+5.8% accuracy versus 10.8+4.1% shuffled
control accuracy; P<107*"). However, accuracy was poor (Cohen’s
k=0.15; Methods). The classifier systematically confounded struc-
turally similar areas of the maze, as evidenced by the X-shaped dis-
tribution of predictions in the allocentric decoder confusion matrix
(Fig. 3c, left). When classification was done using the egocentric
reference frame, decoding accuracy improved (P <107'° compared
to allocentric; 58.4 +9.3% versus 19.4 +7.2% shuffled control accu-
racy; Fig. 3b, second column). The improved accuracy of a popula-
tion of hippocampal neurons with a direction-dependent reference
frame is consistent with previous findings across species®.

In the foraging task, decoding accuracy was above chance using
both reference frames. Decoding accuracy was poor using an allo-
centric reference frame (Fig. 3b, third column: 16.1+4.8% versus
10.7+4.1% shuffled control accuracy; P<10~'% Cohen’s k=0.06).
Using the direction-dependent reference frame, prediction accu-
racy was 33.0+7.6% versus 19.3+7.2% shuffled control accuracy
(Fig. 3b, fourth column; P=0.09 compared to allocentric).

Cross-task generalization of the population code for space. The
position of animals in space could be decoded from the population
of neurons in each task, but it is not clear whether coding of space
generalized across tasks; that is, whether a process of abstraction
made the representation of space invariant with respect to the task
the animal was engaged in. Although single-neuron spatial coding
that is dependent on a variety of behavioral and cognitive factors
has been documented in humans, monkeys and rodents, it remains
possible that stable spatial encoding in at least a subset of neurons
was veridical and task invariant. On the other hand, spatial repre-
sentations observed in each task could be dependent on encoding
of task-related features that were relevant at consistent locations
during each task.

To determine whether the cognitive map of space generalized
across tasks, we trained a linear support vector machine using trials
from the foraging task and tested it using trials from the associa-
tive memory task. Classification accuracy when training and test-
ing across tasks fell below the accuracy reported in both foraging
and associative memory tasks (Fig. 3, fifth column; P<10~° and
P <107, respectively). Results were unchanged when the training
and testing sets were swapped. The lack of generalization indicates
that the spatial information carried by the population of recorded
neurons changes across tasks. Cross-task decoding accuracy was
not uniform across all areas of the maze, as can be seen in the
cross-task confusion matrix (Fig. 3¢, farthest right; Extended Data
Fig. 6b; P<107°, Kruskal-Wallis test). Decoding accuracy was
highest in the corridor of the maze (Extended Data Fig. 6b,c; 43%,
P <107 compared to shuffled control decoding accuracy). This
suggests that the contribution of individual neurons to direction-
dependent position classification was most similar across tasks in
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Fig. 3 | Hippocampal ensemble prediction of spatial position with a linear classifier. a, Spatial reference frames used in each of the lower panels of spatial
classification analyses. b, Distributions of classification accuracies for spatial position in the associative memory (blue) and foraging (green) tasks as well
as cross-task testing and validation (orange). Gray bars indicate means. All distributions, P<0.05 real versus shuffled distribution (gray distributions).
n=>50 per distribution, two-sided Wilcoxon rank-sum test. *P < 0.05, allocentric versus directional within task (n=50 per distribution; two-sided Wilcoxon
rank-sum test). 'P < 0.05, cross-task versus associative memory and foraging tasks, directional reference frame (n=50 per distribution; two-sided Wilcoxon

rank-sum test). ¢, Confusion matrices for each classification analysis. Real location, rows; predicted location, columns; color map, prediction likelihood.

the corridor. Notably, cross-task demands were also most similar in
this area, since only cue-guided wayfinding was required. On the
other hand, task requirements were different during the approach
to the arms of the maze, where context-dependent choices were
required in the associative memory task. In the branch leading
toward the arm, and on entry into the arm of the maze, cross-task
decoding accuracy was not different from chance (Extended Data
Fig. 6¢; P=0.25 and P=0.85, respectively). Thus, the population
code for space may be the most similar in areas of the maze where
task demands are most similar and diverges where task-specific
information becomes available.

It is possible that place-specific firing can be ascribed to selec-
tivity for eye-on-screen position® coupled with biased gaze behav-
ior within or across tasks. In each session, the X-Maze tasks were
bookended by a cued saccade task wherein monkeys were rewarded
for making a saccade to a small white dot that varied position from
trial to trial on a gray screen. We compared saccade direction and
gaze position selectivity in all three tasks for neurons with sufficient
numbers of saccades and fixations in all tasks (n =92; see Methods).
In the cued saccade, foraging and associative memory tasks, 7.6,
41.3 and 42.4% of neurons were selective for saccade direction,

respectively. In these three tasks, 28.2, 43.4 and 72.8% of neurons
were selective for gaze position. Critically, no neurons were selec-
tive for the same saccade direction across tasks and only 2 neurons
(2.2%) were selective for at least one gaze position across all tasks.
Thus, saccade direction and gaze position invariably affect only a
small proportion of hippocampal neurons, suggesting that altered
fixation patterns across tasks cannot explain the dramatic changes
in spatial selectivity across tasks.

Neurons encode nonspatial sensory and mnemonic features of
the associative memory task. The previous results show that the
population code for space changes across tasks in the areas of the
X-Maze where associative memory task features (context, object
color and their conjunction) become visible. One possible expla-
nation for this result may be the emergence of selectivity for such
features during the associative memory task in single neurons. To
examine this, we split each trial into five epochs closely correspond-
ing to the five areas of the maze used in the direction-dependent
spatial decoding (postreward, precontext, context appearance,
object appearance, object approach; see Fig. 4a and Methods for
details). Extended Data Fig. 7 shows the spatial firing distribution
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Fig. 4 | Nonspatial feature selectivity in the associative memory task. a, Selectivity of each neuron for nonspatial features of the associative memory
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right plots). b, Example neuron R0910.Hc7.3, an object-color-selective neuron. The letters denote categories with significantly different firing rates within
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as well as the firing rate in each trial epoch for six example neu-
rons. The firing rate was modulated across associative memory trial
epochs for 89.6% of neurons (P < 0.05, Kruskal-Wallis test).

To determine whether neurons encoded features of the associa-
tive memory task that are relevant across the different trial epochs
(that is, context, object color and their conjunction), we regressed
the firing rate for each neuron against the trial-varying parameters
of the associative memory task in each epoch in both a sensory and
mnemonic manner. This was done using the context and object of

108

a given trial and the firing rate in each epoch of the same trial (per-
ceptual encoding; Fig. 4, left plots), or the firing rate in each epoch
of the next trial (memory encoding; Fig. 4, right plots).

One example neuron (Fig. 4b and Extended Data Fig. 7b (top
left)) fired almost exclusively between the animal’s initial turn toward
the chosen object and the moment of first contact (goal approach
epoch). This neuron was most active during approaches to a sin-
gle object color regardless of context, egocentric (left versus right)
or allocentric (northeast, northwest, southeast or southwest arm)
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position, and did not fire when approaching an intermediate value
object (P < 1072, Kruskal-Wallis test). This neuron also did not fire
on goal approach during foraging (Extended Data Fig. 8a).

Another example neuron (Fig. 4c and Extended Data Fig. 7b
(bottom right)) fired most in the arms of the maze after the reward
was delivered. This example neuron was selective for previous trial
features during the postreward epoch (P<107*, Kruskal-Wallis
test). When this selectivity was observed, the object was no longer
present in the environment; thus, encoding of the object by this
neuron was mnemonic. This neuron did not consistently fire after
the reward during the foraging task (Extended Data Fig. 8b). This
encoding cannot be explained by sensory features such as object
color, context or reward size alone, but only by the conjunction of
these features, even though none of these features were visible dur-
ing the postreward epoch.

At the population level, sensory coding for the chosen object
color was most robust during the object approach epoch (46 out
of 183 neurons, 25.14%; Fig. 4d, bottom left, yellow dots). The con-
junction of object and context of the previous trial was encoded by
the same number of neurons during the postreward epoch (Fig. 4d,
bottom right, yellow dots with blue outline). Encoding of trial con-
text peaked in the corridor of the maze (perceptual: 16 out of 183
neurons, 8.7%, memory: 18 out of 183 neurons, 9.8%; Fig. 4d, blue
dots). During the object approach and postreward epochs, context
selectivity was less prevalent than selectivity for objects and context-
object association.

These results show that encoding of nonspatial features changes
across trial epochs of the associative memory task, predominantly
during the object approach epoch when the animals foveate the
objects and context (perceptual encoding), and after the objects
are no longer visible (mnemonic encoding). To determine whether
perceptual and mnemonic encoding are supported by a common
or separate population of hippocampal neurons, we correlated
the F-statistics from each neurons encoding model during goal
approach (perceptual) and postreward (memory) epochs. Similar
proportions of neurons showed perceptual and mnemonic coding
of contexts (Fig. 53, left, P=0.68, McNemar’s test of equal propor-
tions) or objects (Fig. 5a, middle, P=0.12, McNemar’s test of equal
proportions). However, for the combination of object and con-
text, the proportion of neurons showing memory coding was sig-
nificantly larger than perceptual coding (Fig. 5a, right, P=0.0005,
McNemar’s test of proportions). The strength of perceptual versus
mnemonic coding in individual neurons was not correlated for trial
context (Fig. 5b, Spearman’s p 95% confidence interval (CI)=—-0.12
to 0.25); in contrast, perceptual and memory coding for objects
and object-context combinations were correlated (Fig. 5b objects:
Spearman’s p 95% CI=0.13-0.48; contextX object, 0.05-0.40).
This suggested that there was a partial overlap between perceptual
and mnemonic information encoded by individual neurons in the
associative memory task.

Decoding trial features from the population of hippocampal
neurons. We next examined how the recorded hippocampal neu-
rons form a population-level representation of the trial-varying
aspects of the associative memory task. We used a linear classifier to
determine the accuracy with which the population activity of hip-
pocampal neurons can be used to predict the context and object pair
presented in a given trial (associative memory trial type). First, a
classifier was trained to predict the context and object of the current
trial from the three trial epochs with these visible in the environ-
ment (context appearance, object appearance and object approach;
Fig. 6, perceptual). Second, another classifier was trained using the
two trial epochs that were linked to mnemonic representations of
these elements after they were no longer present in the environ-
ment (postreward and precontext; Fig. 6, memory). In both clas-
sifiers, each neuronss firing rate in each trial epoch was used as an
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independent feature; we used a logistic classifier with elastic net
regularization to avoid problems of overfitting associated with hav-
ing many features and a limited number of model training examples
(see Methods).

Using only the perceptual or memory epochs, prediction accu-
racy was above chance (perceptual: 36.3+14.2% accuracy versus
12.3+2.7% shuffled control accuracy; P<107%, Wilcoxon rank-
sum test, Cohen’s x=0.24; memory: 26.6 +12.5% accuracy versus
12.8+3.7% shuffled control accuracy; P<107%, Wilcoxon rank-
sum test, Cohen’s k=0.12). Using an equal number of trial epochs
for training and testing, decoding accuracy was higher for percep-
tual epochs (object appearance and object approach) than using the
two mnemonic trial epochs (P<0.001, Wilcoxon rank-sum test;
Extended Data Fig. 9). Using the firing rates from both the per-
ceptual and memory trial epochs in a single classifier, classification
accuracy further increased (3.29+1.12 times permuted control;
42.2+14.4% accuracy; P< 10", Wilcoxon rank-sum test; Cohen’s
k=0.31). This is consistent with the observation in Fig. 5 that
that perceptual and mnemonic encoding did not fully overlap in
individual neurons.

These single-neuron and population-level results provide
insights into how the critical elements of associative memories are
encoded by hippocampal neurons. All features of a trial that are rel-
evant to the monkeys’ decision-making are represented in a pro-
portion of neurons. This representation is sufficient for a ‘read-out’
mechanism to extract the identity of context and objects from each
trial during object viewing and after their disappearance.

Discussion

In the current study, we recorded the activity of individual hip-
pocampal neurons while monkeys performed a foraging and
an associative memory task in the same freely navigable maze
(Fig. 1). During both tasks, hippocampal neurons encoded spatial
information, although single-neuron (Fig. 2) and population-level
coding of space changed across tasks (Fig. 3). Critically, observed
changes to spatial coding across tasks were attributed to selectiv-
ity for trial-varying features of the associative memory task vis-
ible in the environment (sensory representation) and when they
were no longer visible (mnemonic representation) (Figs. 4 and 5).
The population could be used to decode trial types from both the
sensory and mnemonic epochs of the associative memory task
(Fig. 6). These results extend previous characterizations of hip-
pocampal neurons, showing that encoding of space is nonlinearly
mixed with sensory and mnemonic coding of perceptually and
cognitively defined features.

Encoding of space in the primate hippocampus. The hippocam-
pus has been referred to as the global positioning system of the
brain. This claim is supported by decades of study showing allo-
centric spatial firing fields of hippocampal place cells in rodents".
Place cells are supported by a vast network of neurons in the hip-
pocampus and neighboring brain areas with complementary spa-
tial coding schemes'***. Whether spatial response fields recorded
from the hippocampi of primates are like place fields described in
rodents has long been subject to debate, in part due to the distinct
way experiments are conducted in the different species. Several
studies have shown spatial firing fields for neurons recorded from
the hippocampi of monkeys performing an operant joystick task
that resulted in the movement of a motorized cab around a labora-
tory*>”. However, it is difficult to compare these with rodent stud-
ies since movement in these tasks was highly restricted, place fields
were defined using a liberal statistical criterion and the confounding
effects of view and other task-related factors were not characterized.
Similar issues complicate the first studies of hippocampal activity
in virtually navigating primates”. The first experiments recording
animal and gaze position in the environment described spatial view
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cells in the hippocampus®, suggesting that the primate hippocam-
pus encodes a plethora of signals related to vision and the oculomo-
tor system, which are not documented in rodents’.

Studies of spatial navigation in virtual reality environments have
also been conducted in humans. In a study of patients with epi-
lepsy completing a delivery task in a virtual town?, firing rates of
single hippocampal neurons were tested using an analysis of vari-
ance for main effects of position within the environment, objects
viewed in the environment, navigational goal and interactions. It is
possible that trial-varying factors such as goal location could have
modulated spatial responses, which is consistent with our find-
ings. A recent study with monkeys performing a virtual wayfinding
task has provided a more comprehensive analysis of hippocampal
encoding®. In this study, 41% of hippocampal neurons had signifi-
cant SIC. However, only a small percentage of neurons exclusively
encoded spatial position, which is consistent with our findings. An
extension of this work shows that spatial response fields in a subset
of these neurons are invariant to the specific distal landmarks that
define an environment*. This may suggest that hippocampal neu-
rons form highly task-specific representations of schematic vari-
ables in an abstract task space; alternately, they may encode motor
or cognitive variables that are common across environments, such
as distance to the reward”. However, these alternate explanations
would not account for task-specific activity observed in the present
study (Extended Data Fig. 8) or the selectivity for particular objects
and contexts in the associative memory task (Fig. 5).

Our study builds on previous studies of spatial coding in the
primate hippocampus by examining single-neuron and popula-
tion-level codes for a single virtual environment across two tasks.
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Our results suggest that neuronal ensembles most reliably encode
space in an egocentric direction-dependent reference frame. The
magnitude of this effect could be driven by the fact that in our task
allocentric cues were not needed to obtain rewards. Spatial repre-
sentations were task-dependent, in contrast to predictions of a pure
spatial role of the hippocampus in navigation'*”. Furthermore,
task-dependent neuronal activity was attributed to perceptual and
mnemonic selectivity for task-relevant features that were observed
at varying positions in the environment.

Mixed selectivity for spatial and nonspatial features by single
neurons and neuronal ensembles. Spatial and nonspatial encod-
ing have been previously observed in hippocampal neurons across
species. The hippocampus has been theorized to encode all aspects
of attended experience® and it has been suggested that encoding
of perceptual content may support recollection through high-
resolution associative binding of percepts®. In rodents, subsets of
hippocampal neurons have been shown to ‘map’ continuous scalar
quantities other than physical space, including time" and pitch®.
In primates, hippocampal neurons show stimulus selectivity in
delayed match to sample tasks'>*’. A recent study that used a cued
wayfinding task” reported neurons that convey information related
to heading direction, gaze position and ‘state-space’ (combination
of these variables and/or recent route and actions). Neurons in the
monkey hippocampus can be selective for nonspatial stimuli such as
faces and voices*. Similarly, selectivity for faces and places is more
alike when patients are cued to remember their association®.
Although a spatial and nonspatial hippocampal activity has been
described, it was previously unclear whether changes in spatially
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specific firing could be related to associative learning and memory
for features of the environment when their spatial position is not
relevant. We examined task-specific encoding of trial parameters in
the firing rates of hippocampal neurons from the current (percep-
tual; Fig. 4, trial n) and previous (mnemonic; Fig. 4, trial n + 1) trial.
Perceptual and mnemonic encoding of trial features were found in
separate populations of neurons (Fig. 5). Importantly, the popula-
tion activity vector could be used to decode single trial-specific
feature combinations (Fig. 6).

Mixed coding schemes can be highly robust and computation-
ally efficient®*. In these schemes, selectivity across multiple fea-
ture dimensions (for example, space and task-relevant objects)
can be mixed in a linearly additive or nonlinearly additive man-
ner. If the spatial and nonspatial coding observed in the present
study was linearly additive, the modulation of neural firing rates
by nonspatial task-relevant features would be independent of
modulation of firing rates by spatial position. However, the sin-
gle-neuron and population-level representation of space did not
generalize across tasks. This suggests that primate hippocampal
neurons encode spatial and nonspatial information in a nonlin-
early mixed manner.

Sensory information can be compressed using a simple network
trained as a sparse autoencoder”’. The architecture of the hippo-
campus has long been compared to that of an autoassociative net-
work that is capable of analogous compression of information**-*’.
Mixed coding of spatial and nonspatial components of unfamiliar
and familiar episodes may be an emergent consequence of this pro-
cess; this is consistent with the task-dependent representations of
spatial and nonspatial selectivity observed in the present study and
elsewhere’”. The distinct coding of these spatial and nonspatial
elements of experience across time and space may be viewed as a
prerequisite for encoding of episodic memories.

Conclusions

In this study, we sought to reveal how coding of space and nonspa-
tial features interact in the primate hippocampus in virtual environ-
ments. Key findings include the encoding of space by single neurons
and neuronal populations, as well as the emergence of perceptual
and mnemonic codes for nonspatial features in the same popula-
tions when the task requirements change but the environment spa-
tial layout is preserved. Instead of framing the primate hippocampus
as the brain’s global positional system, our results better reflect the
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processes inherent in a general abstract processing system that is
driven by a broad range of behaviorally relevant inputs. In such a
system, flexible representations could provide the basis for learn-
ing and storing relevant information unique to an experience across
behaviorally relevant dimensions in a context-dependent manner.
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Methods

Experimental animals. Two rhesus macaques (Macaca mulatta; 7 years old,
7kg and 14 years old, 12kg) participated in all experiments. These monkeys
were trained to perform three behavioral tasks and given a juice reward for their
efforts in each task (400-1,000 ml daily). Monkeys also received food rewards

as positive reinforcement at the beginning and end of each session. Behavioral
patterns and body weights were closely monitored to ensure stable health
conditions throughout the experiment. All animal procedures complied with the
Canadian Council on Animal Care guidelines and were approved by the McGill
University Animal Care Committee.

Electrophysiological recordings. The entire protocol for planning the surgical
procedures, recording from the hippocampus and verifying electrode locations is
schematized in Extended Data Fig. 1.

Before any surgical procedures, a naive 500 pm isotropic T1-weighted 3-Tesla
MRI was taken for each animal (Extended Data Fig. 1, step 1). Using these scans,
head post placement and chamber trajectory were planned using an MRI-guided
neuronavigation suite (Brainsight TMS; Rogue Research; Extended Data Fig. 1,
step 2). Chambers were positioned over the prefrontal cortex, such that electrode
trajectories were perpendicular to the long and transverse axis of the right middle-
to-posterior hippocampus. Following surgical implantation of the head post and
recording chamber, a computed tomography scan was acquired with cannulas
passing through the chamber grid at cardinal locations (Extended Data Fig. 1,
step 3). The resultant computed tomography and MRI scans were co-registered so
that electrode trajectories and terminal recording locations could be specifically
mapped to chamber grid holes (Extended Data Fig. 1, step 4).

All data were collected over the course of 37 recording sessions. In each
session, hippocampal activity was recorded using up to 4 single high-impedance
tungsten electrodes (0.4-1.5 MOhms) simultaneously. Before every recording
session, electrode trajectories were mapped to the MRI and the expected distances
to gray and white matter were measured (Extended Data Fig. 1, step 5). These
expected waypoints were compared against changes in neural activity while the
electrode was lowered to the terminal recording site (speed 0.01 mms~'; Extended
Data Fig. 1, step 6). Distances to putative CA3 recording sites were adjusted
online as necessary.

Neurons from the hippocampus were isolated while animals sat quietly in the
dark recording room since hippocampal neurons typically exhibit elevated firing
rates in this state compared to foraging or other exploratory behaviors. Local
field potentials were monitored for bouts of theta-like activity and changing low-
frequency power profile as a function of arousal. Multiunit activity was monitored
for sparse activity and burstiness characteristic of hippocampal pyramidal neurons.
Hippocampal activity was recorded at 30,000 Hz using a multichannel recording
system (128-channel Cerebus Data Acquisition System; Blackrock Microsystems)
for sorting and offline analysis. Cluster cutting to isolate neurons from multiunit
clusters was done using Plexon software (Offline Sorter version 2.8.8; Plexon Inc).
Cluster cutting was done agnostic to time; however, neurons with continuously
morphing principal components and/or a complete loss of activity as a function of
time were excluded from the analyses. Any neurons with task-invariant, reward-
related activity were excluded from the analyses.

In one monkey, postrecording verification of electrode trajectories was
possible. This was done using a 350 pm isotropic susceptibility weighted 7-Tesla
MRI (Extended Data Fig. 1, step 7, cool color map). This scan was co-registered to
the naive 3-Tesla anatomical MRI and shows a high degree of concordance between
expected and actual trajectories and terminal recording locations.

Experimental setup. During the training and experimental sessions, the monkeys
were seated in a custom-built chair in front of a computer monitor. The chair was
fitted with a two-axis joystick (part no. 212515S8383; P-Q Controls), which the
monkeys used to navigate freely through the virtual environment. Player position
within the virtual environment was updated and recorded at 75 Hz, which matched
the monitor refresh rate. While seated, the head position of the monkey was fixed
to facilitate eye position and intrahippocampal recordings. Eye position on the
screen—and thus gaze within the virtual environment—was monitored at 500 Hz
via video-based eye tracking (EyeLink 1000; SR Research).

Behavioral tasks. After electrode positions were fine-tuned to optimize neuronal
signal-to-noise ratios, monkeys typically sat quietly in the darkened room for

20 min, allowing sufficient time for electrodes to settle. After this, monkeys
proceeded to complete three behavioral tasks: a cued saccade task; a virtual
associative memory task; and a virtual foraging task. At the end of each session, the
cued saccade task was repeated and monkeys again sat quietly in the dark for an
additional 10-20 min of recording.

In the cued saccade task, monkeys were trained simply to fixate on a 1 degree
visual angle white dot that could appear at any of 9 locations on the monitor in a
2416 degree visual angle grid.

The remaining two tasks were incorporated into a virtual environment custom-
built using a video game engine (Unreal Engine May 2012 release; Epic Games)
and parameters of the behavioral tasks could be monitored and controlled in real-
time via MATLAB (MathWorks)*. Monkeys were trained to freely navigate around
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this environment called the X-Maze using a two-axis joystick. Monkeys completed
both virtual reality tasks in all experimental sessions in a blocked design (Extended
Data Fig. 2). Sessions where only one of the virtual reality tasks was completed
were removed from the analyses.

In the virtual foraging task, animals were visually cued to navigate toward
an easily identifiable target (red fog) that was consistently rewarded. The target
could appear at any of 84 locations in the environment (Fig. 1c, foraging task;

84 dotted locations for display purposes only). Target locations in the X-Maze
were independent across trials.

In the associative memory task, monkeys navigated the X-Maze to learn
a context-dependent reward value hierarchy. Reward value associations were
dependent on environmental cues (textures applied to the maze walls; context 1
and context 2) and three differentially rewarded colored disks (objects A, B and C).
Object reward values were context-dependent, that is, in context 1, object A>B>C,
and in context 2, object C>B>A (Fig. 1c and Extended Data Fig. 3A). Object colors
were pseudorandomly selected from a seven-color set at the beginning of each
session to prevent repetition of colors across neighboring sessions. Thus, a new
context-object hierarchy was learned every day.

On a single trial, animals started at either the north or south end of the
X-Maze. They then navigated through a long central corridor toward the opposite
end of the maze. One of two possible textures (wood or steel) was applied to some
of the walls of the maze when the monkey reached the corridor (Extended Data
Fig. 3b,c, position a). At the end of the corridor, animals reached a forked decision
point with each of the two arms containing one of the three possible colored
objects (Extended Data Fig. 3b,c, position b).

On individual trials, the context was randomized independently, as was the
object-color combination. Object colors were randomly assigned to either the left
or right arm of the maze; the same two colors could not appear in each arm of the
maze on a single trial.

The quantities of juice reward given for successful completion were fixed
between the cued saccade, foraging and middle reward value of the associative
memory tasks.

Eye movement classification. We used a custom toolbox to parse the eye signal
collected via video-oculography into saccades, fixations, smooth pursuits and
postsaccadic oscillations™. Briefly, the initial identification of putative saccades was
done by: (1) iteratively calculating a saccade acceleration threshold; (2) grouping
threshold crossings within 40 ms into a putative saccade; and (3) ignoring putative
saccade groups shorter than 10 ms. The remaining segments of the eye signal were
further classified by foveation type.

For all putative saccadic periods, the maximum velocity was calculated; then,
the onset and offset were identified precisely by comparing the main direction and
intersample changes in direction. Saccade boundaries were defined when the signal
was either above a high threshold (60°) for 1 sample, or above a low threshold for
3 consecutive samples (20°). This method differentiates between eye movement
types since saccade direction is very consistent, whereas camera noise leads to
higher intersample variance during smooth pursuits and fixations. Once saccades
were identified, direction and amplitude were calculated based on the onset and
offset points for all saccades during the visually guided task, including intertrial
intervals, and for all completed trials in both virtual navigation tasks. These
saccades were used for the analyses of saccade direction selectivity. Saccade offset
locations were used to analyze gaze position selectivity on the screen.

Quantification and statistical analyses. Statistics. For each analysis, the

exact statistical test used is described in the following sections. In general,
permutation tests were used for single-neuron analyses of SIC, spatial response
fields, saccade direction selectivity and gaze position selectivity. Each neuron’s
selectivity for features of the associative memory task was assessed using multiple
linear regression in conjunction with parametric tests of significance that rely
on F-statistics to assess significance of individual coefficients. Distributions

of decoding accuracies were compared using Wilcoxon rank-sum tests and
further examined using Cohen’s « statistic. No statistical methods were used to
predetermine sample sizes but our sample sizes are similar to those reported
previously'®. As stated previously, goal location in the cued saccade and foraging
tasks were randomized on every trial. In the associative memory task, objects
and context were randomized independently on every trial. Data collection

and analysis were not performed blind to the conditions of the experiments.
Additional information related to the Methods can be found in the Life Sciences
Reporting Summary.

Learning analyses. To demonstrate that monkeys learned the importance of context
in guiding behavior in the associative memory task, we used a state—space analysis
to estimate the learning state based on previous and future trial outcomes from

the perspective of an ideal observer to estimate a hidden variable™. This produces
an estimate of the latent learning state, as well as a 95% confidence interval of the
learning state. Extended Data Fig. 3d shows the average learning state, as well as
the average bounds for the 95% confidence interval for high-low trials across all
sessions. Learning is said to have occurred when the lower 95% confidence interval
of the estimated learning state exceeds 50% (refs. '>*?).
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Spatial response fields. To determine whether each neuron fired more action
potentials than expected by chance in any area of the X-Maze in each task,
we used a statistical permutation test based on spatial position and spike rasters
for each neuron (Fig. 2 and Extended Data Fig. 5). First, the X-Maze was
parsed into a 32X 12 pixel grid. For each trial, a vector of player positions
(occupied pixel number) was created at 1 ms resolution. For each recorded neuron,
a corresponding binary vector was produced with 1 ms resolution, denoting the
presence or absence of an action potential. By collapsing across trials, the occupied
time and number of recorded action potentials were computed. To determine if
this number was significantly above chance for each pixel, the vector of occupied
pixels was circularly shifted for each trial and the firing rate in each pixel was
recomputed. This circular shuffling procedure was done 1,000 times. Any pixel
with an empirical firing rate exceeding percentile 1-a was statistically significant,
where a=0.05/total number of occupied bins. Pixels with a total occupancy of less
than 200 ms were excluded. Spatial response fields were defined as any of the 9
architecturally distinct maze areas (4 arms, 2 branches, 3 corridor sections; see
Fig. 2, Extended Data Fig. 5 and Fig. 2 (allocentric reference frame)) with at least
one statistically elevated spatial bin.

The specificity of each neuron’s spatial response map was quantified using the
SIC*** (Fig. le). Each neuron’s information content (L; in bits) is defined as

L
I:zpili

where L is the total number of pixels and the proportion of occupied time (0) in the
ith pixel (5;) is defined as
0

i

L
Zj:l 9

P=

and the average firing rate per pixel 1 is 4 = ZIL P4,

SIC was computed for each neuron for each pixel occupied for more than
200ms. A null distribution of SIC (and corresponding null spatial information
maps) was computed for each neuron by circularly shifting the vector of occupied
pixel numbers 1,000 times before computing the spike rate maps for that neuron.
Neurons with summed SIC exceeding the 95th percentile of the null distribution
were deemed statistically significant. The mean SIC from the shuffled null
distribution for each neuron was subtracted from the empirical SIC value for that
neuron, yielding a normalized SIC value for each neuron. These normalized SIC
values are shown in the cumulative distribution plot in Fig. le.

For visualization, conventional firing rate maps (Extended Data Fig. 4) were
plotted for the example neurons in Fig. 1d. In these maps, the pixel-wise firing
rates were smoothed with a 3-bin Gaussian kernel*'. Color maps were consistent
within neuron and across tasks, with the maximum and minimum firing rates
denoted separately for each neuron. The color map was perceptually nonlinear and
unordered (jet), consistent with previously published work™.

Spatial classification analyses. We used a linear support vector classifier” to determine
whether the population of all recorded neurons could reliably encode position in the
maze (Fig. 2). The same procedures were used for all spatial classification analyses,
starting with firing rates for all neurons in all trials and respective conditions. ‘Trials’
here refers to passes through each area of the X-Maze. All neurons that did not have
at least 10 trials in all areas were excluded from all classification analyses (n=152
included). To begin, we randomly subsampled ten trials from each condition for
each neuron, creating an ensemble subsample. For subsequent classification, we
used a linear kernel support vector machine, cross-validated with stratified k-folds.
Specifically, we split the ensemble subsample into five stratified groups of trials (five
folds), with four folds constituting the training set and one fold reserved for testing.
At this point, the firing rate of each neuron in all k-folds was z-scored using the mean
and s.d. of the training set only for that neuron (not the testing set). A linear kernel
model was fitted to the ensemble subsample using L1-regularized L2-loss support
vector classification. An important benefit of using L1 regularization is automatic
parameter selection on the model inputs; whereas L2 regularization yields parameter
weights very close to zero, L1 regularization instead shunts weights directly to

zero. This results in a trained model that is both sparse and more interpretable.

The trained model was subsequently tested on the reserved testing fold to assess
prediction accuracy. The procedure for normalization, model training and testing
was repeated five times in total, so each k-fold of the ensemble subsample was used
as the testing set once. The entire procedure—starting from the 10-trial ensemble
subsampling—was repeated 100 times, yielding a total of 500 iterations of the
support vector machine testing procedure.

A permutation procedure was used to determine chance prediction accuracy
in all cases. This proceeded similarly to the training and testing procedures
described earlier. However, after creating the ensemble subsample and before
splitting the ensemble subsample into stratified k-folds, the condition labels were
randomly permuted and classification analyses then proceeded exactly as described
previously. This procedure was repeated 20 times for each ensemble subsample,
yielding a total of 10,000 individual iterations of the support vector machine
testing procedure.

It is important to note that each neuron’s firing rate was z-scored in the
training set only and within each task independently before classification.
This negates the possibility of spurious similarity of cross-task classification
models attributed to within-neuron similarity in baseline firing rates across tasks,
independent of area-specific changes in firing rate. Similarly, this negates the
possibility of spurious dissimilarity of cross-task classification models attributed
to within-neuron changes in baseline firing rates across tasks, independent of
area-specific changes in firing rate.

Saccade direction selectivity. To examine saccade direction selectivity, we binned
directions in eight 45° bins, starting with a center on 0°. A bin was only analyzed
if there were at least seven saccades in it; a neuron’s saccade direction selectivity
was only analyzed with a minimum of five saccade direction bins. The firing rate
was calculated for the 150 ms before saccade onset to get the average spike rate for
each direction.

Significant direction selectivity for each neuron was assessed using a
permutation test. Firing rates and directions were randomly shuffled 1,000 times,
generating 1,000 null distributions for each saccade direction for each neuron. A
neuron was categorized as being selective for a direction if it had a spike rate that
was in the top 5th percentile of the null distribution after Bonferroni correction
(a=0.05/number of direction bins).

Gaze position selectivity. Each on-screen foveation was categorized within one

of nine 12° X 8° screen areas. For each foveation within each screen location, a
neuron’s firing rate was calculated in the 200 ms after saccade offset. For a location
to be included, at least seven saccades in that location were needed. Foveation
location selectivity was tested in each task for all neurons, with enough foveations
in at least six screen locations in each task. Like saccade direction selectivity,

gaze position selectivity of each neuron was assessed using a permutation-derived
null distribution.

Nonspatial feature selectivity. For two example neurons, we determined whether
firing rate varied in each trial epoch as a function of nonspatial trial features
(chosen object color, trial context and their conjunction) from the current and
previous trial (Fig. 5a). Key trial events delineated trial epochs. The postreward
and precontext epochs were equally split intervals of time between the start of the
current trial (approximately 200 ms after reward from the previous trial ended)
and the first frame where the context material was applied to the walls of the
central corridor. The context appearance epoch started at this frame and extended
for the entire path of the animal through the corridor. On reaching the end of

the corridor, the animal’s view in the maze was gently corrected to face cardinal
direction north or south precisely; subsequently, both objects were triggered to
appear simultaneously at the ends of the maze. The frame where the objects were
first visible marked the end of the context appearance epoch and the start of the
object appearance epoch. Animals were free to take as long as needed to make a
decision to navigate to the left or right object. The first frame at which the animal’s
orientation deviated from the cardinal north or south direction, as part of a
rotation that eventually exceeded 10° of deviation from midline, marked the end of
the object appearance epoch and the start of the object approach epoch. The object
approach epoch ended when the animal first touched the chosen object for that
trial. Note that the next trial’s postreward epoch started approximately 200 ms after
the end of the reward delivery.

We used multiple linear regression to determine whether each neuron’s firing
rate was modulated as a function of nonspatial trial features (that is, trial context,
trial object colors and their conjunction) in each trial epoch of the associative
memory task. This procedure was repeated using trial features for the current and
previous trial. Formally,

5= Po T Prigrt Py + Byt gy

where y describes the change in a neuron’s firing rate within each task epoch

(3 1, postreward epoch; 2, precontext; 3, context appearance; 4, object appearance; 5,
object approach) for current and previous trial features (j; 1, current trial features;
2, previous trial features). Fit parameter /3, describes the intercept of the regression
line, ¢ estimates the residual, and f3,, 3, and f3, describe the effect of chosen

object, trial context and their conjunction, respectively. We assessed the statistical
significance of each of these parameters using a partial F-test, wherein the error

of the full model is compared to that of a model with one parameter omitted.

The proportion of all neurons (n = 183) with significant fit parameters for object,
context or their interaction is reported in Fig. 4c. Data distribution was assumed to
be normal but this was not formally tested.

Sensory versus mnemonic trial feature encoding. The F-statistics of the fit
parameters 3, 3, and f3, were used to compare sensory and mnemonic encoding of
associative memory trial features in individual neurons. Specifically, Fig. 6a shows
the scatterplot of the regression coefficients of neurons during the goal approach
epoch (sensory encoding) versus the postreward epoch (memory encoding).

The proportion of neurons with significant regression coefficients for each
parameter was compared using the McNemar’s test of proportions (Fig. 5a, insets).
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The relationship between sensory and memory encoding for each trial
parameter for each neuron was characterized using Pearson’s p (Fig. 5b). The value
of p was calculated over 10,000 bootstrap iterations; Fig. 5b shows the median and
96.7% confidence interval (@=0.05/number of trial parameters).

Trial type classification. Trial type classification (Fig. 6) was done using the Glmnet
package™ using firing rates from all neurons included in the spatial decoding
analyses (n=152). For the perceptual condition, each neuron’s firing rate from the
corridor, goal appearance and goal approach epochs were included as predictors.
For the memory condition, firing rates from the postreward and precontext epochs
were used as predictors. In the sensory + memory condition, all five epochs were
used. Because of the high ratio of model predictors to training and testing examples
for these analyses, Glmnet classification was used with elastic net regularization.

A nested cross-validation procedure was used to appropriately tune the model
hyperparameters (regularization parameter 4 and elastic net L1-L2 weighting
parameter  via Grid Search) and test on hold-out sets of trials never seen by the
trained model.

Statistical evaluation of classifier performance. The mean and s.d. classification
accuracy reported in this study includes testing of each individual k-fold. Statistical
comparisons of classification accuracy were run using normalized accuracy
distributions, wherein the distribution of empirical accuracy values for a condition
was divided by the mean accuracy of the shuffled control values for that condition.
Significant differences between normalized accuracy for two conditions were tested
using a two-sided Wilcoxon rank-sum test, Bonferroni-corrected for the total
number of distribution comparisons.

Classification model reliability was further evaluated using Cohen’s k (ref. *’);
k is an objective measure of classification reliability. Unlike raw or chance-
normalized prediction accuracy, k provides a meaningful metric with which
to compare performance across classifiers—even with uncommon numbers of
classes—because it is a bound statistic that relies on the observed and expected
proportions of correct predictions for each class of a model; it is agnostic to the
number of classes being differentiated. It is described as

k~F
k=—"——=
-7,

where p, is the proportion of correct predictions and p, is the probability of
guessing the correct class by chance.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

Data can be downloaded at https://robertogulli.com/data. Further information and
requests for resources and protocols should be directed to and will be fulfilled by
the lead contact, R.A.G.

Code availability
The code used in the study is available upon request from R.A.G.
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Extended Data Fig. 1| See next page for caption.
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Extended Data Fig. 1| Hippocampal recordings: planning, mapping and verification. Schematic representation of the major steps in planning, mapping,
and verification of electrode trajectories and recording sites. In all cases, scale bars represent 10 mm. 1. Prior to any surgical procedures, a 3T MRI was
taken of the naiive monkey. 2. Using Brainsight (Rogue Research, Montreal, Canada), the chamber trajectory was planned. The skull was then 3D-printed,
and a mock surgical procedure was done to recreate the chamber trajectory. A custom-made footed chamber was then formed to the skull at its
intended placement with the intended trajectory. 3. A titanium (monkey R) or silex (monkey W) chamber was implanted along the planned trajectory.
Subsequently, a post-implant computed tomography scan was taken with the recording grid and electrodes in place in order to visualize the electrode
trajectories. 4. The computed tomography scan was co-registered to the naiive MRI. 5. The updated trajectory of each grid hole was mapped. At each
grid hole used for recording, expected depths the cortical surface, grey matter/white matter transitions, and ultimately the hippocampal region of interest
were mapped prior to recording. 6. During each recording session the previously mapped values were monitored during electrode guidance towards the
hippocampal region of interest. 7. In monkey R, electrode tracts were visible in a post-experimental 7T MRI acquisition. This procedure was not possible
for monkey W.
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Extended Data Fig. 2 | Individual neuron characteristics and example neurons. A) Burst fraction, spike width, and firing rate of all recorded neurons
(n=183). Light grey circle; example neuron W0325.ATMO.2 Dark grey circle; example neuron R0910.Hc7.3. B) Example neuron W0325.ATMO0.2 inter-
spike-interval distribution and average waveform. Shaded area, SEM. Below, spike raster as a function of time in the experimental recording session. C)
Example neuron R0910.Hc7.3 inter-spike-interval distribution and average waveform. Shaded area, SEM. Below, spike raster as a function of time in the
experimental recording session.
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Extended Data Fig. 3 | Example associative memory task reward hierarchy. A) Example of the reversed two-context, three-object reward value hierarchy
for recording session W0325. B) Two example trials of the associative memory task from the recording session. Subject trajectories through the maze are
colored according to the time from trial start (color bar). White arrow indicates the object of higher reward value. C) Representative first-person-view of
the monkeys during each trial at position b. White arrow indicates the object of higher reward value. D) Estimated learning state averaged for the high-low
value context-dependent association across all sessions, and 95% confidence interval of this estimate (n=37 sessions).
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Extended Data Fig. 4 | Example neurons, smoothed firing rate maps. Smoothed firing rate maps of the six example neurons seen in Fig. 1d. Pixel-wise
firing rates were smoothed with a 3-bin Gaussian kernel. Color maps are consistent within neuron and across tasks, with the maximum and minimum
firing rates denoted separately for each neuron.
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Extended Data Fig. 7 | Neuronal activity across trial epochs of the associative memory task. A) Overhead view of the X-Maze and the subject'’s trajectory
through the maze on two consecutive trials. Each trial contains five distinct trial epochs. During the Post-reward and Pre-context epochs, all maze walls

are grey and no rewarded objects are visible. Once the subject enters the central corridor, the context is cued using a wood or steel material applied to
some of the maze walls. Once the subject leaves the corridor for the branched area of the maze, an object is made visible simultaneously in each arm of
the maze. Subjects learn a reversed context-object reward value hierarchy by trial and error. B) Spike locations and firing rate by trial epoch for six example
neurons during the associative memory task. Left: trajectories through the X-Maze (translucent grey) and spike locations (translucent red). Right: Box plot
showing firing rate by trial epoch in the associative memory task. Dots indicate median value; lines indicate the 25 to 75 percentile; outliers are plotted
individually. *, p<0.05 compared to the trial epoch with the lowest firing rate; Kruskal-Wallis, Bonferroni-corrected.
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Associative memory task
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Rewarded-aligned spike rasters. A) Rewarded locations in session RO910 during the Associative memory task (left) and Foraging
task (right). B) Reward-aligned rasters for example neuron R0910.Hc7.3 in each task. Black ticks mark the times of action potentials on each trial. The red
lines mark the reward delivery for each trial. C) Rewarded locations in session W0325 during the Associative memory task (left) and Foraging task (left).
D) Reward-aligned rasters for example neuron W0325.ATMO.2 in each task.

NATURE NEUROSCIENCE | www.nature.com/natureneuroscience


http://www.nature.com/natureneuroscience

ARTICLES NATURE NEUROSCIENCE

100 %
- Empirical
R 80} mean ’
>
0 L
©
5
9 60r
<
o0 L
=
) L
g 40
v}
o L
)
0 F *
0 L
Perceptual Memory
trial n context & objects  trial n context & objects
trial n firing rate trial n+1 firing rate

Extended Data Fig. 9 | Decoding trial type from an equal number of perceptual and mnemonic trial epochs. Distribution of classification accuracies from
decoding analysis of trial type (trial context and object pair) from perceptual (object appearance, object approach) or memory (post-reward, pre-context)
trial epochs in the associative memory task. *p<0.05, two-sided Wilcoxon rank-sum, n=50 per distribution. Grey bars, mean.
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Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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|X| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

|X| The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.
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For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Data were recorded using software from Blackrock Microsystems (Cerebus Software Suite, version XX). Neuronal data were sorted using
Offline Sorter v2, from Plexon. Virtual enivironments were built using Unreal Engine (May 2012 release), and Matlab (2013b), as
described in Doucet, Gulli & Martinez-Trujillo (J Neurosci Methods, 2016).

Data analysis All data were analyed uzing custom code written in Matlab (2018a). All code is available upon request.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers.
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Data accession codes will be provided at the proof stage (per conversation with Dr. Dhruv)
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Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

[X] Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Analyses of single neurons were carried out on a population of 183 neurons, consistent with the sample size of previously published work
(Wirth et al. 2003, Science). Population decoding analyses were carried out using a sample of 152 neurons.

Data exclusions  Neurons were excluded from the larger population with fewer than 10 traversals of each maze area in either task to allow for splitting the
data into adequately sized training and test sets for classification analyses.

Replication All analyses were conducted independently in both monkeys; qualitative differences between monkeys were not observed.
Randomization  Inthis study design, randomization of conditions was not applicable; all subjects participated in all conditions (i.e. tasks).

Blinding Experiments could not be conducted in a blinded manner, since experimenters needed to actively monitor behaviour of the subjects. Analyses
were conducted in a manner that was agnostic to condition; the same code was used to run analyses of data generated in both tasks.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
[] Antibodies X[ ] chip-seq
[] Eukaryotic cell lines X[ ] Flow cytometry
|:| Palaeontology |Z| |:| MRI-based neuroimaging

[X] Animals and other organisms
|:| Human research participants

|:| Clinical data

NXOXXKX &

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals 2 male Macaca mulatta (7 years old, 7 kg; 14 years old, 12 kg)

Wild animals None

Field-collected samples None

Ethics oversight McGill University Animal Care Committee, Canadian Committee for Animal Care

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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