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Abstract
We investigate the approximability of the linear 3-cut problem in directed graphs. The
input here is a directed graph D = (V , E) with node weights and three specified
terminal nodes s, r , t ∈ V , and the goal is to find a minimum weight subset of non-
terminal nodes whose removal ensures that s cannot reach r and t , and r cannot reach
t . The precise approximability of linear 3-cut has been wide open until now: the best
known lower bound under the unique games conjecture (UGC) was 4/3, while the
best known upper bound was 2 using a trivial algorithm. In this work we completely
close this gap: we present a

√
2-approximation algorithm and show that this factor is

tight under UGC. Our contributions are twofold: (1) we analyze a natural two-step
deterministic rounding scheme through the lens of a single-step randomized rounding
scheme with non-trivial distributions, and (2) we construct integrality gap instances
that meet the upper bound of

√
2. Our gap instances can be viewed as a weighted

graph sequence converging to a “graph limit structure”. We complement our results
by showing connections between the linear 3-cut problem and other fundamental cut
problems in directed graphs.
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1 Introduction

We investigate the approximability of the linear 3-cut problem in directed graphs. We
formally distinguish the node weighted and edge weighted variants below:

(s, r , t)-Node-Lin-3-Cut: The input is a directed graph D = (V , E) with specified
nodes s, r , t ∈ V and node weights w ∈ R

V \{r ,s,t}
+ , and the goal is to find a minimum

weight node set U ⊆ V \{r , s, t} such that D[V −U ] has no path from s to t , from s
to r and from r to t .

(s, r , t) -Edge-Lin-3-Cut: The input is a directed graph D = (V , E) with specified
nodes s, r , t ∈ V and edge weightsw ∈ R

E+, and the goal is to find a minimumweight
edge set F ⊆ E such that D − F has no path from s to t , from s to r and from r to t .

We note that the unreachability requirements are determined by an ordering of the
terminal nodes s, r , and t , and this is the origin for the terminology linear 3-cut [8].
By standard transformations, the edge weighted and the node weighted variants are
equivalent.

Both variants mentioned above are special cases of the directed multicut problem.
The input to the directed multicut problem is an edge-weighted directed graph D =
(V , E) with k source-sink pairs of nodes denoted by (s1, t1), (s2, t2), . . . , (sk, tk) and
the goal is to find a minimumweight subset of edges E ′ ⊆ E such that there is no path
from si to ti in D − E ′ for every i ∈ {1, . . . , k}. The directed multicut problem for
constant k, admits a trivial k-approximation anddoes not admit a (k−ε)-approximation
assuming UGC [4].

We briefly discuss both variants of the linear 3-cut problem in undirected graphs.
In the undirected node-weighted k-way cut problem (edge-weighted, respectively),
the input is a node-weighted (edge-weighted, respectively) undirected graph with k
terminal nodes {t1, . . . , tk} and the goal is to find aminimumweight set of non-terminal
nodes (edges, respectively)whose removal ensures that the terminals cannot reach each
other. Since paths are bidirectional in undirected graphs, it is immediately clear that
(s, r , t)- Node- Lin- 3- Cut and (s, r , t)- Edge- Lin- 3- Cut in undirected graphs are
the node-weighted 3-way cut problem and the edge-weighted 3-way cut problem
respectively. Undirected node weighted and edge-weighted 3-way cut problems are
classic NP-hard problems in the multiway cut literature [6,9] and are known to have
tight approximations. Indeed, the undirected node-weighted 3-way cut problem admits
a 4/3-approximation [9] and does not admit a (4/3−ε)-approximation for any constant
ε > 0 assuming the Unique Games Conjecture (UGC) [7]; the undirected edge-
weighted 3-way cut problem admits a 12/11-approximation [5,11] and does not admit
a (12/11 − ε)-approximation for any constant ε > 0 assuming UGC [5,11,14]. The
main theoretical motivation behind this work is to resolve the approximability of
(s, r , t)- Node- Lin- 3- Cut akin to the tight approximability results known for 3-
way cut in undirected graphs.

Before delving into further motivations for studying linear 3-cut, we mention the
known hardness and approximability results. On the hardness side, (s, r , t)- Node-
- Lin- 3- Cut is NP-hard and has no (4/3 − ε)-approximation assuming UGC by an
approximation-preserving reduction from the undirected node-weighted 3-way cut
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problem1: Bidirect all edges and add new nodes s, r , t with edges s → t1, t2 → r →
t2, t3 → t . On the approximability side, (s, r , t)- Node- Lin- 3- Cut admits a simple
combinatorial 2-approximation: Find a minimum s → t cut U1; if r can reach t in
D[V − U1], then find a minimum r → t cut U2, else if s can reach r in D[V − U1],
then find a minimum s → r cut U2; output U1 ∪U2. As mentioned above, one of the
main motivations of this work is to close this approximability gap.

1.1 Connections

In this section, we further motivate the need to investigate (s, r , t)- Edge- Lin- 3- Cut
by discussing its connections to various other fundamental cut problems in directed
graphs.

Blocking arborescences. We recall that an out-r-arborescence (similarly, an in-r-
arborescence) in a directed graph is a minimal subset of edges such that every node
has a unique path from r (to r ) in the subgraph induced by the edges. The smallest
number of edges/nodes whose removal ensures that the graph has no arborescence
holds the key to understanding reliability in networks. Computing this number is also
a special case of the interdiction problem of covering bases of two matroids [2]. We
recall that the problemof finding aminimumweight subset of edges/nodeswhose dele-
tion ensures that the remaining graph has no out-r -arborescence for a specified node r
can be solved efficiently (by reducing to min u → v cut in directed graphs). One of the
motivations behind this work arose from the following closely related problem, abbre-
viated r - InOut- Node- Blocker: the input is a node-weighted directed graph with a
specified terminal node r and the goal is to find a minimumweight set of non-terminal
nodeswhose removal ensures that the resultinggraphhas noout-r -arborescenceand no
in-r -arborescence. In this work, we show an approximation-preserving equivalence
between r - InOut- Node- Blocker and (s, r , t)- Node- Lin- 3- Cut. This equiva-
lence, in turn, motivates the need to investigate the latter.

Global Bicut Problems. In the {s, t}- Edge- BiCut problem the input is an edge-
weighted directed graph and two specified nodes s and t , and the goal is to find a
smallest weight subset of edges whose deletion ensures that s cannot reach t and t
cannot reach s in the resulting graph. In the global variant of this problem, abbreviated
Edge- BiCut, the input is an edge-weighted directed graph, and the goal is to find a
smallest weight subset of edges whose deletion ensures that the resulting graph has
two distinct nodes s and t such that s cannot reach t and t cannot reach s. We note that
{s, t}- Edge- BiCut and Edge- BiCut are extensions of min {s, t}-cut and global min
cut in undirected graphs to directed graphs respectively. While {s, t}- Edge- BiCut
does not admit an efficient (2−ε)-approximation assumingUGC [4,13],Edge- BiCut
admits an efficient (2− 1/448)-approximation [1]. Intriguingly, determining whether
Edge- BiCut is NP-complete is still an open problem.

The algorithm achieving the (2 − 1/448)-approximation for Edge- BiCut given
in [1] uses a 3/2-approximation for a global version of (s, r , t)- Edge- Lin- 3- Cut
as a subroutine. Since this global version can be reduced to (s, r , t)- Edge- Lin-

1 Node weighted k-way cut in undirected graphs has no (2− 2/k − ε)-approximation assuming UGC [7].
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3- Cut, improving the approximability of the latter beyond 3/2 would improve the
approximability of Edge- BiCut itself. This suggests that the exact approximability
of (s, r , t)- Edge- Lin- 3- Cut merits careful investigation.

Given that the complexity of Edge- BiCut has been difficult to determine, a natural
sub-problem to consider is {s, ∗}- Edge- BiCut. The input here is an edge-weighted
directed graph with a specified node s, and the goal is to find a smallest weight subset
of edges whose deletion ensures that the resulting graph has a node t such that s cannot
reach t and t cannot reach s. It is known that {s, ∗}- Edge- BiCut isNP-hard, admits an
efficient 2-approximation, and does not admit an efficient (4/3−ε)-approximation for
any constant ε > 0 assuming UGC [1]. Tightening the approximability gap of {s, ∗}-
Edge- BiCut remains open. In this work, we show an approximation-preserving
reduction from (s, r , t)- Edge- Lin- 3- Cut to {s, ∗}- Edge- BiCut, thus providing
further motivations to study the hardness of approximation of the former problem.

Network Security. Interdiction problems have long served as a way to understand net-
work reliability and to secure networks. The linear 3-cut problem also arose from
one such application. Muthukumaran et al. [15] and Talele et al. [16] formulated the
problem of placing security mediators in a distributed system as a cut problem. They
modeled a distributed system as a directed graph with arcs indicating the direction of
possible communication. The nodes are classified into various levels of integrity by
monitoring how much they are compromised. Security is achieved by blocking infor-
mation traveling from low integrity nodes to high integrity nodes. However, blocking
information flow also alters the task that the system is trying to accomplish. Hence,
minimum blocking is needed. This is naturally modeled as a cut problem involving
ordered terminals, a special case of which is the linear k-cut problem. In the linear
k-cut problem (Edge- Lin- k- Cut), the input is a directed graph and k ordered ter-
minal nodes and the goal is to find a smallest subset of edges whose removal ensures
unreachability from any lower terminal node to any higher terminal node. Erbacher
et al. [8] showed that Edge- Lin- k- Cut admits a fixed parameter algorithm when
parameterized by the size of the optimal solution.

Linear k-cut and Network coding. The information capacity in networks with delay
constraints is closely related to a variant of multicut, namely skew-multicut [3]. In
skew-multicut, the input consists of a directed graphwith two ordered sets of terminals
(s1, . . . , sk−1), (t1, . . . , tk−1) and the goal is to find a smallest subset of edges whose
deletion ensures that si cannot reach t j for every i ≤ j . Skew-multicut is equivalent to
Edge- Lin- k- Cut.2 Chekuri et al. [3] showed that the upper bound on the integrality
gap of a natural LP relaxation (Distance LP) for skew-multicut gives an upper bound
on the gap between routing and optimal network coding in a delay constrained graph.
Thus, obtaining tight bounds on the integrality gap of the Distance LP for skew-
multicut/Edge- Lin- k- Cut is of special significance to network coding. In particular,

2 Reduction from Skew-(k − 1)-Multicut to Edge- Lin- k- Cut: Add new nodes s′1, . . . , s′k and infinite
weight edges s′i → si for i ∈ [1, k − 1], ti−1 → s′i for i ∈ [2, k] and solve the Edge- Lin- k- Cut instance
with terminals (s′1, . . . , s′k ). Reduction from Edge- Lin- k- Cut to Skew-(k − 1)-skew-multicut: Given a
directed graph with terminals (s1, . . . , sk ), add new nodes s′1, . . . , s′k−1, t

′
1, . . . , t

′
k−1 and infinite weight

edges s′i → si for i ∈ [1, k − 1], si → t ′i−1 for i ∈ [2, k] and solve the skew-multicut problem w.r.t.

terminal sets (s′1, . . . , s′k−1), (t
′
1, . . . , t

′
k−1).
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it is an intriguing open question to determinewhether the integrality gap of theDistance
LP for Edge- Lin- k- Cut is constant for arbitrary k.

There is a straightforward rounding scheme showing an upper bound of 
log2(k)�
on the integrality gap by recursively partitioning the terminal set and cutting all paths
from terminals on the left to terminals on the right based on the LP solution. A sim-
ple reduction from node k-way cut to Edge- Lin- k- Cut, shows a lower bound of
2(1 − 1/k) on the integrality gap. Chekuri–Madan [4] proved that the hardness of
approximation for Edge- Lin- k- Cutmatches the integrality gap of the Distance LP.
However, they do not improve the upper bound of 
log2 k� or the lower bound of
2(1 − 1/k) on the integrality gap. In this work, we improve both these bounds for
k = 3.

1.2 Results

The following is our main result.

Theorem 1 There is a polynomial-time
√
2-approximation for (s, r , t)- Node- Lin-

3- Cut. Assuming UGC, (s, r , t)- Node- Lin- 3- Cut has no polynomial-time (
√
2−

ε)-approximation for any constant ε > 0.

Both the algorithm and the hardness results are based on a natural distance-based
LP relaxation of the problem. We briefly remark on some of the salient features of our
results.

Approximation. Our main contribution for the upper bound is an analysis exhibiting
the tight approximation factor for a natural rounding scheme. A natural rounding
scheme is to take the best of the following two alternatives: (i) first ensure that s and
r cannot reach t by suitably rounding the LP-solution to obtain a node set K1 to be
removed, and then find a minimum s → r directed cut K2 in the graph obtained
after deleting K1, and return K1 ∪ K2; (ii) first ensure that s cannot reach r and t by
suitably rounding the LP-solution to obtain a node set K1 to be removed, and then
find a minimum r → t directed cut K2 in the graph obtained after deleting K1, and
return K1 ∪ K2. We note that in both alternatives, the first step can be implemented
by standard deterministic ball-cut rounding schemes3 while the second step can be
solved exactly in polynomial time. The main technical challenge lies in analyzing
the approximation factor of such a best of alternatives rounding scheme where the
second step in each alternative depends on the first. We overcome this challenge by
showing that a single-step randomized ball-cut rounding scheme already achieves the
desired expected value. The distribution underlying our single-step scheme turns out
to be extremely non-trivial in nature (as it is not a simple distribution like uniform
or geometric). In the proofs, we derive the distribution with the goal of obtaining the
best approximation factor instead of stating the distribution upfront and bounding the
approximation factor.

3 Pick θ ∈ (0, 1) and set K1 to be the set of nodes which have incoming (outgoing) arcs to nodes which
are within a distance θ from the terminal(s) of interest. Since there are only polynomially many θ values of
interest, the best solution can be obtained in polynomial time.
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Inapproximability. It is known that the inapproximability factor under UGC for
(s, r , t)- Node- Lin- 3- Cut is identical to the integrality gap of a natural distance-
basedLP [4].We construct a sequence of instances such that the sequence of integrality
gaps of the distance-based LP converges to

√
2. Our gap instances are also non-trivial

and can be viewed as a weighted graph sequence converging to a kind of “graph limit
structure” having irrational weights. While irrational gap instances for semi-definite
programming relaxations of natural combinatorial optimization problems are known
to exist (e.g., the max-cut problem [10,12]), the authors are unaware of irrational gap
instances for natural LP-relaxations of natural combinatorial optimization problems
besides the one studied in this work.

We next turn towards the applications that motivated our study of (s, r , t)- Node-
Lin- 3- Cut. We show that the approximability factors of r - InOut- Node- Blocker
and (s, r , t)- Node- Lin- 3- Cut coincide.

Theorem 2 There is a polynomial-time
√
2-approximation for r - InOut- Node-

- Blocker. Assuming UGC, r - InOut- Node- Blocker has no polynomial-time
(
√
2 − ε)-approximation for any constant ε > 0.

Next, we improve on the hardness of approximation of {s, ∗}- Edge- BiCut from
4/3 to

√
2.

Theorem 3 Assuming UGC, {s, ∗}- Edge- BiCut has no polynomial-time (
√
2 − ε)-

approximation for any constant ε > 0.

Wefinally mention that our upper bound on the approximability of (s, r , t)- Node-
Lin- 3- Cut in Theorem 1 in turn improves the approximability of Edge- BiCut. The
new approximation factor is (2 − (

√
2 − 1)/(72 + 58

√
2)) ≈ 1.9973 thus improving

upon the previously known (2 − 1/448) ≈ 1.9977 [1]. We refrain from including a
proof of this result since it is identical to the onepresented in [1] and the improved factor
is obtained by directly plugging in the improved approximation factor for (s, r , t)-
Node- Lin- 3- Cut from Theorem 1.

Organization. We present the upper bound of Theorem 1 in Sect. 2 and the inte-
grality gap instances leading to the lower bound of Theorem 1 in Sect. 3. We obtain
tight approximation results for r - InOut- Node- Blocker (Theorem2) and improved
inapproximability results for {s, ∗}- Edge- BiCut (Theorem 3) in Sect. 4.

2 A
√
2-approximation algorithm for (s, r, t)-NODE-LIN-3-CUT

Let D = (V , E) be an input directed graph with specified nodes s, r , t ∈ V , and
node weights w ∈ R

V \{s,r ,t}
+ . The (s, r , t)- Node- Lin- 3- Cut problem asks for a

minimum weight node setU ⊆ V \{s, r , t} such that D[V −U ] has no path from s to
t , from s to r , and from r to t . The collection of feasible solutions remains the same
if we add the arcs t → r and r → s to the directed graph. In the rest of this section,
we assume that these arcs are present in D.

For a subset U ⊆ V , let us denote w(U ) := ∑
u∈U wu . For nodes u, v ∈ V , let

Puv denote the set of all directed paths from u to v in D. For x ∈ R
V+ and a path P
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in D, we define x(P) := ∑
v∈V (P) xv . For u, v ∈ V , let distx (u, v) := min{x(P) :

P ∈ Puv}. A natural LP relaxation of (s, r , t)- Node- Lin- 3- Cut is the following,
denoted Distance- LP:

minwT x (Distance- LP)

x ∈ R
V+

distx (s, t), distx (s, r), distx (r , t) ≥ 1

xs = xr = xt = 0.

This LP is solvable in polynomial time, since separation amounts to finding shortest
paths. If x is a feasible solution to Distance- LP, then there is a feasible solution x ′
to Distance- LP such that x ′

v ≤ xv for every v ∈ V and moreover:

if x ′
v > 0, then distx ′(r , v) + distx ′(v, r) ≤ 1 + x ′

v. (1)

To achieve this property, we observe that if xv > 0 and distx (r , v)+distx (v, r) > 1+
xv , then x(P) > 1 for all P ∈ Pst ∪Psr ∪Pr t that contains v. Indeed, for any such path
P , there is a subset F of arcs from the set of arcs {t → r , r → s} such that F∪P is the
concatenation of P1 ∈ Prv and P2 ∈ Pvr ; therefore, x(P) = x(P1)+ x(P2)− xv > 1.
This means that we can decrease xv until the property is satisfied.

Let x be a feasible solution to Distance- LP that satisfies (1). We present an
algorithm that, given x as input, constructs in polynomial time a feasible solutionU to
(s, r , t)- Node- Lin- 3- Cut that satisfies w(U ) ≤ √

2wT x . The algorithm itself is a
simple and natural deterministic ball-cut scheme, described below. The main novelty
is the proof of the approximation ratio, which is obtained by considering a weaker,
randomized ball-cut algorithm.

For a node u ∈ V and 0 < θ ≤ 1, let

Bout (u, θ) := {v ∈ V : distx (u, v) < θ},
Sout (u, θ) := {v ∈ V : θ ∈ (distx (u, v) − xv,distx (u, v)]},
Bin(u, θ) := {v ∈ V : distx (v, u) < θ},
Sin(u, θ) := {v ∈ V : θ ∈ (distx (v, u) − xv,distx (v, u)]}.

One can think of Bout (u, θ) as the open ball of radius θ around u with respect to
the distances from u, and Sout (u, θ) can be thought of as the boundary of Bout (u, θ).
The sets Bin(u, θ) and Sin(u, θ) are analogous, but with respect to distances to u (as
opposed to distances from u). We note that Sout (u, θ) and Sin(u, θ) cannot contain
nodes v with xv = 0. Furthermore, the presence of edges r → s and t → r implies
that s ∈ Bout (r , θ) and t ∈ Bin(r , θ).

Claim 1 For any θ ∈ (0, 1], there exists θ ′ ∈ (0, 1] such that Sout (r , θ ′) = Sout (r , θ),
and θ ′ = distx (r , v) or θ ′ = distx (r , v) − xv for some v ∈ V . A similar statement
holds for Sin(r , θ).

123



K. Bérczi et al.

Fig. 1 Deterministic ball-cut algorithm

Proof Consider the set Sout (r , θ) as θ increases from 0 to 1. A vertex v ∈ V is added to
the set Sout (r , θ)when θ reachesdistx (r , v)−xv and is removed from the set Sout (r , θ)

when θ reaches distx (r , v). So, the set Sout (r , θ) changes only when θ = distx (r , v)

or θ = distx (r , v) − xv for some v ∈ V . Hence, for any θ ∈ (0, 1], the set Sout (r , θ)

is one of the sets in {Sout (r , θ ′) | θ ′ = dx (r , v) or θ ′ = dx (r , v) − xv, v ∈ V }. ��
As a consequence, there are at most 2n distinct sets of the form Sout (r , θ) (where

θ ∈ (0, 1]). The deterministic ball-cut scheme is based on enumerating these and is
given in Fig. 1. A set K ⊆ V is a u → v cut in a directed graph D = (V , E) if
D[V \K ] has no path from u to v.

The algorithm has the running time of O(|V |)max flow computations. The follow-
ing claim implies that the output is a feasible solution to (s, r , t)- Node- Lin- 3- Cut.

Claim 2 If θ ∈ (0, 1] and K is an s → r cut in D[V \Sout (r , θ)], then Sout (r , θ) ∪ K
is a feasible solution to (s, r , t)- Node- Lin- 3- Cut. Similarly, if K is an r → t cut
in D[V \Sin(r , θ)], then Sin(r , θ) ∪ K is a feasible solution.

Proof We prove the first part of the claim, the second part being similar. To prove this,
we will show that Sout (r , θ) is a r → t cut in D. Since there is an edge r → s and
r /∈ Sout (r , θ), Sout (r , θ) is also a s → t cut in D. Hence, Sout (r , θ) ∪ K is a r → t
cut, s → t cut and a s → r cut in D. In other words, Sout (r , θ) ∪ K is a feasible
solution to (s, r , t)- Node- Lin- 3- Cut.

We first observe that for every u, v ∈ V , every P ∈ Puv , and every two consecutive
nodes w and w′ in the direction of P , we have distx (u, w) ≥ distx (u, w′) − xw′ and
distx (w′, v) ≥ distx (w, v) − xw.

We now show that every path P ∈ Pr t contains a node in Sout (r , θ). Let
P ∈ Pr t with the nodes w0 := r , w1, w2, . . . , wk, wk+1 := t appearing in order. If
distx (r , wi ) < θ for every i ∈ [k], then distx (r , wk) < θ ≤ 1 and hence, distx (r , t) <

1, a contradiction. Hence, there exists a node wi such that distx (r , wi ) ≥ θ . Pick the
node wi with the smallest index i such that distx (r , wi ) ≥ θ . By the observation from
the previous paragraph, we have distx (r , wi ) − xwi ≤ distx (r , wi−1) < θ , where the
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Fig. 2 Representation of T -shaped cuts. Left: the square corresponding to node v. Center: v is in V (θ1, θ2)

because one of the blue lines intersects the square. Right: v is not in H(θ1, θ2) because the red lines do not
intersect the square

second inequality is by the choice of the index i . Thus, wi ∈ Sout (r , θ) and hence, the
path P contains a node in Sout (r , θ).

Due to the presence of the edge r → s in the graph and the fact that s, r /∈ Sout (r , θ),
we also have that every path P ∈ Pst contains a node in Sout (r , θ). Now, let us
consider a path P ∈ Psr without any nodes in Sout (r , θ). Since K is an s → r cut in
D[V \Sout (r , θ)], P contains a node in K . This means that Sout (r , θ)∪K is a feasible
solution to (s, r , t)- Node- Lin- 3- Cut. ��

The difficulty in analyzing the approximation factor of the algorithm presented in
Fig. 1 is due to dependence of K2 on the choice of K1. We overcome this difficulty
by abandoning the minimum weight cuts K2 in favor of random ball cuts that are
easier to analyze. To do this, we need to define two types of feasible solutions to
(s, r , t)- Node- Lin- 3- Cut.

For 0 < θ1 ≤ 1 and 0 < θ2 ≤ 1, the vertical T-shaped cut V (θ1, θ2) is defined as

V (θ1, θ2) := Sout (r , θ1) ∪ (Bout (r , θ1) ∩ Sin(r , θ2)),

while the horizontal T-shaped cut H(θ1, θ2) is defined as

H(θ1, θ2) := Sin(r , θ2) ∪ (Bin(r , θ2) ∩ Sout (r , θ1)).

The name “T-shaped cut” comes from the observation that if each node v is represented
in the plane by the square (distx (r , v)−xv,distx (r , v)]×(distx (v, r)−xv,distx (v, r)],
then the cut consists of nodes whose square is intersected by two segments forming a
rotated “T” shape (see Fig. 2). We call a node set U to be T-shaped if U = V (θ1, θ2)

or U = H(θ1, θ2) for some pair 0 < θ1, θ2 ≤ 1.

Lemma 1 The set Bout (r , θ1) ∩ Sin(r , θ2) is an s → r cut in D[V \Sout (r , θ1)], and
Bin(r , θ2) ∩ Sout (r , θ1) is an r → t cut in D[V \Sin(r , θ2)].
Proof We prove only the first part of the claim, the proof of the second part being
similar. Let us consider a path P ∈ Psr without any nodes in Sout (r , θ1). Let the nodes
in P be w0 := s, w1, w2, . . . , wk, wk+1 := r appearing in order. We will show that
wi ∈ Bout (r , θ1) for every i ∈ {1, . . . , k} by induction on i . For the base case, owing to
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the presence of the edge r → s in the graph, we have that distx (r , w0)−xw0 = 0 < θ1
and since w0 /∈ Sout (r , θ1), it follows that distx (r , w0) < θ1. For the induction
step, we have that distx (r , wi+1) − xwi+1 ≤ distx (r , wi ) < θ1, where the second
inequality follows by induction hypothesis. Now, since wi+1 /∈ Sout (r , θ1), it follows
that distx (r , wi+1) < θ1. Hence, all nodes of P are in Bout (r , θ1).

We now show that at least one of the nodes in P should be in Sin(r , θ2). If
distx (wi , r) < θ2 for every i ∈ [k], then distx (w1, r) < θ2 ≤ 1 and hence,
distx (s, r) < 1, a contradiction. Thus, there exists wi such that distx (wi , r) ≥ θ2.
Pick the node wi with the largest index i such that distx (wi , r) ≥ θ2. We have
distx (wi , r) − xwi ≤ distx (wi+1, r) < θ2, where the second inequality is by the
choice of the index i . This means that wi ∈ Sin(r , θ2). Consequently, the path P
contains a node in Bout (r , θ1) ∩ Sin(r , θ2). ��
Corollary 1 Every T-shaped cut is a feasible solution to (s, r , t)- Node- Lin- 3- Cut,
and the weight of the cut found by the Deterministic Ball-Cut Algorithm is at most the
minimum weight of a T-shaped cut.

Proof Feasibility follows directly from Lemma 1 and Claim 2. For the second state-
ment, consider V (θ1, θ2) and H(θ1, θ2) for some θ1, θ2 ∈ (0, 1]. By Claim 1, there
exists θ ′ ∈ {distx (r , v′),distx (r , v′) − xv′ } for some v′ ∈ V such that Sout (r , θ ′) =
Sout (r , θ1), and there exists θ ′′ ∈ {distx (v′′, r),distx (v′′, r) − xv′′ } for some v′′ ∈ V
such that Sin(r , θ ′′) = Sin(r , θ2).

When the algorithm considers v′ and θ ′, it finds a minimumweight s → r cut K2 in
D[V \Sout (r , θ ′)]. As Bout (r , θ1)∩Sin(r , θ2) is also an s → r cut in D[V \Sout (r , θ ′)]
by Lemma 1, w(Sout (r , θ ′) ∪ K2) ≤ w(Sout (r , θ1) ∪ (Bout (r , θ1) ∩ Sin(r , θ2)).

When the algorithm considers v′′ and θ ′′, it finds aminimumweight r → t cut K1 in
D[V \Sin(r , θ ′′)]. As Bin(r , θ2)∩ Sout (r , θ1) is also an r → t cut in D[V \Sin(r , θ ′′)]
by Lemma 1, w(Sin(r , θ ′′) ∪ K1) ≤ w(Sin(r , θ2) ∪ (Bin(r , θ2) ∩ Sout (r , θ1)). ��

We can bound the approximation factor of the Deterministic Ball-Cut Algorithm
by estimating the minimum weight of a T-shaped cut. We show that the latter differs
from the cost of the Distance- LP by a factor of at most

√
2.

Theorem 4 There exists a T-shaped cut U such that w(U ) ≤ √
2wT x.

To prove Theorem 4, we will follow a probabilistic argument. We will exhibit a
distribution over T-shaped cuts for which the expected weight satisfies the bound
mentioned in Theorem 4. This distribution turns out to be non-trivial in nature (as
it is not simply a uniform/geometric/exponential distribution). Instead of stating this
distribution upfront and analyzing its approximation factor, we will derive the opti-
mal distribution as a natural consequence of the following lemma, which provides a
sufficient condition for achieving a certain approximation factor.

Lemma 2 Let ξ : [0, 1]2 → R+ be a function satisfying

∀a, b ∈ R+, a + b ≤ 1,
∫ 1

0
(ξ(a, z) + ξ(b, z)) dz +

∫ 1

a
ξ(z, b) dz +

∫ 1

b
ξ(z, a) dz = 1. (2)
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Let α := 2
∫ 1
0

∫ 1
0 ξ(z1, z2) dz1 dz2. Then, for any instance of (s, r , t)- Node- Lin-

3- Cut, there exists a T-shaped cut U such that

w(U ) ≤ 1

α
wT x .

Proof We define a probability distribution on the set of T-shaped cuts by giving
a weighing function f : {Ver,Hor} × [0, 1]2 → R+. For (θ1, θ2) ∈ [0, 1]2, let
f (Ver, θ1, θ2) := ξ(θ1, θ2)/α and f (Hor, θ1, θ2) := ξ(θ2, θ1)/α. For a T-shaped cut
U , let

Pr(U ) :=
∫

(θ1,θ2):V (θ1,θ2)=U
f (Ver, θ1, θ2) dθ1 dθ2

+
∫

(θ1,θ2):H(θ1,θ2)=U
f (Hor, θ1, θ2) dθ1 dθ2. (3)

We mention that a node set U could be both a horizontal and a vertical T-shaped
cut in which case, the probability mass for U comes from both integrals in the above
sum. Furthermore, Pr(·) is a probability distribution supported over the set of T-shaped
cuts because of the definition of α. Let U be a T-shaped cut chosen according to this
distribution.

Claim 3 For v ∈ V \{r , s, t}, probability that v is in the chosen T-shaped cut U is at
most xv/α.

Proof We may assume that xv �= 0 since every vertex in a T-shaped cut necessarily
has this property. Let a := distx (r , v) and b := distx (v, r). We recall that a vertical
T-shaped cut V (θ1, θ2) is defined as Sout (r , θ1) ∪ (Bout (r , θ1) ∩ Sin(r , θ2)). Thus,
V (θ1, θ2) contains the node v if and only if either (1) a − xv < θ1 ≤ a, or (2) a < θ1
and b− xv < θ2 ≤ b. Similarly, a horizontal T-shaped cut H(θ1, θ2) contains the node
v if and only if either (3) b − xv < θ2 ≤ b, or (4) b < θ2 and a − xv < θ1 ≤ a.
Therefore the probability of v being in a random T-shaped cut is at most

P := 1

α

(∫ 1

z2=0

∫ a

z1=a−xv

ξ(z1, z2) dz1 dz2 +
∫ b

z2=b−xv

∫ 1

z1=a
ξ(z1, z2) dz1 dz2

+
∫ b

z2=b−xv

∫ 1

z1=0
ξ(z2, z1) dz1 dz2 +

∫ 1

z2=b

∫ a

z1=a−xv

ξ(z2, z1) dz1 dz2

)

By change of variables, we have that

P = 1

α

∫ xv

y=0

(∫ 1

z=0
ξ(a − y, z) dz +

∫ 1

z=a
ξ(z, b − xv + y) dz

+
∫ 1

z=0
ξ(b − xv + y, z) dz +

∫ 1

z=b
ξ(z, a − y) dz

)

dy.
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For 0 ≤ y ≤ xv , we have a − y ≤ a and b − xv + y ≤ b. By assumption, ξ(z1, z2) is
non-negative in the domain. Therefore, we have

∫ xv

y=0

∫ 1

z=a
ξ(z, b − xv + y) dz dy ≤

∫ xv

y=0

∫ 1

z=a−y
ξ(z, b − xv + y) dz dy

and

∫ xv

y=0

∫ 1

z=b
ξ(z, a − y) dz dy ≤

∫ xv

y=0

∫ 1

z=b−xv+y
ξ(z, a − y) dz dy.

Hence,

P ≤ 1

α

∫ xv

y=0

(∫ 1

z=0
ξ(a − y, z) dz +

∫ 1

z=a−y
ξ(z, b − xv + y) dz

+
∫ 1

z=0
ξ(b − xv + y, z) dz +

∫ 1

z=b−xv+y
ξ(z, a − y) dz

)

dy

= 1

α

∫ xv

y=0
1 dy = xv

α
,

where the equality at the beginning of the last row follows from (2), since for 0 ≤ y ≤
xv , we have (a− y)+ (b− xv + y) = a+b− xv = distx (r , v)+distx (v, r)− xv ≤ 1
by (1), and moreover a − y ≥ a − xv = distx (r , v) − xv ≥ 0 and b − xv + y ≥
b − xv = distx (v, r) − xv ≥ 0 by the definition of distx (·, ·). ��

Since every node v is in the random T-shaped cut with probability at most xv

α
,

the expected weight of a random T-shaped cut is at most wT x
α

. Therefore, there is a

T-shaped cut U with w(U ) ≤ wT x
α

. ��
To prove Theorem 4, it is enough by Lemma 2 to show the existence of a function

ξ : [0, 1]2 → R+ satisfying (2) for which

∫ 1

0

∫ 1

0
ξ(z1, z2) dz1 dz2 = 1

2
√
2
. (4)

It turns out that such a function exists, but its structure is surprisingly complex. We
define two regions where the function ξ will have positive values (see Fig. 3).

Remark The reason for this restriction on the support of ξ will become apparent in
Sect. 3, where we present an infinite sequence of node-weighted graphs for which the
integrality gap of Distance- LP converges to

√
2. It can be seen thatR1∪R2 consists

of the pairs (z1, z2) for which the weight of the vertical T-shaped cut V (z1, z2) (based
on the optimal LP solution x) converges to 1 in the graph sequence. Informally, the
region R1 ∪ R2 is the region where the complementary slackness conditions allow
positive density, if we consider the “limit” of the weighted graph sequence defined in
Sect. 3. However, this is not the usual notion of graph limit, so we do not formalize
this statement as it is not necessary for the proof.
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Fig. 3 The regionsR1 andR2

Proof of Theorem 4 To prove the theorem, we define a function ξ with the above prop-
erties. The value of ξ is defined to be 0 for (z1, z2) ∈ [0, 1]2\(R1 ∪ R2). For
every (z1, z2) ∈ R1, we set ξ(z1, z2) := (

√
2 + 1)/

√
2. In the region R2, the

value of ξ(z1, z2) will depend only on z1. In particular, we will define a function

ζ : [
√
2−1√
2

, 1√
2
] → R+, and define ξ(z1, z2) in the region R2 as

ξ(z1, z2) := ζ(z1).

Let us examine the properties that are sufficient to be satisfied by ζ in order for ξ to
satisfy (2). We remark that conditions (5)–(7) below on ζ are also necessary for (2) to
hold. Although this fact is not needed for the proof of Theorem 4, we prove it in the
Appendix for completeness. The essence of the proof is that if we restrict the structure
of ξ as described above, then (5)–(7) are the conditions we get from (2) by considering
the cases a = b and a = 1 − b.

Claim 4 Condition (2) is satisfied by ξ if the following hold for ζ :

ζ

(√
2 − 1√
2

)

= 0, (5)

(1 − y)ζ(y) +
∫ 1−y

y
ζ(z) dz = 1

2
if

√
2 − 1√
2

≤ y ≤ 1

2
, (6)

(1 − y)ζ(y) −
∫ y

1−y
ζ(z) dz = 1

2
if
1

2
≤ y ≤ 1√

2
. (7)

Proof We consider several cases based on the values of a and b. Let Γ (a, b) denote
the LHS of (2). By taking y =

√
2−1√
2

in (6) and substituting ζ(
√
2−1√
2

) = 0, we obtain
that

∫ 1√
2

√
2−1√
2

ζ(z) dz = 1

2
. (8)
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Case 1(i) Suppose a > 1√
2
. Then b ≤

√
2−1√
2

since a + b ≤ 1. Now,

Γ (a, b) =
∫ 1

0
ξ(a, z) dz +

∫ 1

0
ξ(b, z) dz +

∫ 1

a
ξ(z, b) dz +

∫ 1

b
ξ(z, a) dz

=
(

1 + 1√
2

) (

1 − 1√
2

)

+ 0 + 0 +
(

1 + 1√
2

) (

1 − 1√
2

)

= 1.

Case 1(ii) Suppose b > 1√
2
. Proceeding similar to Case 1(i), we obtain Γ (a, b) = 1.

Case 2 Suppose a ≤
√
2−1√
2

and b ≤
√
2−1√
2
. In this case, we have

Γ (a, b) =
∫ 1

0
ξ(a, z) dz +

∫ 1

0
ξ(b, z) dz +

∫ 1

a
ξ(z, b) dz +

∫ 1

b
ξ(z, a) dz

= 0 + 0 + 2
∫ 1√

2
√
2−1√
2

ζ(z) dz = 1.

Case 3(i) Suppose
√
2−1√
2

< a ≤ 1√
2
and b ≤

√
2−1√
2
. Then

Γ (a, b) =
∫ 1

0
ξ(a, z) dz +

∫ 1

0
ξ(b, z) dz +

∫ 1

a
ξ(z, b) dz +

∫ 1

b
ξ(z, a) dz

=
∫ 1−a

0
ζ(a) dz + 0 +

∫ 1√
2

a
ζ(z) dz +

∫ 1−a

√
2−1√
2

ζ(z) dz

= (1 − a)ζ(a) +
∫ 1√

2

a
ζ(z) dz +

∫ 1−a

√
2−1√
2

ζ(z) dz. (9)

If a ≤ 1
2 , then the RHS from (9) can be written as

Γ (a, b) = (1 − a)ζ(a) +
∫ 1−a

a
ζ(z) dz +

∫ 1√
2

√
2−1√
2

ζ(z) dz = 1

by (6) and (8). If a > 1
2 , then the RHS from (9) can be written as

Γ (a, b) = (1 − a)ζ(a) −
∫ a

1−a
ζ(z) dz +

∫ 1√
2

√
2−1√
2

ζ(z) dz = 1

by (7) and (8).

Case 3(ii) Suppose a ≤
√
2−1√
2

and
√
2−1√
2

< b ≤ 1√
2
. Proceeding similar to Case 3(a),

we obtain that Γ (a, b) = 1.
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Case 4 Suppose
√
2−1√
2

< a ≤ 1√
2
and

√
2−1√
2

< b ≤ 1√
2
. Moreover, we have a+b ≤ 1.

Γ (a, b) =
∫ 1

0
ξ(a, z) dz +

∫ 1

0
ξ(b, z) dz +

∫ 1

a
ξ(z, b) dz +

∫ 1

b
ξ(z, a) dz

=
∫ 1−a

0
ζ(a) dz +

∫ 1−b

0
ζ(b) dz +

∫ 1−b

a
ζ(z) dz +

∫ 1−a

b
ζ(z) dz

= (1 − a)ζ(a) + (1 − b)ζ(b) +
∫ 1−b

a
ζ(z) dz +

∫ 1−a

b
ζ(z) dz.

We will assume that a ≤ b (the other case is similar). If b ≤ 1
2 , then

∫ 1−b

a
ζ(z) dz +

∫ 1−a

b
ζ(z) dz =

∫ 1−a

a
ζ(z) dz +

∫ 1−b

b
ζ(z) dz,

and hence Γ (a, b) = 1 follows from (6). If b > 1
2 , then, a ≤ 1 − b < 1

2 ≤ b and
hence, we have

∫ 1−b

a
ζ(z) dz +

∫ 1−a

b
ζ(z) dz =

∫ 1−a

a
ζ(z) dz −

∫ b

1−b
ζ(z) dz.

Therefore, Γ (a, b) = 1 follows from (6) and (7). ��
In order to complete the proof of the theorem, we have to find a function

ζ : [
√
2−1√
2

, 1√
2
] → R+ that satisfies properties (5)–(7). By solving the differential

equations corresponding to (5)–(7), we get that the function satisfying these proper-
ties is

ζ(y) := 2y(2 − y) − 1

4y(1 − y)2
. (10)

By substituting the function values, it can be verified that
∫ 1
0

∫ 1
0 ξ(z1, z2) dz1 dz2 =

1
2
√
2
. We present the calculations needed for verification here. By substituting the

function values, we get

∫ 1

0

∫ 1

0
ξ(z1, z2) dz1 dz2 =

∫

(z1,z2)∈R1

ξ(z1, z2) dz2 dz1

+
∫

(z1,z2)∈R2

ξ(z1, z2) dz2 dz1

=
∫ 1

1√
2

∫ 1

1√
2

√
2 + 1√
2

dz2 dz1 +
∫ 1√

2
√
2−1√
2

∫ 1

z1
ζ(z1) dz2dz1

=
(

1 − 1√
2

)2
(√

2 + 1√
2

)

+
∫ 1√

2
√
2−1√
2

(1 − z1)
2z1(2 − z1) − 1

4z1(1 − z1)2
dz1
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=
√
2 − 1

2
√
2

+
∫ 1√

2
√
2−1√
2

2z1(1 − z1) + 2z1 − 1

4z1(1 − z1)
dz1

=
√
2 − 1

2
√
2

+
∫ 1√

2
√
2−1√
2

1

2
dz1 −

∫ 1√
2

√
2−1√
2

2z1 − 1

4z1(1 − z1)
dz1

=
√
2 − 1

2
√
2

+ 1

2

(
1√
2

−
√
2 − 1√
2

)

−
∫ 1√

2
− 1

2

1
2− 1√

2

2x

4
( 1
2 + x

) ( 1
2 − x

)dx

=
√
2 − 1

2
√
2

+ 2 − √
2

2
√
2

−
∫ 1√

2

1
2− 1√

2

x

2
( 1
4 − x2

)dx

= 1

2
√
2
.

The last equality above follows from the fact that the function x
2( 14−x2)

is anti-symmetric

around x = 0. ��
For clarity, we conclude the section by describing the obtained distribution explic-

itly. The probability of choosing a given T-shaped cut U is

Pr(U ) := √
2

(∫

(θ1,θ2):V (θ1,θ2)=U
ξ(θ1, θ2) dθ1 dθ2

+
∫

(θ1,θ2):H(θ1,θ2)=U
ξ(θ2, θ1) dθ1 dθ2

)

, (11)

where

ξ(θ1, θ2) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
2+1√
2

if 1√
2

< θ1, θ2 ≤ 1,

2θ1(2−θ1)−1
4θ1(1−θ1)2

if
√
2−1√
2

≤ θ1 ≤ 1√
2
and θ1 + θ2 ≤ 1,

0 otherwise.

(12)

3 Integrality gap

It is known that the inapproximability factor of (s, r , t)- Node- Lin- 3- Cut under
UGC coincides with the integrality gap of the Distance- LP [4]. In this section, we
present an integrality gap instance for (s, r , t)- Node- Lin- 3- Cut which will in turn
show the inapproximability result in Theorem 1.

Theorem 5 The integrality gap of the Distance- LP is at least
√
2.

We will construct a sequence of node-weighted graphs for which the integrality
gap converges to

√
2. In most previously known integrality gap instances for distance-

based linear programs for directed multicut-like problems, the node weights were
uniformly set to be one. In contrast, our gap instance assigns non-uniform weights to
the nodes.
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3.1 Gap instance construction

Let M be a positive integer. We will construct a graph G = (V , E) on (M + 1)2 + 3
nodes with weights on the nodes. For convenience, let us define V ′ := {(i, j) : i, j ∈
{0, 1, . . . , M}}. Thus, we may view V ′ as the nodes of an (M + 1) × (M + 1)-grid
whose columns and rows are indexed from 0 to M (we will follow the convention that
the first index denotes the column while the second index denotes the row). The node
set of G is given by V := {s, r , t} ∪ V ′. We now define the weights on the nodes.
The construction involves a parameter α ∈ (0, 1/2) that will be determined later. We
denote the weight of node (i, j) to be wi j and define4

wi j :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i + j > M,
1−α
M if i + j < M,

1
2 − (1−α)i

M if i + j = M, i < M
(
1 − 1

2(1−α)

)
,

α if i + j = M and

M
(
1 − 1

2(1−α)

)
≤ i ≤ M

(
1

2(1−α)

)
,

1
2 − (1−α) j

M if i + j = M, i > M
(

1
2(1−α)

)
.

The edge set E consists of undirected and directed edges where the undirected
edges represent directed edges in both directions. The undirected edges consist of the
following: every node (i, j) is adjacent to all nodes in V ′ ∩ {(i − 1, j − 1), (i −
1, j), (i − 1, j + 1), (i, j − 1), (i, j + 1), (i + 1, j − 1), (i + 1, j), (i + 1, j + 1)}.
The directed edges consist of r → s, t → r , s → (i, M) and (i, 0) → r for every
i ∈ {0, 1, . . . , M}, and (M, j) → t and r → (0, j) for every j ∈ {0, 1 . . . , M} (see
Fig. 4).

We will refer to the subgraph of G induced by the vertex-set V ′ as a diagonalized-
grid. We will let leftmost column, rightmost column, bottommost row, topmost row,
and diagonal to denote {(0, j) : j ∈ {0, 1, . . . , M}}, {(M, j) : j ∈ {0, 1, . . . , M}},
{(i, 0) : i ∈ {0, 1, . . . , M}}, {(i, M) : i ∈ {0, 1, . . . , M}}, and {(i, j) : i, j ∈
{0, 1, . . . , M}, i + j = M} respectively.

3.2 Proof of gap

The following lemma bounds the value of an optimal solution to the linear program.

Lemma 3 An optimal solution to theDistance- LP for the node-weighted graph con-
structed above has weight at most

(
1

M

) M∑

i=0

M∑

j=0

wi j .

4 The various boundary conditions in the definition of the node weights will have to use appropriately
rounded down and rounded up boundary values. We avoid this technicality in the interests of simplicity.
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Fig. 4 The graph corresponding to the integrality gap instance. The black edges are undirected while the
blue edges are directed. The node weights are not shown

Proof It is sufficient to exhibit a feasible solution to the linear programwhose objective
value is as specified in the lemma. We will show that x(i, j) := 1/M for every i, j ∈
{0, 1, . . . , M}, i + j ≤ M and x(i, j) := 1 for every i, j ∈ {0, 1, . . . , M}, i + j > M ,
is a feasible solution to the linear program. We recall that nodes (i, j) with i + j > M
have weight wi j = 0. Let us consider the graph H obtained from G by removing all
nodes (i, j) with i + j > M . To show feasibility of x , it suffices to show that every
path from s to r , from r to t and from s to t has at least M intermediate nodes in H .

A path in H from a node (i, j) ∈ V (H) to r has to cross j intermediate rows
and hence has at least j internal nodes. Hence, for every node (i, j) with i, j ∈
{0, 1 . . . , M}, i + j ≤ M , the number of internal nodes in every path from (i, j) to
r in H is at least j . Now every path from s to r in H has to go through (0, M) and
hence has at least M internal nodes from V (H) ∩ V ′. Similarly, every path from r to
t in H has at least M internal nodes from V (H) ∩ V ′. Finally, the distance from s to
t in H is at least the distance from r to t in H owing to the edge r → s and hence,
the number of internal nodes from V (H) ∩ V ′ in any path from s to t in H is also at
least M . ��

The next lemma shows a lower bound on the objective value of an integral optimum
solution.

Lemma 4 An optimal solution to (s, r , t)- Node- Lin- 3- Cut in the node-weighted
graph constructed above has weight at least 1.
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Proof Let U∗ be an integral optimal solution. We will show the lower bound on the
weight ofU∗ in two steps. We define the axis-parallel neighbors of a node (i, j) to be
the nodes in {(i+1, j), (i−1, j), (i, j+1), (i, j−1)} and a path to be an axis-parallel
path if all neighbors of a node (i, j) occurring in the path are its axis-parallel neighbors.
In the first step of the proof, we show that U∗ consists of an axis-parallel path from
a node in the topmost row to a node in the bottommost row and an axis-parallel path
from a node in the leftmost column to a node in rightmost column.

Lemma 5 The optimal solutionU∗ contains a set of nodes which form an axis-parallel
path P1 from a node in the bottommost row to a node in the topmost row in G.

Lemma 6 The optimal solutionU∗ contains a set of nodes which form an axis-parallel
path P2 from a node in the leftmost column to a node in the rightmost column in G.

We defer the proof of Lemmas 5 and 6 to complete the proof of Lemma 4. As
a second step of the proof, we now show a lower bound on the total weight of the
union of the nodes in these two paths. The next claim follows immediately from the
definition of axis-parallel paths.

Claim 5 Every axis-parallel path from node (i1, j1) to (i2, j2) contains at least |i2 −
i1| + | j2 − j1| − 1 internal nodes.

We also have the following claim from the definition of the node weights.

Claim 6 For every node (i, j) for i, j ∈ {0, 1, . . . , M} with i + j = M, we have

wi j = max

{
1

2
− (1 − α)i

M
, α,

1

2
− (1 − α) j

M

}

.

Let P1 and P2 be the node sets in U∗ guaranteed by Lemmas 5 and 6 respectively.
Let a, b be such that P1 induces an axis-parallel path from a node (a, 0) to a node
(b, M). Similarly, let c, d be such that P2 induces an axis-parallel path from a node
(0, c) to a node (M, d) (see Fig. 5).

Since P1 is an axis-parallel path from a node in the bottommost row to a node in the
topmost row, there exists a node in P1 from the diagonal. Let (x, M − x) be the first
node along the axis-parallel path P1 that is in the diagonal. Let P ′

1 be the restriction
of P1 from (a, 0) to (x, M − x). Let (x ′, y′) be the first node along the axis-parallel
path P2 that is either in the diagonal or in P ′

1. Let P
′
2 be the restriction of P2 from

(0, c) to (x ′, y′). By construction, all nodes (p, q) of P ′
1 ∪ P ′

2 satisfy p + q ≤ M . We
will show that the total weight of the nodes in P ′

1 ∪ P ′
2 is at least 1. This suffices since

P ′
1 ∪ P ′

2 ⊆ U∗. We distinguish two cases.

1. Suppose P ′
2 is a path from (0, c) to a node (i, j) of P ′

1, where i + j ≤ M . By
Claim 5, the axis-parallel path P ′

2 has at least |i − 0|+ | j − c|− 1 ≥ i − 1 internal
nodes. Furthermore, the path P ′

1 is the concatenation of an axis-parallel path Q1
from (a, 0) to (i, j) and an axis-parallel path Q2 from (i, j) to (x, M− x). Hence,
by Claim 5, the axis-parallel path P ′

1 has at least |i − a| + | j − 0| − 1+ 1+ |x −
i | + |M − x − j | − 1 ≥ j + |x − i | + |M − x − j | − 1 ≥ M − i − 1 internal
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Fig. 5 The red circled nodes denote the axis-parallel path P1 and the blue circled nodes denote the axis-
parallel path P2

nodes. We recall that all these nodes have weight (1 − α)/M . Additionally, the
nodes (a, 0) and (0, c) have weight (1− α)/M each. The node (x, M − x) on the
diagonal has weight at least α by Claim 6. Combining these, we get that the total
weight of the nodes in P ′

1 ∪ P ′
2 is at least

((i − 1) + (M − i − 1) + 2)

(
1 − α

M

)

+ α = 1.

2. Suppose P ′
2 is a path from (0, c) to a node (x ′, M−x ′) on the diagonal. In this case,

wewill show that the total weight of the nodes in P ′
1 and P ′

2 are each lower bounded
by 1/2. ByClaim 5, the axis-parallel path P ′

1 has at least |x−a|+|M−x−0|−1 ≥
M − x − 1 internal nodes each of which has weight (1 − α)/M . Additionally,
the end-node (a, 0) also has weight (1 − α)/M and the end-node (x, M − x) has
weight at least 1/2 − (1 − α)((M − x)/M) by Claim 6. Thus, the total weight of
the nodes in P ′

1 is at least

((M − x − 1) + 1)

(
1 − α

M

)

+ 1

2
− (1 − α)(M − x)

M
= 1

2
.

We proceed by a similar argument for the total weight of the nodes in P ′
2. By

Claim 5, the axis-parallel path P ′
2 has at least |x ′ − 0|+ |M − x ′ − c|− 1 ≥ x ′ − 1

internal nodes each of which has weight (1 − α)/M . Additionally, the end-node
(0, c) also has weight (1 − α)/M and the end-node (x ′, M − x ′) has weight at
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least 1/2 − (1 − α)(x ′/M) by Claim 6. Thus, the total weight of the nodes in P ′
2

is at least

((x ′ − 1) + 1)

(
1 − α

M

)

+ 1

2
− (1 − α)x ′

M
= 1

2
.

This completes the proof of Lemma 4. ��

3.3 Proof of Lemma 5

We now prove Lemma 5. The proof of Lemma 6 is similar.

Proof of Lemma 5 Let U∗
t denote an inclusionwise-minimal subset of U∗ such that

G − U∗
t contains no path from r to t . We will show that U∗

t contains a path P1 as
required. Showing this is equivalent to showing the following combinatorial statement:
every subset of nodes that intersects all paths from left to right in a diagonalized-grid
(sinceG contains a diagonalized-grid) has a subset of nodes that induce an axis-parallel
path from a node in the topmost row to a node in the bottommost row inG. We proceed
to show this now.

Wewill show the combinatorial statement using a coloring argument. Let R := U∗
t ∪

{(i,−1), (i, M + 1) : i ∈ {0, 1, . . . , M}} and B := (V ′\U∗
t )∪ {(−1, j), (M + 1, j) :

j ∈ {0, 1, . . . , M}}. Call the corresponding nodes as red and blue nodes respectively
(we observe that the sets R and B have extra nodes in addition to the nodes in the
diagonalized-grid of G, but this is only for the purposes of notational convenience in
this proof). We will construct an auxiliary graph for the purposes of the proof—for
clarity, we will refer to the vertices of G as nodes and the vertices of the auxiliary
graph as vertices.

We construct an undirected graph H as follows. The vertex set of H is given by
V (H) := {vi, j : i, j ∈ {0, 1, . . . , M + 1}} ∪ {a, b, c, d}. We call a vertex vi, j to
be in column i and row j . We define a′ := v0,0, b′ := vM+1,0, c′ := v0,M+1, d ′ :=
vM+1,M+1 and call them to be the corner vertices.

The edge set of H is denoted by E(H): a vertex vi, j is adjacent to all vertices in
V (H) ∩ {vi−1, j , vi+1, j , vi, j−1, vi, j+1} (i.e., the undirected grid edges) and vertices
a, b, c, d are adjacent to a′, b′, c′, d ′ respectively.

We note that H is a plane graph that corresponds to a square grid with four
pendant vertices that are adjacent to the four corner vertices of the grid. In the
following, it is helpful to consider overlaying H on top of G as shown in Fig. 6
with each internal face of H containing exactly one node from V ′. For a vertex
vi, j ∈ V (H)\{a, a′, b, b′, c, c′, d, d ′}, we define Di, j

1 := {(i, j), (i − 1, j − 1)}
and Di, j

2 := {(i −1, j), (i, j −1)}. We emphasize that Di, j
1 and Di, j

2 consist of nodes
from the original graph G. They are the nodes in the two diagonally opposite faces
adjacent to vi, j in the overlay (see Fig. 6).

WenowmodifyH to obtain adirected subgraphD′ as follows: for an edge e ∈ E(H)

with e = {vi, j , vi+b1, j+b2} where b1, b2 ∈ {0, 1} and b1 + b2 = 1, we say that e is
bi-labeled if |{(i, j), (i + b1 − 1, j + b2 − 1)} ∩ R| = 1 and |{(i, j), (i + b1 − 1, j +
b2 − 1)} ∩ B| = 1 (i.e., the two faces of the edge contain a node from R and B). In
addition, wewill call the edges {a, a′}, {b, b′}, {c, c′}, {d, d ′} to be trivially bi-labeled.
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Fig. 6 The diagonalized-grid of the graph G is shown in gray while the graph H is shown in black. For
visual simplicity, we have not included the diagonal edges of the diagonalized-grid. The extra red and blue

nodes are also shown. For node vi, j , the nodes of G in the two diagonally opposite faces Di, j
1 and Di, j

2
are also shown

We delete all edges of H that are not bi-labeled.We orient the trivially bi-labeled edges
as a′ → a, b → b′, c → c′ and d ′ → d and orient the remaining bi-labeled edges by
the following rule (see Fig. 7):

1. for an edge e = {vi, j , vi+1, j }, we will orient the edge as
(a) vi, j → vi+1, j if (i, j) ∈ R and (i, j − 1) ∈ B and declare (i, j) to be the left

node and (i, j − 1) to be the right node of the edge,
(b) vi+1, j → vi, j if (i, j) ∈ B and (i, j − 1) ∈ R and declare (i, j) to be the

right node and (i, j − 1) to be the left node of the edge,

2. for an edge e = {vi, j , vi, j+1}, we will orient the edge as
(a) vi, j+1 → vi, j if (i, j) ∈ R and (i − 1, j) ∈ B and declare (i, j) to be the left

node and (i − 1, j) to be the right node of the edge,
(b) vi, j → vi, j+1 if (i, j) ∈ B and (i − 1, j) ∈ R and declare (i, j) to be the

right node and (i − 1, j) to be the left node of the edge,

Weobserve that this orienting rule ensures that the left and right nodes of every oriented
edge are red and blue respectively (see Fig. 7).

We make one final modification to D′ to obtain D: for each vertex vi, j where
i, j ∈ {1, . . . , M},
(I) if Di, j

1 ⊆ B and Di, j
2 ⊆ R, then (see Fig. 8) we replace the vertex vi, j by

v1i, j , v
2
i, j , declare them to be the vertices in row i and column j , and replace the
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Fig. 7 Orienting the bi-labeled edges of H

Fig. 8 Splitting operation (I)

head of the incoming edge from the vertex in column i −1, row j by v1i, j , replace

the head of the incoming edge from the vertex in column i + 1, row j by v2i, j ,

replace the tail of the outgoing edge to the vertex in column i , row j + 1 by v1i, j ,
and replace the tail of the outgoing edge to the vertex in column i , row j − 1 by
v2i, j , and

(II) if Di, j
1 ⊆ R and Di, j

2 ⊆ B, then (see Fig. 9) we replace the vertex vi, j by
v1i, j , v

2
i, j , declare them to be the vertices in row i and column j , and replace the

head of the incoming edge from the vertex in column i , row j +1 by v1i, j , replace

the head of the incoming edge from the vertex in column i , row j − 1 by v2i, j ,

replace the tail of the outgoing edge to the vertex in column i + 1, row j by v1i, j ,
and replace the tail of the outgoing edge to the vertex in column i − 1, row j by
v2i, j .

We call the above operation to be a split operation. We emphasize that the operation
separates the red nodes in a consistent manner. The left and right nodes of all oriented
edges still remain the same after the split operation.

Claim 7 Let v ∈ V (D)\{a, b, c, d}. Then, the incoming and outgoing degree of v are
either both 0 or both 1.

Proof Vertices in D that were obtained by splitting a vertex in D′ clearly satisfy the
property since they have incoming and outgoing degree to be 1 after the split. So, we
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Fig. 9 Splitting operation (II)

Fig. 10 Degree of internal vertices: Case a is impossible. Cases b, c and d have a unique outgoing edge as
well

Fig. 11 Degree of corner
vertices

may assume that v is a vertex in D′ as well as D. Suppose v has incoming degree to
be one in D′ (the proof for outgoing degree being one is identical).

Suppose v is not a corner vertex. Let v = vi, j . We will address the case where the
incoming edge is from a vertex in column i − 1 and row j (see Fig. 10). The other
cases can be handled in a similar fashion. Then, (i − 1, j − 1) ∈ B, (i − 1, j) ∈ R.
Based on whether (i, j − 1) is in R or B and whether (i, j) is in R or B, we have four
cases. One of the cases cannot happen since vi, j is a vertex in both D and D′. The
remaining three cases show that the outgoing degree from vi, j is also one in D′.

Suppose v is a corner vertex. We will address the case where v = v0,M = c′ (see
Fig. 11). The other cases can be handled in a similar fashion. Now, depending on
whether (0, M) is in R or B, we have two cases. In both cases, the outgoing degree
from v0,M is indeed one. ��
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Fig. 12 Diagonal path P . Path Q′ is impossible owing to the split operation

Thus, the only vertices in D with outgoing degree 1 and incoming degree 0 are b
and c while the only vertices in D with incoming degree 1 and outgoing degree 0 are
a and d. Hence, by Claim 7, there exists a path from c to either a or d in D.

Claim 8 Suppose there exists a path from c to d in D. Then there exists a path in
G −U∗

t from r to t.

Proof Suppose we have a path from c to d in D. Let P denote the nodes of G along
the right of the edges in this path. Thus, P induces a path from a node in the leftmost
column to a node in the rightmost column in G. We recall that the right nodes along
the edges in the path are blue nodes and are indeed not in U∗

t . Thus, we have a path
from a node in the leftmost column to a node in the rightmost column in G −U∗

t and
hence a path from r to t in G −U∗

t . ��
Claim 8 shows that a path from c to d in D contradicts the fact that U∗

t is a r → t
cut in G. Thus, we must have a path from c to a in D. Claim 9 below completes the
proof of the lemma. ��
Claim 9 Suppose there exists a path from c to a inD. Then there exists an axis parallel
path from a node in the topmost row to a node in the bottommost row in U∗

t .

Proof Suppose we have a path Q from c to a in D. Let P denote the nodes of G
along the left of the edges in this path. We recall that the left nodes along the edges
in the path are red nodes and hence are in U∗

t . Thus, P is a path from a node in the
topmost row to a node in the bottommost row in G. It remains to show that P can be
transformed into an axis-parallel path.

Suppose P uses a diagonal edge in G. We will address the case where (i −1, j) →
(i, j −1) is the diagonal edge. Other cases can be handled in a similar fashion. Let Q′
be the path Q projected onD′—i.e., use the projected edges inD′. Then, Q′ traverses
vi−1, j → vi, j → vi, j−1. These edges imply that (i − 1, j), (i, j − 1) ∈ R and
(i − 1, j − 1) ∈ B. If (i, j) ∈ B, then the split operation to obtain D from D′ shows
that the edges in Q do not exist in D, a contradiction (see Fig. 12). ��

Thus, we may assume that (i, j) ∈ R and is hence in U∗
t . In this case, we can

ensure that P makes fewer axis-parallel turns by rerouting as (i − 1, j) → (i, j) →
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Fig. 13 Diagonal path P can be made axis-parallel

(i, j −1)} (see Fig. 13). By rerouting this way for each diagonal edge of P , we obtain
the required axis-parallel path.

With Lemmas 3 and 4, we prove the main theorem of the section. We restate it
below for convenience.
Theorem 5 The integrality gap of the Distance- LP is at least

√
2.

Proof Wewill use the sequence of instances constructed at the beginning of the section.
By Lemmas 3 and 4, it only remains to fix a choice of α and bound the sum of the
node weights. We will pick an α that minimizes the sum of the node weights in order
to get the largest possible integrality gap.

We now compute the sum of the node weights as a function of α.

Claim 10 1.
∑

i, j∈{0,...,M}: i+ j �=M

wi j = (1 − α)M

2
+ 1 − α

2
,

2.
∑

i, j∈{0,...,M}: i+ j=M,

i<
(
1− 1

2(1−α)

)
M or i>

(
1

2(1−α)

)
M

wi j = (1 − 4α2)M

4(1 − α)
+ 1 − 2α

2
, and

3.
∑

i, j∈{0,...,M}: i+ j=M,(
1− 1

2(1−α)

)
M≤i≤

(
1

2(1−α)

)
M

wi j = α2M

1 − α
+ α.

Proof 1.
∑

i, j∈{0,...,M}: i+ j �=M

wi j =
∑

i, j∈{0,...,M}: i+ j>M

wi j +
∑

i, j∈{0,...,M}: i+ j<M

wi j

= 0 +
(
1 − α

M

)
M(M + 1)

2

= (1 − α)M

2
+ 1 − α

2
.
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2. ∑

i, j∈{0,...,M}: i+ j=M,

i<
(
1− 1

2(1−α)

)
M or i>

(
1

2(1−α)

)
M

wi j =
∑

0≤i≤
(
1− 1

2(1−α)

)
M−1

(
1

2
− (1 − α)i

M

)

+
∑

0≤ j≤
(
1− 1

2(1−α)

)
M−1

(
1

2
− (1 − α) j

M

)

= 2
∑

0≤i<
(
1− 1

2(1−α)

)
M−1

(
1

2
− (1 − α)i

M

)

=
(

1 − 1

2(1 − α)

)

M

− (1 − α)

M

((

1 − 1

2(1 − α)

)

M − 1

) ((

1 − 1

2(1 − α)

)

M

)

=
(

1 − 1

2(1 − α)

)

M

(

1 − (1 − α)

M

((

1 − 1

2(1 − α)

)

M − 1

))

=
(

1 − 2α

2(1 − α)

)

M

(

1 − (1 − α)

(
1 − 2α

2(1 − α)

)

+ 1 − α

M

)

=
(

(1 − 2α)M

2(1 − α)

) (
1 + 2α

2
+ 1 − α

M

)

= (1 − 4α2)M

4(1 − α)
+ 1 − 2α

2
.

3. ∑

i, j∈{0,...,M}: i+ j=M,(
1− 1

2(1−α)

)
M≤i≤

(
1

2(1−α)

)
M

wi j = α

((
1

2(1 − α)

)

M

−
(

1 − 1

2(1 − α)

)

M + 1

)

= αM

(
1

2(1 − α)
− 1 + 1

2(1 − α)

)

+ α

= α2M

1 − α
+ α.

��
Using the above claim, we have that

M∑

i=0

M∑

j=0

wi j = M

(
1 − α

2
+ 1 − 4α2

4(1 − α)
+ α2

1 − α

)

+ 1 − α

2

+ 1 − 2α

2
+ α
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= M

(
2(1 − α)2 + 1 − 4α2 + 4α2

4(1 − α)

)

+ 1 − α

2

= M

(
3 − 4α + 2α2

4(1 − α)

)

+ 1 − α

2
.

Now, the minimum value of the function f (α) := (3−4α+2α2)/(4(1−α)) in the
domain (0, 1/2) occurs atα = 1−1/

√
2 and thus theminimumvalue of the function is

minα∈(0,1/2) f (α) = 1/
√
2. Using this value of α shows that the objective value of an

optimal solution to the linear program is at most 1/
√
2+Θ(1/M) while the objective

value of an optimal integral solution is at least 1. Consequently, the integrality gap
of the sequence of instances constructed as above converges to

√
2 when M tends to

infinity. ��

4 Results for related cut problems

We prove Theorems 2 and 3 in this section.

4.1 Blocking arborescences

In this section, we show that the approximability of r - InOut- Node- Blocker
and (s, r , t)- Node- Lin- 3- Cut coincide. We recall the problem r - InOut- Node-
- Blocker: Given a node-weighted directed graph with a specified terminal node r ,
find a minimum weight set of non-terminal nodes to remove so that the resulting
graph has no out-r -arborescence and no in-r -arborescence. Theorem 2 follows from
the following result in conjunction with Theorem 1.

Theorem 6 There exists an efficient α-approximation algorithm for r - InOut- Node-
Blocker if and only if there exists an efficient α-approximation for (s, r , t)- Node-
Lin- 3- Cut.

Proof We need the notion of the Strong- Node- Cut problem: the input is a directed
graph with node weights, and the goal is to find a minimum weight subset of nodes
whose deletion results in at least two disjoint weakly connected components.We recall
that a directed graph D is weakly connected if the undirected graph obtained from
D by dropping the orientation of the edges is connected. We observe that Strong-
Node- Cut can be solved in polynomial-time via reduction to the undirected min-cut
problem. We first show that r - InOut- Node- Blocker is a combination of (s, r , t)-
Node- Lin- 3- Cut and Strong- Node- Cut.

Claim 11 For every directed graph D = (V , E) with r ∈ V , the optimal solution to
r - InOut- Node- Blocker has value equal to

min

(

min
s,t∈V−r

{
(s, r , t)- Node- Lin- 3- Cut in D

}
,Strong- Node- Cut in D

)

.
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Proof LetU be anoptimal solution of r - InOut- Node- Blocker in D = (V , E)with
r ∈ V . The optimal values of both (s, r , t)- Node- Lin- 3- Cut in D and Strong-
Node- Cut in D are upper bounds for the weight of U . If the weight of U is strictly
smaller than Strong- Node- Cut, then D[V −U ] is weakly connected. By the defi-
nition ofU , we have that D[V −U ] does not contain an in-r -arborescence and hence
it has a strongly connected component C1 not containing r with δoutD[V−U ](C1) = ∅.
Similarly, since D[V − U ] does not contain an out-r -arborescence, it has a strongly
connected component C2 not containing r with δinD[V−U ](C2) = ∅. Since D[V − U ]
is weakly connected, we have C1 �= C2. Since C1 and C2 are strongly connected
components, they are disjoint. For arbitrary nodes s ∈ C1 and t ∈ C2, there are no
directed paths from s to r , from r to t and from s to t in D[V − U ]. Thus U is a
feasible solution to (s, r , t)- Node- Lin- 3- Cut in D. ��

Nowwe turn to the proof of the theorem. The ‘if’ part follows fromClaim 11 above.
To see the other direction, consider an instance D = (V , E) of (s, r , t)- Node- Lin-
3- Cut. Clearly, we may assume that s, r and t have infinite weights. For each node
v ∈ V , add an arc from t to v and an arc from v to s. This step does not affect the values
of the feasible solutions to (s, r , t)- Node- Lin- 3- Cut. Let D′ denote the graph thus
arising.

We claim that the feasible solutions with finite weight of (s, r , t)- Node- Lin- 3-
Cut and those of r - InOut- Node- Blocker coincide in D′. Indeed, assume first that
U is a solution of (s, r , t)- Node- Lin- 3- Cut in D′. As D′[V −U ] does not contain
a directed path from s to r or from r to t , there exists no in-r -arborescence or out-r -
arborescence in D′[V −U ], henceU is also a solution of r - InOut- Node- Blocker
in D′. Now assume thatU is a solution of r - InOut- Node- Blocker in D′ with finite
weight, that is, s, t /∈ U . If D′[V − U ] contains a directed path from s to r or from
r to t or from s to t , then the arcs that were added to D can be used to obtain either
an in-r -arborescence or an out-r -arborescence, a contradiction. Hence no such path
exists and so U is also a solution of (s, r , t)- Node- Lin- 3- Cut in D′.

By the above, an α-approximate solution to r - InOut- Node- Blocker in the
extended graph is also an α-approximate solution to (s, r , t)- Node- Lin- 3- Cut in
D, thus concluding the proof of the theorem. ��

The above proof ideas also extend to show that there exists an efficient α-
approximation algorithm for r - InOut- Edge- Blocker if and only if there exists
an efficient α-approximation for (s, r , t)- Edge- Lin- 3- Cut, which is equivalent to
(s, r , t)- Node- Lin- 3- Cut.

4.2 Hardness of approximation of {s, ∗}-EDGE-BICUT

In this section, we improve on the hardness of approximation of {s, ∗}- Edge- BiCut.
We recall the problem {s, ∗}- Edge- BiCut: Given an edge-weighted directed graph
D = (V , E) with a node s, find a minimum weight subset of edges to remove so
that the resulting graph has a node t such that s cannot reach t and t cannot reach s.
Theorem 3 follows from the following result in conjunction with Theorem 1.
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Theorem 7 There exists an approximation-preserving reduction from (s, r , t)- Edge-
Lin- 3- Cut to {s, ∗}- Edge- BiCut.
Proof Given an instance of (s, r , t)- Edge- Lin- 3- Cut D = (V , E) with edge
weights w ∈ R

E+ and nodes s, r , t ∈ V , we construct an instance of {r , ∗}- Edge-
- BiCut as follows: add a new node u to D; add arcs r → s, t → u, u → s and arcs
t → v, v → s for every v ∈ V with infinite weight. Let D′ = (V ′, E ′) denote the
resulting graph with edge-weights w′ ∈ R

E ′
+ . We now show that this reduction is an

approximation-preserving reduction.
Suppose F ⊆ E is a feasible solution for (s, r , t)- Edge- Lin- 3- Cut for the given

instance D = (V , E) with edge weights w ∈ R
E+. Then, the subset F ⊂ E ′ is also a

feasible solution to {r , ∗}- Edge- BiCut in D′ with the same weight: Since r cannot
reach t in D − F and the only incoming arc into u in D′ is from t , the node r cannot
reach u in D′ − F ; since s cannot reach r in D − F and the only outgoing arc from u
in D′ is to s, the node r cannot be reached by u in D′ − F .

Suppose F ⊆ E ′ is a feasible solution for {r , ∗}- Edge- BiCut in D′ with finite
cost. Then, F cannot contain any of the newly added arcs and hence F ⊆ E . We
show that the subset F is a feasible solution to (s, r , t)- Edge- Lin- 3- Cut in D with
the same weight. Let v be a node that cannot reach r and cannot be reached by r in
D′ − F . If r can reach t in D − F , then r can reach v in D′ − F owing to the infinite
weight arc t → v in D′, a contradiction. Thus, r cannot reach t in D − F . If s can
reach t in D − F , then owing to the infinite weight arc r → s in D′, it follows that
r can reach t in D′ − F , a contradiction. Thus, s cannot reach t in D − F . If s can
reach r in D − F , then owing to the infinite weight arc v → s in D′, it follows that v
can reach r in D′ − F , a contradiction. Thus, s cannot reach r in D − F . ��

5 Conclusion

In this work, we investigated the linear 3-cut problem, which is an extension of
the 3-way cut problem from undirected graphs to directed graphs. Tight approxi-
mation for both node-weighted 3-way cut and edge-weighted 3-way cut problems
in undirected graphs are known in the literature. Our results for linear 3-cut prob-
lems complement these well-known results by showing that tight approximations
are obtainable even in directed graphs. However, our techniques are completely
different from the results that resolve the approximability of undirected 3-way
cut.

An interesting open problem that remains is the approximability of the linear k-cut
problem, which is an extension of the multiway cut problem from undirected graphs
to directed graphs. Although linear k-cut is an extension of linear 3-cut which was the
main focus of this work, it has been a challenge to extend our techniques to address
the integrality gap of linear k-cut. This is mainly due to the non-trivial nature of
our distribution underlying the rounding scheme that achieves the optimal approxi-
mation factor as well as the non-trivial nature of the integrality gap instance. Does
linear k-cut admit a constant factor approximation or is it super-constant hard under
UGC/P�= NP?
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Appendix A. Necessary conditions for (2)

Claim Condition (2) is satisfied by ξ if and only if the following hold for ζ :

ζ

(√
2 − 1√
2

)

= 0, (13)

(1 − y)ζ(y) +
∫ 1−y

y
ζ(z) dz = 1

2
if

√
2 − 1√
2

≤ y ≤ 1

2
, (14)

(1 − y)ζ(y) −
∫ y

1−y
ζ(z) dz = 1

2
if
1

2
≤ y ≤ 1√

2
. (15)

Proof The direction showing that (13)–(15) imply (2) was already shown in Claim 4.
We now argue the necessity of (13), (14) and (15).

To see the necessity of (14), we consider a = b = y for
√
2−1√
2

≤ y ≤ 1
2 . For this

choice of a and b, condition (2) necessitates that

1 = 2
∫ 1

0
ξ(y, z) dz + 2

∫ 1

y
ξ(z, y) dz

= 2
∫ 1−y

0
ξ(y, z) dz + 2

∫ 1−y

y
ξ(z, y) dz

= 2
∫ 1−y

0
ζ(y) dz + 2

∫ 1−y

y
ζ(z) dz

= 2(1 − y)ζ(y) + 2
∫ 1−y

y
ζ(z) dz,

which shows the necessity of (14). The second equation above is because ξ(y, z) =
ξ(z, y) = 0 for z > 1 − y since y ≤ 1/2.

To see the necessity of (15), we consider a = y, b = 1 − y for some y such that
1
2 ≤ y ≤ 1√

2
. For this choice of a and b, condition (2) necessitates that

1 =
∫ 1

0
(ξ(y, z) + ξ(1 − y, z)) dz +

∫ 1

y
ξ(z, 1 − y) dz +

∫ 1

1−y
ξ(z, y) dz

=
∫ 1

0
ξ(y, z) dz +

∫ 1

0
ξ(1 − y, z) dz + 0 + 0

=
∫ 1−y

0
ξ(y, z) dz +

∫ y

0
ξ(1 − y, z) dz

=
∫ 1−y

0
ζ(y) dz +

∫ y

0
ζ(1 − y) dz

= (1 − y)ζ(y) + yζ(1 − y). (16)
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We note that the bounds on y imply that
√
2−1√
2

≤ 1 − y ≤ 1
2 . Hence, by (14) applied

to y′ := 1 − y, we obtain that

yζ(1 − y) = 1

2
−

∫ y

1−y
ζ(z) dz. (17)

Substituting (17) in (16) and rewriting in the required form shows the necessity of
(15).

To see the necessity of (13), we consider a = b <
√
2−1√
2
. For this choice of a and

b, condition (2) necessitates that

1 = 2
∫ 1

0
ξ(a, z) dz + 2

∫ 1

a
ξ(z, a) dz = 0 + 2

∫ 1

a
ξ(z, a) dz = 2

∫ 1√
2

√
2−1√
2

ζ(z) dz.

(18)

Now, by (14) applied to y =
√
2−1√
2
, we obtain that

1

2
= 1√

2
ζ

(√
2 − 1√
2

)

+
∫ 1√

2
√
2−1√
2

ζ(z)dz = 1√
2
ζ

(√
2 − 1√
2

)

+ 1

2

where the second equation is obtained by substituting (18). Hence, ζ(
√
2−1√
2

) = 0,
showing the necessity of (13). ��
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