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Abstract
For a fixed integer k ≥ 2, the hypergraph k-cut problem asks for a smallest subset of
hyperedges whose removal leads to at least k connected components in the remaining
hypergraph. While graph k-cut is solvable efficiently (Goldschmidt and Hochbaum in
Math. Oper. Res. 19(1):24–37, 1994), the complexity of hypergraph k-cut has been
open. In this work, we present a randomized polynomial time algorithm to solve the
hypergraph k-cut problem. Our algorithmic technique extends to solve the more gen-
eral hedge k-cut problem when the subgraph induced by every hedge has a constant
number of connected components. Our algorithm is based on random contractions
akin to Karger’s min cut algorithm. Our main technical contribution is a non-uniform
distribution over the hedges (hyperedges) so that random contraction of hedges (hyper-
edges) chosen from the distribution succeeds in returning an optimum solution with
large probability. In addition, we present an alternative contraction based randomized
polynomial time approximation scheme for hedge k-cut in arbitrary hedgegraphs (i.e.,
hedgegraphs whose hedges could have a large number of connected components). Our
algorithm and analysis also lead to bounds on the number of optimal solutions to the
respective problems.
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1 Introduction

A hypergraph is specified by a vertex set and a collection of hyperedges, where each
hyperedge is a nonempty subset of vertices. For a fixed integer k ≥ 2, the hypergraph
k-cut problem is the following:

Hypergraph-k-Cut: Given a hypergraph with non-negative hyperedge-costs, find a
least cost subset of hyperedgeswhose removal leads to at least k connected components
in the remaining hypergraph.

Equivalently, the problem asks for a partitioning of the vertex set into k parts with
minimum cost set of hyperedges crossing the partition (a hyperedge is said to cross a
partition if it intersects at least two parts). This is an extension of the classic hypergraph
minimum cut problem. Throughout this work, we consider k to be a fixed integer that
is at least 2. Hypergraph partitioning problems were discussed as early as in 1973 by
Lawler [20] and have several applications including clustering in VLSI design and
network reliability (e.g., see [1,10,29,32]).

A special case of Hypergraph- k- Cut in which the input is in fact a graph (i.e.,
all hyperedges have cardinality two) is Graph- k- Cut. The latter problem has been
investigated thoroughly in the literature. Goldschmidt and Hochbaum gave the first
polynomial time algorithm to solve Graph- k- Cut. Their algorithm solves nΘ(k2)

minimum st-cut problems, where n is the number of vertices in the input graph [10].
Karger and Stein [17] designed a randomized algorithm for Graph- k- Cut that runs
in time O(n2(k−1) log3 n). The deterministic running time for solving Graph- k- Cut
has been improved over a series of works [15,16,27,28] with the fastest running in time
Õ(n2k−1) [6]. If the edges have small integer weights, then the running time has been
improved further to Õ(nωk/3), where ω is the matrix multiplication constant [13].

The complexity of Hypergraph- k- Cut has remained an intriguing open problem
since the works of [10]. The special case of k = 2, denoted Hypergraph- 2- Cut,
is well-known to admit deterministic polynomial time algorithms [18,20,21]. Several
recent works have aimed at designing polynomial time algorithms but have fallen short
because they are efficient or return an optimum solution only for either restricted val-
ues of k or restricted families of hypergraphs. We recall these results now. For k = 3,
Xiao [29] showed a non-crossing structural property of a minimum solution and used
it to design a polynomial time algorithm. Considering restricted input family of hyper-
graphs, Fukunaga [8] gave a polynomial time algorithm for Hypergraph- k- Cut in
constant rank hypergraphs (the rank of a hypergraph is the cardinality of the largest
hyperedge). A randomized polynomial time algorithm for Hypergraph- k- Cut in
constant rank hypergraphs can also be obtained using the uniform random contrac-
tion technique of Karger and Stein [17] as illustrated by Kogan and Krauthgamer
[19]. Thus, it has been open to determine the complexity of Hypergraph- k- Cut in
arbitrary rank hypergraphs for k ≥ 4.

In this work, we present a randomized polynomial time algorithm to solve Hyper-
graph- k- Cut in arbitrary rank hypergraphs for every fixed constant k. To the best of
our knowledge, this is the first polynomial time algorithm for Hypergraph- k- Cut.
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Hedgegraphs Our algorithm addresses the k-cut problem in a more general graph
model that has garnered much attention recently. We describe this more general model
now. It is often the case with modern networks that a collection of edges in a graph
are interdependent and consequently could fail together—e.g., interconnected nodes
in an optical network that share and rely on a single resource. Ghaffari, Karger, and
Panigrahi identified the notion of hedgegraphs as a convenient graph model for such
scenarios [9]. For a vertex set V , a hedge is a subset of edges (not hyperedges) over
the vertices in V . A hedgegraph G = (V , E) is specified by a vertex set V and a set
E of disjoint hedges. We do allow parallel edges, and each copy of an edge should
appear in exactly one of the hedges.Wewill denote the graph underlying a hedgegraph
G = (V , E) to be themultigraphwhose vertex set is V and whose edges are the union
of the edges in the hedges of G. Essentially, the graph underlying a hedgegraph is a
multigraph whose edges have been partitioned into hedges. In the context of modern
networks, a hedgegraph is a multigraph where each hedge corresponds to a resource
and a link between two nodes fails if all hedges containing an edge between the two
nodes fail, i.e., all resources that the link relies upon become unavailable.

In the s − t hedge cut problem (abbreviated st- Hedge- Cut), the input is a hedge-
graph with non-negative hedge costs and two specified vertices s and t . The goal is to
find a least cost subset of hedges whose removal disconnects s and t in the underly-
ing graph. In the global variant of st- Hedge- Cut (abbreviated Hedge- 2- Cut), the
input is a hedgegraph with non-negative hedge costs and the goal is to find a least cost
subset of hedges whose removal leads to at least two connected components in the
underlying graph. It is known that st- Hedge- Cut is NP-hard [30], even if each hedge
consists of exactly two edges [31]. In contrast, Ghaffari et al. showed that Hedge-
2- Cut admits a randomized polynomial time approximation scheme [9]. They also
gave a quasi-polynomial time algorithm to solve Hedge- 2- Cut. It remains open to
design a polynomial time algorithm for Hedge- 2- Cut. We make progress towards
this question by addressing an interesting and non-trivial family of instances that we
describe next. It will be clear that this family already encompasses hypergraphs.

The span of a hedge is the number of connected components in the subgraph induced
by the edges in the hedge. The span of a hedgegraph is the largest span among its
hedges. Hedge- 2- Cut in hedgegraphs with span one reduces to Hypergraph- 2-
Cut (by replacing each hedge by a hyperedge over the set of vertices incident to the
edges in the hedge) and is hence solvable efficiently. The complexity of Hedge- 2-
Cut for constant span hedgegraphs was raised as an open problem by Coudert et al.
[7]. We generalize our techniques for Hypergraph- k- Cut to design a polynomial-
time algorithm for Hedge- 2- Cut in constant span hedgegraphs. More generally, for
a fixed integer k ≥ 2, we consider the hedge k-cut problem:

Hedge-k-Cut: The input is a hedgegraph with non-negative hedge costs and the goal
is to find a least cost subset of hedges whose removal leads to at least k connected
components in the underlying graph.

Equivalently, the problem asks for a partitioning of the vertex set into k parts with
minimum cost set of hedges crossing the partition (a hedge is said to cross a partition
if it has an edge whose two end-vertices are in different parts).
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1.1 Results

In the rest of the paper, we will assume that k ≥ 2 is a fixed constant integer and
avoid stating this explicitly. For a hedge e, we use r(e) to denote the number of
vertices incident to the edges in e. Throughout, we will denote the number of vertices
and hedges in the input hedgegraph G = (V , E) using n := |V | and m := |E |
respectively, and define M := ∑

e∈E r(e). We emphasize that M represents the input-
size of hedgegraphs.

Theorem 1 For every constant s ≥ 1, there exists a randomized algorithm to solve
Hedge- k- Cut in hedgegraphs with span at most s that runs in time
O(mMnks+k−s log n) and succeeds with probability at least 1 − 1/n.

For an input hypergraph, let n denote the number of vertices and let M denote the
sumof the cardinalities of the hyperedges. By the reductionmentioned earlier,Hyper-
graph- k- Cut reduces to Hedge- k- Cut in span-one hedgegraphs. This reduction
in conjunction with Theorem 1 immediately leads to a randomized polynomial time
algorithm for Hypergraph- k- Cut with running time O(mMn2k−1 log n). We save
a factor of m on this running time by specializing the running time analysis of the
same algorithm that is used in Theorem 1 for hypergraphs.

Theorem 2 There exists a randomized algorithm to solve Hypergraph- k- Cut that
runs in time O(Mn2k−1 log n) and succeeds with probability at least 1 − 1/n.

We mention that for the special case of k = 2, namely Hypergraph- 2- Cut,
Ghaffari et al. gave an algorithm based on random contractions that runs in time
O(Mn2 log n) [9]. So, our algorithm forHypergraph- 2- Cut is slower than theirs by
a factor of n. Their algorithm picks a hyperedge to contract according to a distribution
that requires knowledge of the value of the optimum 2-cut. They suggest addressing
this issue by a standard technique: employ a binary search to find the optimum 2-cut
value. In contrast, our contraction algorithm for Hypergraph- 2- Cut in Theorem 2
does not require knowledge of the optimum cut value and is easy to implement. Our
main technical contribution is a simple and explicit distribution over the hyperedges
which enables an elegant analysis of the randomcontraction algorithm for hypergraphs.
More importantly, our algorithm generalizes naturally to resolve the complexity of the
more general problem of Hypergraph- k- Cut.

Next, we bound the number of minimum solutions for Hypergraph- k- Cut. A set
C of hyperedges in a hypergraph G is said to be a k-cut-set if the removal of C from
G results in a hypergraph with at least k connected components. A k-cut-set in G is
a minimum k-cut-set if its cost is equal to the minimum cost of a set of hyperedges
whose removal from G results in a hypergraph with at least k connected components.
Each minimum k-cut-set corresponds to a set of hyperedges crossing some partition
V1, . . . , Vk of V . Our algorithmic technique also leads to the following bound on the
number of minimum k-cut-sets:

Corollary 1 The number of distinct minimum k-cut-sets in an n-vertex hypergraph is
O(n2(k−1)).
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The bound stated in Corollary 1 generalizes and recovers (i) the bound on the
number of minimum k-cut-sets in graphs by Karger and Stein [17] as well as (ii)
the bound on the number of minimum 2-cut-sets in hypergraphs [5,9]. We remark
that Corollary 1 counts the number of minimum k-cut-sets as opposed to the number
of k-partitions that induce minimum k-cut-sets. It is well-known that the number of
2-partitions that induce minimum 2-cut-sets could be exponential in the size of the
largest hyperedge [19]. For example, consider the hypergraph consisting of a single
hyperedge containing all vertices where all 2-partitions induce the same minimum
2-cut-set.

Next, we address Hedge- k- Cut in arbitrary span hedgegraphs by designing
a randomized polynomial time approximation scheme. While Theorem 1 gives
an algorithm to solve Hedge- k- Cut in constant span hedgegraphs exactly in
randomized polynomial-time, our next theorem gives an algorithm to obtain a (1+ε)-
approximation for Hedge- k- Cut in arbitrary span hedgegraphs in time nO(k log(1/ε)).
For this, we generalize the techniques underlying the randomized polynomial time
approximation scheme for Hedge- 2- Cut by Ghaffari, Karger and Panigrahi [9]. A
set C of hedges in a hedgegraph G is said to be a hedge k-cut-set if the removal of C
leads to at least k connected components in the underlying graph. For α ≥ 1, a hedge
k-cut-set C is said to be an α-approximate minimum hedge k-cut-set if the cost of C
is at most α times the minimum cost of a set of hedges whose removal leads to at least
k connected components in the underlying graph.

Theorem 3 For any given ε > 0, there exists a randomized algorithm to find a (1 +
ε)-approximate minimum hedge k-cut-set that runs in time MnO(k log(1/ε)) log n and
succeeds with probability at least 1 − 1/n.

Setting ε to be a value that is strictly smaller than 1/λ, where λ is the value of a min-
imum hedge k-cut-set in the input hedgegraph, we observe that a (1+ ε)-approximate
minimumhedge k-cut-set would in fact be aminimumhedge k-cut-set. Thus, Theorem
3 gives a quasi-polynomial time algorithm to solveHedge- k- Cut (the value of λ can
be found by a binary search).

Corollary 2 There exists a randomized algorithm to solve Hedge- k- Cut that runs in
time MnO(k log λ) log n and succeeds with probability at least 1 − 1/n, where λ is the
value of a minimum hedge k-cut-set in the input hedgegraph.

Our algorithmic technique can also be used to bound the number of minimum
k-cut-sets in hedgegraphs.

Theorem 4 The number of distinct minimum hedge k-cut-sets in an n-vertex hedge-
graph with minimum hedge k-cut-set value λ is nO(k log λ).

Organization. We present the preliminaries in Sect. 2, prove Theorems 1 and 2 and
Corollary 1 in Sect. 3, and Theorems 3 and 4 and Corollary 2 in Sect. 4.

1.2 Related work

We begin by discussing Hypergraph- k- Cut and Graph- k- Cut when k is part of
the input (as opposed to being a fixed constant). For Graph- k- Cut, Goldschmidt
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and Hochbaum showed that Graph- k- Cut is NP-hard [10] while Saran and Vazirani
designed a 2-approximation algorithm [26]. Manurangsi [23] showed that there is no
polynomial-time (2 − ε)-approximation for any constant ε > 0 assuming the Small
Set Expansion Hypothesis [25]. Gupta, Lee and Li [12] designed an algorithm that
runs in time O(2k

6
n4) to achieve an approximation factor of 2 − δ for some constant

δ > 0.When k is part of the input,Hypergraph- k- Cut is NP-hard as observed from
Graph- k- Cut. Chekuri and Li [4] recently showed that Hypergraph- k- Cut is at
least as hard as the densest k-subgraph problem from the perspective of approximabil-
ity. The densest k-subgraph problem is believed to not admit an efficient constant factor
approximation assuming P �= N P; it is known to not admit an efficient n1/(log log n)c -
approximation for some constant c > 0 assuming the exponential time hypothesis
[22] while the best approximation known is O(n1/4+ε) with running time O(n1/ε) for
all constant ε > 0 [2]. Chekuri and Li’s result already illustrates that Hypergraph-
k- Cut is significantly harder to approximate than Graph- k- Cut when k is part of
the input.

For fixed constant k, approximation algorithms for the hypergraph k-cut problem,
the hypergraph k-partitioning problem, and more generally, submodular partitioning
problems have been well-studied in the literature. Okumoto, Fukunaga and Nag-
amochi [24] reducedHypergraph- k- Cut for constant k to the node-weighted k-way
cut problem in graphs1 and thus obtained a 2(1 − 1/k)-approximation. They further
improved on this approximation factor for k = 4, 5, 6. The hypergraph k-partitioning
problem is similar in flavor to the hypergraph k-cut problem but it minimizes a differ-
ent objective. In the hypergraph k-partitioning problem, the input is a hypergraph and
the goal is to find a partitioning of the vertex set into k non-empty parts V1, . . . , Vk
so that

∑k
i=1 |δ(Vi )| is minimum (where δ(Vi ) is the set of hyperedges that cross the

part Vi ) [1]. The hypergraph k-partitioning problem and the hypergraph k-cut problem
coincide to Graph- k- Cut when the input hypergraph is a graph. The hypergraph k-
partitioning problem is a special case of the submodular k-partitioning problem since
the hypergraph cut function is submodular.We recall that a set function f : 2V → R is
submodular if f (A∩ B)+ f (A∪ B) ≤ f (A)+ f (B) for every pair of sets A, B ⊆ V
and is symmetric if f (X) = f (V \X) for all X ⊆ V . In the submodular k-partitioning
problem, the input is a non-negative submodular set function f : 2V → R+ (given
via a value oracle) and the goal is to partition the ground set V into k non-empty sets
V1, . . . , Vk so that

∑k
i=1 f (Vi ) is minimum. Submodular k-partitioning for the case

of k = 3 admits an efficient algorithm [24] while approximation algorithms have been
designed for larger constants k [24,33]. Submodular k-partitioning for k = 4 admits
an efficient algorithm if the input function is symmetric [11].

We also mention that approximation algorithms are known for the variant of sub-
modular partitioning that separates a given set of k elements [3,33]. In submodular
k-way partitioning, the input is a non-negative submodular set function f : 2V → R+
(given via a value oracle) and distinct elements v1, . . . , vk ∈ V , and the goal is to find
a partitioning of the ground set V into k non-empty sets V1, . . . , Vk with vi ∈ Vi for

1 The node-weighted k-way cut problem is the following: Given a graph with weights on the nodes and a
collection of terminal nodes, remove a smallest weight subset of non-terminal nodes so that the resulting
graph has no path between the terminals.
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all i ∈ {1, . . . , k} so that
∑k

i=1 f (Vi ) is minimum. This generalizes the hypergraph
k-way cut problem (where the goal is to delete the smallest number of hyperedges in
order to disconnect a given collection of k vertices in the input hypergraph). The known
approximation factor for submodular k-way partitioning is 2 for general submodular
functions and 3/2 − 1/k for symmetric submodular functions [3].

The main motivation behind the definition of hedgegraphs is to understand the con-
nectivity properties of modern networks in which the reliability of links are correlated.
In particular, the links could depend on a common resource. Two natural models of
link failures have been considered in the literature: a link could fail if either all or at
least one of the resources that the link depends upon fails [7]. The definition of hedge-
graphs considers the former model where a link fails only if all resources that the link
depends upon fail. The term hedgegraph for this model was given by Ghaffari, Karger
and Panigrahi [9] who also showed that Hedge- 2- Cut has a randomized polynomial
time approximation scheme.

2 Preliminaries

For positive integers a and bwith a < b, we will follow the convention that the inverse
binomial expression

(a
b

)−1 is 1 and
(a
b

)
is 0. The set of positive integers less than or

equal to � is denoted as [�]. Let G = (V , E) be a hedgegraph. We will denote an edge
between two vertices a and b by an unordered tuple {a, b} and a hedge as a set of
edges. We emphasize that the hedges in a hedgegraph are disjoint—if an edge appears
in � different hedges, then it contributes � edges to the underlying multigraph. For a
hedge e ∈ E , let G[e] denote the subgraph induced by the edges in e. We emphasize
that there are no isolated vertices in G[e]. Let V (e) denote the vertices in G[e]. We
recall that r(e) = |V (e)|. Let s(e) denote the number of connected components in
G[e], i.e., the span of e. We note that s(e) ≥ 1 for every non-empty hedge e. Let
s := max{s(e) : e ∈ E}, i.e., s denotes the span of the hedgegraph G.

Our algorithm is based on repeated contractions. Our notion of the contraction
operation is identical to thewell-knownnotion that appears in the literature. Informally,
in order to contract a hedge, we contract every connected component of the hedge. We
define this operation formally for the sake of completeness. LetU ⊂ V be a subset of
vertices in G. We define G/U to be a graph on vertex set V ′ := (V −U )∪{u}, where
u is a newly introduced vertex, and on hedge set E ′, where E ′ is obtained as follows:
for each hedge e ∈ E , we define the hedge e′ to be

e′ := {({a, b} −U ) ∪ {u} : |{a, b} ∩U | = 1, {a, b} ∈ e}
∪ {{a, b} : {a, b} ∩U = ∅, {a, b} ∈ e}

and obtain E ′ := {e′ : e′ �= ∅, e ∈ E}. For a hedge e ∈ E , letC1, . . . ,Cs(e) denote the
vertex sets of connected components inG[e]. The hedgegraph obtained by contracting
the hedge e, denoted G/e, is the hedgegraph obtained by contracting the vertex set of
each component in G[e] individually, i.e., G/e := G/C1/C2/ . . . /Cs(e). We observe
thatG/e is invariant to the order of contraction of the components since the components
are disjoint. We also observe that contracting a hedge does not increase the span.
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We need the following technical lemma.

Lemma 1 (Majorization inequality, e.g., see Theorem 108 in [14]) Let y1, . . . , y� and
x1, . . . , x� be two finite non-increasing sequence of real numbers in [a, b] with the
same sum. Let f : [a, b] → R be a convex function. If

∑ j
i=1 yi ≤ ∑ j

i=1 xi for all
1 ≤ j ≤ �, then

�∑

i=1

f (yi ) ≤
�∑

i=1

f (xi ).

3 Hedge-k-cut in constant span hedgegraphs

In this section, we design an algorithm to solve Hedge- k- Cut in constant span
hedgegraphs. In Sect. 3.1, we give an outline of the algorithm for Hypergraph- 2-
Cut to present the main ideas underlying our algorithm for Hypergraph- k- Cut. In
Sect. 3.2, we present the complete algorithm and the analysis for Hedge- k- Cut in
constant span hedgegraphs. In Sect. 3.3, we improve on the running time analysis of
the same algorithm by specializing it to hypergraphs and also conclude a combinatorial
bound on the number of distinct minimum k-cut-sets.

3.1 Overview

We recall Karger’s uniform random contraction algorithm for graphs (more generally,
multigraphs where all edge costs are one): pick an edge uniformly at random, contract
it and repeat until there are 2 vertices left at which point output the edges between the
two vertices. In order to analyze the correctness, one can fix a min-cut C and argue
that it is highly unlikely for the sampled edges to be in C . Indeed, suppose the value
of the min-cut is λ, then every isolating cut (i.e., a cut induced by a single vertex) has
value at least λ, and hence the number of edges is at least nλ/2. Consequently, the
probability of picking an edge in C is at most 2/n.

For simplicity, let us focus on the variant of Hypergraph- 2- Cut where every
hyperedge has cost one. Now consider the above algorithm for hypergraphs under the
standard definition of hyperedge contraction (the graph G/e is obtained by removing
the vertices of the hyperedge e, introducing a new vertex v and for every other hyper-
edge f in G that intersects e, replacing f by ( f \e) ∪ {v} and removing hyperedges
with cardinality one). If we use the same algorithm as above to solve Hypergraph-
2- Cut, then it is unclear how to analyze the resulting algorithm. This is due to the
existence of n-vertex hypergraphs for which a hyperedge from a minimum cut-set
could be chosen for contraction with probability as large as a constant and not at most
2/n. We overcome this issue by choosing a hyperedge to contract from a non-uniform
probability distribution.

We now present this non-uniform distribution along with the analysis. Let n be the
number of vertices in the input hypergraph G = (V , E). For each hyperedge e ∈ E ,
we define a “dampening factor” δe to be the probability that a uniformly random vertex
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from V does not belong to e. We recall that r(e) denotes the rank of a hyperedge e.
Thus,

δe = n − r(e)

n
.

We note that δe = 0 implies that e contains every vertex in the graph and hence is in
every cut. Our algorithm for Hypergraph- 2- Cut is the following: pick a hyperedge
e with probability proportional to δe, contract and repeat until either (i) the number of
vertices is at most 4 in which case, output all optimum solutions in the constant-sized
current hypergraph or (ii) the dampening factor of all hyperedges is zero in which
case, output all hyperedges in the current graph. The running time of the algorithm is
polynomial as contraction and updating the dampening factors can be implemented in
polynomial-time.

In order to analyze the correctness probability of this algorithm, let us define

qn := min
G: n-vertex hypergraph

C∗: C∗ is a min-cut-set inG

Pr(Algorithm outputsC∗ when executed on G).

We show that qn ≥ (n
2

)−1 by induction on n. For the base case, we consider n ≤ 4 and
observe that the algorithm is correctwith probability one on suchn-vertex hypergraphs.
For the induction step, let n > 4. Fix a n-vertex hypergraphG = (V , E) and amin-cut-
setC∗ inG that together achieve the minimum for qn . Wemay assume that there exists
a hyperedge in G whose dampening factor is non-zero as otherwise, all hyperedges
are in every cut and hence, the output is in fact an optimum and consequently, the
correctness probability is one. Now, the probability that the algorithm returns C∗
when executed on G is at least the probability of choosing a hyperedge e ∈ E\C∗,
contracting it and succeeding on the remaining hypergraph. The number of vertices
in the hypergraph after contracting e is n − r(e) + 1. Let pe be the probability of
contracting e at this step. Hence,

qn ≥
∑

e∈E\C∗
peqn−r(e)+1 = 1

∑
f ∈E δ f

·
∑

e∈E\C∗
δeqn−r(e)+1.

Now, consider a hyperedge e ∈ E\C∗. We have n − r(e) ≥ 1 for otherwise the
hyperedge e is in every cut and would be in C∗. Moreover, r(e) ≥ 2 since our current
hypergraph never contains a hyperedgewith cardinality one. Thus, n−r(e)+1 ≤ n−1.

By the inductive hypothesis, we have qn−r(e)+1 ≥ (n−r(e)+1
2

)−1
. Hence,

δeqn−r(e)+1 ≥ n − r(e)

n
· 1
(n−r(e)+1

2

) = 2

n(n − r(e) + 1)
≥ 2

n(n − 1)
= 1

(n
2

)
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and consequently,

qn ≥ 1
∑

f ∈E δ f

∑

e∈E\C∗

1
(n
2

) = 1
(n
2

) · |E\C∗|
∑

f ∈E δ f
.

It remains to argue that |E\C∗| ≥ ∑
f ∈E δ f . By rewriting the inequality, it suffices

to show that the cardinality |C∗| of a min-cut-set is at most |E | − ∑
f ∈E δ f . We will

show this by an averaging argument. Consider the size of the set Fv of hyperedges
containing a vertex v. Since Fv is a cut (as it isolates the vertex v), the cardinality |C∗|
of a min-cut-set is at most |Fv| for every v ∈ V . Now, consider Fv when v is chosen
uniformly. We have

|C∗| ≤ Ev∈V (|Fv|) =
∑

f ∈E
Prv∈V (v ∈ f )

=
∑

f ∈E
(1 − δ f ) (by the definition of δ f )

= |E | −
∑

f ∈E
δ f .

This completes the proof that the algorithm succeeds with probability at least
(n
2

)−1.
Executing it O(n2 log n) times and returning the best answer among all executions
gives an optimum solution with high probability. Our algorithm for Hypergraph- k-
Cut and forHedge- k- Cut in constant span hedgegraphs extends the above algorithm
by a careful generalization of the dampening factor.

3.2 The contraction algorithm

For ease of description and analysis, we will focus on the minimum cardinality variant
of Hedge- k- Cut, i.e., when all hedges have cost one. We will specify how to adapt
it to solve the minimum cost variant at the end of the section. We will present an
algorithm that outputs a particular minimum hedge k-cut-set with inverse polynomial
probability. Hence, returning a hedge k-cut-set with minimum value among the ones
output by polynomially many executions of the contraction algorithm will indeed find
a minimum hedge k-cut-set with constant probability. For the purpose of Hyper-
graph- k- Cut, the reader should consider s = 1 in the following algorithm and
analysis (with the standard notion of hyperedge contraction).

Let n be the number of vertices in the input hedgegraph G = (V , E). For a hedge
e ∈ E , we recall that r(e) is the number of vertices incident to the edges in e and
define

δe :=
(n−r(e)

k−1

)

( n
k−1

) .
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Fig. 1 Contraction algorithm for constant span hedgegraphs

As per the convention established in the preliminaries, we emphasize that δe = 0 if
n − r(e) < k − 1. Our contraction algorithm will pick a hedge e with probability
proportional to δe, contract it, update the values of δe based on the new number of
vertices and r(e) for every e ∈ E and repeat until the number of vertices is small.When
the number of vertices is at most a constant, we do a brute-force search.We emphasize
that our brute-force search outputs all minimum hedge k-cut-sets in the hedgegraph
with constant number of vertices. We do this for the purposes of convenience in the
correctness analysis.

We note that a hedge e is present in every hedge k-cut-set of G if and only if
|V (G/e)| < k. We recall that |V (G/e)| = n − r(e) + s(e). Hence, if a hedge e
is present in every hedge k-cut-set, then n − r(e) + 1 ≤ n − r(e) + s(e) < k and
consequently, δe = 0. Thus, our algorithm will never contract hedges that are present
in every hedge k-cut-set. The algorithm is described in Fig. 1.

We now analyze the correctness probability of the contraction algorithm. The fol-
lowing lemma shows a lower bound on the number of hedges in G as a function of
the minimum hedge k-cut-set value.

Lemma 2 Let G = (V , E) be a hedgegraph with m := |E | and λ being the minimum
hedge k-cut-set value. Then,

m − λ ≥
∑

e∈E
δe.

Proof Wewill prove the lemma by exhibiting an upper bound on λ by the probabilistic
method. Let W be a subset of k − 1 vertices chosen uniformly at random among all
subset of vertices of size k−1. Now consider the k-partition of the vertex set given by
P := {{v}|v ∈ W } ∪ {V \W }. We claim that the expected value of the hedge k-cut-set
given by P is m − ∑

e∈E δe and hence λ ≤ m − ∑
e∈E δe.
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We now prove the claim. Let e be a hedge in G. The probability that e does not
cross P is

(n−r(e)
k−1

)
/
( n
k−1

) = δe. Thus, the probability that e contributes to the hedge
k-cut-set P is 1 − δe. The claim follows by linearity of expectation. ��

We need the following combinatorial statement.

Lemma 3 Suppose n > 2(k−1)(s+1). Then, for every hedge ewith r(e) ∈ {2, . . . , n−
k + 1}, we have

δe

(
n − r(e) + s(e)

(k − 1)(s + 1)

)−1

≥
(

n

(k − 1)(s + 1)

)−1

.

Proof If n−r(e)+s(e) < (k−1)(s+1), then
(n−r(e)+s(e)

(k−1)(s+1)

)−1 = 1 using the convention

fixed at the beginning of Sect. 2. Since r(e) ≤ n − k + 1, we have
(n−r(e)

k−1

) ≥ 1. Thus,

δe =
(
n − r(e)

k − 1

)(
n

k − 1

)−1

≥
(

n

k − 1

)−1

≥
(

n

(k − 1)(s + 1)

)−1

since n > 2(k − 1)(s + 1) and s ≥ 1.
For the rest of the proof, we will assume that n − r(e) + s(e) ≥ (k − 1)(s + 1).

We now note that the binomial in the LHS of the lemma is well-defined and non-zero.
For notational convenience, let t = (k − 1)(s + 1). Then we need to show that

δe

(
n − r(e) + s(e)

t

)−1

≥
(
n

t

)−1

. (1)

We distinguish two cases based on whether s + 1 ≤ r(e) or r(e) ≤ s.

Case 1: Suppose s + 1 ≤ r(e). We recall that s ≥ 1. Since s(e) ≤ s, we have

δe

(
n − r(e) + s(e)

t

)−1

≥ δe

(
n − r(e) + s

t

)−1

.

Let x = r(e). Then it suffices to show that

(
n − x

k − 1

)(
n

k − 1

)−1(n − x + s

t

)−1

≥
(
n

t

)−1

. (2)

123



Hypergraph k-cut in randomized polynomial time

Consider the LHS of (2) as a function of x . There exists a constantCn,k,s (that depends
on n, k and s) using which the LHS can be written as

LHS(x) = Cn,k,s
(n − x)!(n − x + s − t)!

(n − x − k + 1)!(n − x + s)!
= Cn,k,s

(n − x + s − t)!
(n − x − k + 1)!∏s

i=1(n − x + i)

= Cn,k,s

(
1

∏t−s−1
i=k−1(n − x − i)

) (
1

∏s
i=1(n − x + i)

)

.

The last equation follows since t = (k − 1)(s + 1), and hence k − 1 ≤ t − s. From the
above expression, we have that LHS(x) is an increasing function of x . Thus we only
need to show inequality (2) when x is the minimum value in the domain of interest,
i.e., x = r(e) = s + 1. Hence, it suffices to show that

(
n − s − 1

k − 1

)(
n

k − 1

)−1(n − 1

t

)−1(n

t

)

≥ 1. (3)

To show the above, we write out the LHS of (3):

LHS of (3) = (n − s − 1)!(n − k + 1)!
(n − s − k)!(n − 1)!(n − t)

=
∏s+k−1

i=s+1 (n − i)

(n − t)
∏k−2

i=1 (n − i)
.

In order to show that LHS of (3) ≥ 1, we need to show that the denominator is no
greater than the numerator. Taking negative logarithm of both the denominator and
the numerator, we only need to show that

s+k−1∑

i=s+1

(− log(n − i)) ≤
k−2∑

i=1

(− log(n − i)) − log(n − t). (4)

We recall that t = (k−1)(s+1).We know that
∑s+k−1

i=s+1 (n−i) = (2n−2s−k)(k−
1)/2 = (n− t)+∑k−2

i=1 (n− i) and
∑s+ j

i=s+1(n− i) <
∑ j

i=1(n− i) ∀ j ∈ [k−2]. Since
negative logarithm is a convex function, inequality (4) follows by applying Lemma 1
using the choice � := k − 1, yi := n − s − i , xi := n − i for every i ∈ [k − 2] and
yk−1 := n − s − (k − 1), xk−1 := n − t .

Case 2: Suppose r(e) ≤ s. By the assumptions of the lemma, we have r(e) ≥ 2 and
hence s ≥ 2. We recall that r(e) is the number of vertices incident to the edges in
e while s(e) is the number of connected components in the subgraph induced by the
edges in e. Hence, r(e) − s(e) ≥ r(e)/2. Consequently, we have
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δe

(
n − r(e) + s(e)

t

)−1

≥ δe

(
n − r(e)/2

t

)−1

.

Let x = r(e). Then it suffices to show that

(
n − x

k − 1

)(
n

k − 1

)−1(n − x/2

t

)−1

≥
(
n

t

)−1

. (5)

Proceeding similarly to the analysis in Case 1 above, we can show that the LHS of (5)
is an increasing function of x . Then we only need to show inequality (5) for x = 2,
i.e., we need to show that

(
n − 2

k − 1

)(
n

k − 1

)−1(n − 1

t

)−1(n

t

)

≥ 1. (6)

Inequality (6) is a special case of inequality (3), which we have already proven in Case
1. This concludes our proof for the combinatorial statement. ��

We now show a lower bound on the success probability of the algorithm.

Theorem 5 For an n-vertex input hedgegraph with span s, the contraction algorithm
given in Fig. 1 outputs any fixed minimum hedge k-cut-set with probability at least

(
n

(k − 1)(s + 1)

)−1

.

Moreover, for constant s, the contraction algorithm can be implemented to run in time
O(nmM), where m is the number of hedges in the input hedgegraph.

Proof For a hedgegraph H , let O(H) denote the set of minimum k-cut-sets in H .
For C ∈ O(H), let q(H ,C) denote the probability that the algorithm executed on H
outputs C . Let Gn,s be the set of n-vertex hedgegraphs with span at most s. We define

qn := inf
H∈Gn,s

min
C∈O(H)

q(H ,C).

We will prove by induction on n that qn ≥ ( n
(k−1)(s+1)

)−1. Let G = (V , E) ∈ Gn,s

with C ∈ O(G). Let us define m := |E | and λ := |C |. We recall that the span of a
hedgegraph does not increase during the execution of the algorithm.

We first note that the algorithm will terminate in finite time. This is because either
the number of vertices is strictly decreasing in each iteration and consequently, the
algorithm reaches the base case of n ≤ 2(k − 1)(s + 1) or satisfies the condition∑

e∈E δe = 0. If C is in the list of candidates, it will be part of the output because it
is a minimum hedge k-cut-set. Therefore we just have to prove that C is in the list of
candidates.
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To base the induction, we consider n ≤ 2(k − 1)(s + 1). For such n, we have
q(G,C) = 1 since the algorithm solves such instances exactly by a brute-force search
and returns all minimum hedge k-cut-sets, hence qn = 1.

Wenowshow the induction step.Webegin by addressing twoeasy cases: (i) Suppose
δe = 0 for some hedge e ∈ E\C . Since e ∈ E\C , we know that contracting e does
not destroy C , so C is still a minimum hedge k-cut-set in G/e. We also know that
|V (G/e)| ≥ k. This is because contracting any hedge f with |V (G/ f )| < k would
destroy all hedge k-cut-sets but C survives the contraction of e. Since δe = 0 and
|V (G/e)| ≥ k, the algorithm will add all minimum hedge k-cut-sets in G/e including
C to the list of candidates, so q(G,C) = 1. (ii) Suppose C = E . Then, all hedges
are present in every hedge k-cut-set. Therefore, δe = 0 for every hedge e ∈ E . So
the algorithm executes only one iteration of the outer loop and will go to the last step.
Since all hedges are present in every hedge k-cut-set, contracting any hedge e ∈ E will
destroy all hedge k-cut-sets. Consequently, the algorithm will not find any candidate
other than E and the final step will correctly return all hedges inG since the initialized
list contains E as a candidate. Hence, q(G,C) = 1.

Thus, we may assume that (i) n > 2(k − 1)(s + 1), (ii) δe > 0 for all e ∈
E\C , and (iii) E\C �= ∅. In particular, (ii) and (iii) imply that

∑
e∈E δe > 0. Let

pe := δe/
∑

e∈E δe for every e ∈ E . We note that (pe)e∈E is a probability distribution
supported on the hedges because pe ≥ 0 for each e ∈ E and

∑
e∈E pe = 1. The

algorithm picks a hedge e to contract according to the distribution defined by (pe)e∈E .
We note that since

∑
e∈E δe > 0, we have δe > 0 for some e ∈ E and thus, the

algorithm will contract some hedge.
The algorithm executed on G outputs C if the hedge e that it contracts is in E\C

and the algorithm executed on the contracted hedgegraph G/e outputs C . Consider
then such e ∈ E\C . The hedgegraph G/e has n − r(e) + s(e) < n vertices and
clearly, the span of G/e is at most s and hence G/e ∈ Gn−r(e)+s(e),s . Furthermore, the
k-cut-set C is still a minimum hedge k-cut-set in G/e and hence C ∈ O(G/e). Thus,
q(G/e,C) ≥ qn−r(e)+s(e) by definition. Thus, we have

q(G,C) ≥
∑

e∈E\C
pe · q(G/e,C)

≥
∑

e∈E\C
pe · qn−r(e)+s(e)

= 1
∑

e∈E δe

∑

e∈E\C
δe · qn−r(e)+s(e)

≥ 1
∑

e∈E δe

∑

e∈E\C
δe ·

(
n − r(e) + s(e)

(k − 1)(s + 1)

)−1

. (by induction hypothesis)

For every e ∈ E\C , we know that δe > 0, which implies that n − r(e) ≥ k − 1 by
definition of δe. Moreover, by the assumption on G, we have that n > 2(k−1)(s+1).
Hence, by Lemma 3, for every hedge e ∈ E\C , we have
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δe ·
(
n − r(e) + s(e)

(k − 1)(s + 1)

)−1

≥
(

n

(k − 1)(s + 1)

)−1

.

Substituting this in the previously derived lower bound for q(G,C), we have

q(G,C) ≥ 1
∑

e∈E δe

∑

e∈E\C

(
n

(k − 1)(s + 1)

)−1

= m − λ
∑

e∈E δe

(
n

(k − 1)(s + 1)

)−1

(since |C | = λ and |E | = m)

≥
(

n

(k − 1)(s + 1)

)−1

. (by Lemma 2)

In all cases, we have shown that q(G,C) ≥ ( n
(k−1)(s+1)

)−1 for an arbitraryG ∈ Gn,s

and an arbitrary C ∈ O(G). Therefore, we have

qn = inf
H∈Gn,s

min
C∈O(H)

q(H ,C) ≥
(

n

(k − 1)(s + 1)

)−1

.

This concludes our proof of the correctness probability by induction.
We now analyze the running time of the contraction algorithm. A hedge contraction

operation takes O(M) time: To contract a hedge e, we construct a table of all vertices.
For each vertex, we store the corresponding vertex after contraction. The second step
is contraction. We process every hedge and mark a vertex if it needs to be merged.
If so, we also mark which vertex it merges to. Marking vertices takes O(1) time per
vertex encountered in a hedge as we only need to check the table. Therefore, marking
vertices in all hedges takes O(M) time in total. Then,we replace all themarked vertices
with the new vertices and update the hedges accordingly in O(M) time. Hence the
contraction operation can be implemented to run in O(M) time.

We analyze the running time of one iteration of the loop. The brute-force operation
when n ≤ 2(k−1)(s+1) takes O(Mk2(k−1)(s+1)) = O(M) time. The for-loop applies
at most O(m) contractions. Each contraction takes O(M) time and each brute-force
search for minimum hedge-k-cut-set takes O(Mkk+s) = O(M) time. Hence the for-
loop runs in time O(mM). Verifying if

∑
e∈E δe = 0 can be done in O(m) time.

Picking a random hedge given a probability distribution on the hedges takes O(m)

time. The last step contracts and updates the δe values. Contraction takes O(M) time.
In order to update the δe values, we can precompute

( a
k−1

)
for all k − 1 ≤ a ≤ n

in O(n(k − 1)) = O(n) arithmetic operations. After every contraction, we can thus
update δe for each e in constant time using the table. Now, we can compute

∑
e∈E δe

in O(|E |) = O(m) time. With these values, the probability pe for all e ∈ E can be
found in O(m) time. Hence, the total running time of one iteration is O(mM).

Since the number of vertices strictly decreases after each contraction, the total
number of iterations is at most n. By the above discussion, the contraction algorithm
can be implemented to run in O(nmM) time. We mention that the bottleneck of the
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algorithm is the for-loop. If the for-loop is never executed, then the running time is
O(nM). ��
Theorem 1 follows from Theorem 5 by executing the contraction algorithm

(
n

(k − 1)(s + 1)

)

log n

times and outputting a hedge k-cut-set with the minimum value among all executions.

Remark 1 The contraction algorithmcan be adapted to solve theminimumcost variant,
where each hedge e has cost c(e), and the goal is to find a subset of hedges of minimum
total cost to remove so that the underlying graph has at least k connected components.
In this case, we set δe := c(e)

(n−r(e)
k−1

)
/
( n
k−1

)
and run the same contraction algorithm

as above. The correctness and running time arguments are analogous to the one in
Theorem 5 and we avoid repeating in the interests of brevity.

3.3 Contraction algorithm forHYPERGRAPH-k-CUT

We next focus on the special case of Hypergraph- k- Cut. We restate and prove
Theorem 2.

Theorem 2 There exists a randomized algorithm to solve Hypergraph- k- Cut that
runs in time O(Mn2k−1 log n) and succeeds with probability at least 1 − 1/n.

Proof We will show that a hypergraph can be transformed to a hedgegraph with
span one without changing the value of a minimum k-cut-set. By Theorem 1, such a
transformation immediately gives a randomized polynomial time algorithm to solve
Hypergraph- k- Cut that runs in time O(mMn2(k−1) log n) and succeeds with prob-
ability at least 1 − 1/n. We discuss the running time improvement after showing
the transformation. This transformation was also mentioned in [9] to show that
Hypergraph- 2- Cut is a special case of Hedge- 2- Cut.

Let G = (V , E) be an input hypergraph. We construct a hedgegraph H = (V , E ′),
where E ′ is obtained as follows: for every hyperedge e ∈ E , fix an arbitrary vertex
v ∈ e and introduce a hedge e′ ∈ E ′ consisting of edges {v, u} for all u ∈ e − {v}
with the cost of e′ being the same as the cost of e. Thus, the subgraph induced by the
edges in e′, i.e., G[e′], is a star centered at v that is adjacent to all the vertices in e and
hence has span one. We emphasize that the constructed hedges are disjoint, i.e., if an
edge appears in � constructed hedges, then the underlying graph has � copies of the
edge with each copy being present in one of the hedges.

We now show that the value of any minimum k-cut-set is preserved by this transfor-
mation.We recall that aminimum k-cut-set in a hypergraph/hedgegraph corresponds to
a set of hyperedges/hedges crossing some partition of the vertex set into k non-empty
parts. Let {V1, . . . , Vk} denote a partitioning of the vertex set V into k non-empty
parts. We claim that a hyperedge e crosses the partition {V1, . . . , Vk} in the hyper-
graph G if and only if the corresponding hedge e′ crosses the partition {V1, . . . , Vk}
in the hedgegraph H . Suppose e′ crosses the partition {V1, . . . , Vk} in the hedgegraph
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H . Consider the center vertex v of e′. Without loss of generality, let v ∈ V1. Then
there exists a vertex u ∈ e′ ∩ Vj for some j ∈ [k]\{1}. Now u, v ∈ e, and hence e
crosses {V1, . . . , Vk} in the hypergraph G. On the other hand, suppose e crosses the
partition {V1, . . . , Vk} in the hypergraph G. Consider the center vertex v of the star
corresponding to e′. Without loss of generality, let v ∈ V1 and suppose e intersects V1
and Vj for some j ∈ [k]\{1}. Let u ∈ Vj ∩ e. Then v ∈ V1 while u ∈ Vj and hence
e′ crosses {V1, . . . , Vk} in the hedgegraph H .

We now prove the improved running time bound. We obtain the improvement by
showing that the algorithm will never execute the for-loop for hedgegraphs with span
one. For every hedge e with δe = 0, we have that n − r(e) < k − 1 and consequently
|V (G/e)| = n − r(e) + s(e) = n − r(e) + 1 < k.

This observation shows that the running time of the contraction algorithm is O(nM)

as analyzed in the proof of Theorem 5. The theorem now follows by running the con-
traction algorithm

( n
2(k−1)

)
log n times and returning a hedge k-cut-set with minimum

value among all executions. ��
We now bound the number of minimum cut-sets. We restate and prove Corollary 1.

Corollary 1 The number of distinct minimum k-cut-sets in an n-vertex hypergraph is
O(n2(k−1)).

Proof We recall that each minimum k-cut-set is a set of edges that crosses some k-
partition V1, . . . , Vk . Let S1, . . . , S� be the minimum k-cut-sets in a given n-vertex
hypergraph. Let Ei be the indicator variable that Si survives the contraction algorithm
until there are at most 4(k−1) vertices. Then, by Theorem 5 (by considering s = 1 for
hypergraphs), we have that the expected value of Ei is at least

( n
2(k−1)

)−1. The number
of possibleminimum k-cut-sets in a hypergraphwith 4(k−1) vertices is bounded above
by the number of k-partitions, which is at most k4(k−1). Hence,

∑�
i=1 E(Ei ) ≤ k4(k−1).

Hence, � ≤ k4(k−1)
( n
2(k−1)

) = O(n2(k−1)). ��

4 RPTAS for HEDGE-k-CUT

In this section, we provide a randomized polynomial time approximation scheme and
a quasi-polynomial time exact algorithm for Hedge- k- Cut for constant k. We gen-
eralize the contraction approach for Hedge- 2- Cut given by Ghaffari, Karger and
Panigrahi [9]. Their contraction algorithm distinguishes large and small hedgegraphs
based on the existence of small, medium, and large hedges. We generalize these def-
initions for the purposes of Hedge- k- Cut and handle the cases appropriately. We
again focus on the minimum cardinality variant throughout this section. The algorithm
and the analysis can be adapted for the minimum cost variant similar to Remark 1.

LetG = (V , E)be ahedgegraph.Wedefine ahedge e to be small if r(e) < n/(4(k−
1)),moderate if n/(4(k−1)) ≤ r(e) < n/(2(k−1)), and large if r(e) ≥ n/(2(k−1)).
We define a hedgegraph to be large if it contains at least one large hedge, and to be
small otherwise. We use the algorithm in Fig. 2.

The following lemma bounds the number of branching steps performed by the
algorithm.
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Fig. 2 Contraction algorithm for arbitrary span hedgegraphs

Lemma 4 The total number of branching steps in one execution of the contraction
algorithm on an n-vertex hedgegraph is at most

log 8(k−1)
8(k−1)−1

n.

Proof We prove this lemma by induction on n. Let G = (V , E) be an n-vertex
hedgegraph. We consider n = k as base case. For such n, the algorithm terminates
without a branching step, so the statement is true.

We now show the induction step. If the graph underlying G has at least k com-
ponents, then the algorithm terminates without a branching step, so the statement is
again true.

If G is small, then step 4 of the algorithm is performed with a recursive call on
a hedgegraph with strictly fewer vertices. Therefore, the inductive hypothesis can be
applied and it directly implies the statement since no branching step is performed.

If G is large, then we go to either branch (a) or branch (b). In branch (a), the
algorithm recurses on a small hedgegraph H1. Since the number of vertices spanned
byeachhedgenever increases during the executionof the algorithm, the hedgegraph H1
will not become a large hedgegraph, and hence will not encounter another branching,
until its number of vertices is halved. Then by the inductive hypothesis, the total
number of branchings in the algorithm is at most

1 + log 8(k−1)
8(k−1)−1

(n

2

)
≤ log 8(k−1)

8(k−1)−1
n.
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We have proved the induction step for branch (a). Next we will show the induction
step for branch (b). In branch (b), let e be the contracted hedge. Then the algorithm
recurses on the hedgegraph H2 which has n−r(e)+s(e) vertices. Since each connected
component of any hedge has at least two vertices, we have s(e) ≤ r(e)/2, and thus
n − r(e) + s(e) ≤ n − r(e)/2. Since e is either a large or a moderate hedge, we have
that r(e) ≥ n/(4(k − 1)), and hence the hedgegraph H2 has at most n − r(e)/2 ≤
n · (1 − 1/(8(k − 1))) = n · (8(k − 1) − 1)/(8(k − 1)) vertices. Therefore, by the
inductive hypothesis, the total number of branchings in the algorithm is at most

1 + log 8(k−1)
8(k−1)−1

(
8(k − 1) − 1

8(k − 1)
· n

)

= log 8(k−1)
8(k−1)−1

n.

��
We next show that the algorithm always outputs a feasible solution and that it can

be implemented to run in polynomial-time.

Lemma 5 The contraction algorithm given in Fig. 2 always outputs a hedge k-cut-set.
Moreover, the algorithm can be implemented to run in time O(Mn).

Proof We first note that any hedge e with n − r(e) + s(e) ≤ k − 1 must be in every
hedge k-cut-set. By deleting such hedges from the input hedgegraph and adding them
to the output set F , the algorithm ensures that it never contracts hedges such that
the resulting hedgegraph has at most k − 1 components (vertices). So, the algorithm
always outputs a hedge k-cut-set.

Next, we show that the contraction algorithm can be implemented to run in O(Mn)

time. In the contraction algorithm, finding the set of hedges e with n − r(e) + s(e) ≤
k − 1 and finding the set of large and moderate hedges can each be done in O(m)

time. Similar to the proof of Theorem 5, a contraction step can be implemented to
run in O(M) time by processing hedges one by one to mark contracted vertices and
replacing them with a new vertex. Since in one execution of the contraction algorithm
there can be at most n contractions and O(log n) branching steps by Lemma 4, the
contraction algorithm can be implemented to run in O(Mn) time. ��

Next, we state a few helper lemmas which will be used to lower bound the success
probability of the algorithm in returning a (1 + ε)-approximate minimum hedge k-
cut-set. We recall that for a hedge e, the set of vertices incident to the edges in e is
denoted by V (e) and the number of vertices incident to the edges in e is denoted by
r(e).

Lemma 6 Let G = (V , E) be a hedgegraph with minimum hedge k-cut-set value λ.
Let W be a subset of k−1 vertices and let E(W ) := {e ∈ E : |V (e)∩W | ≥ 1}. Then

|E(W )| ≥ λ.

Proof Let P = {{v}|v ∈ W } ∪ {V \W } be the k-partitioning of the vertex set induced
by W . Let E(P) be the set of hedges that cross P . Therefore, it is a hedge k-cut-set.
Since each hedge contains at least two vertices, every hedge crossing P must contain
at least one vertex in W . Therefore, |E(W )| ≥ |E(P)| ≥ λ. ��
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Lemma 7 Let G = (V , E) be an n-vertex hedgegraph with minimum hedge k-cut-set
value λ. Then,

∑

e∈E
r(e) ≥ nλ

k − 1
.

Proof Let U denote the set of all subsets of vertices of size k − 1. Then |U | = ( n
k−1

)
.

For a subset W of k − 1 vertices, let E(W ) be the same as defined in Lemma 6. For
a vertex v, we use deg(v) to denote the number of hedges in E which have edges
incident to v.

We observe that
∑

W∈U
∑

v∈W deg(v) = (n−1
k−2

)∑
v∈V deg(v). Indeed, for each

v ∈ V , the term deg(v) appears in the LHS whenever v ∈ W . There are
(n−1
k−2

)
sets W

in U that contain v, so the observation follows. Therefore,

∑

e∈E
r(e) =

∑

v∈V
deg(v)

=
(
n − 1

k − 2

)−1 ∑

W∈U

∑

v∈W
deg(v) (by the above observation)

=
(
n − 1

k − 2

)−1 ∑

W∈U

∑

e∈E
|V (e) ∩ W |

=
(
n − 1

k − 2

)−1 ∑

W∈U
|E(W )| (by definition of E(W ))

≥
(
n − 1

k − 2

)−1 ∑

W∈U
λ (by Lemma 6)

=
(
n − 1

k − 2

)−1( n

k − 1

)

λ

= nλ

k − 1
.

��
Lemma 8 If G = (V , E) is an n-vertex m-hedge small hedgegraph with C being a
minimum hedge k-cut-set in G with value λ, then

(i)
∑

e∈E\C r(e) ≥ nλ/(2(k − 1)) and
(ii) m ≥ 2λ.

Proof Since C contains λ hedges, and each hedge e ∈ E has r(e) ≤ n/(2(k − 1)), we
have that

∑
e∈C r(e) ≤ nλ/2(k−1). Hence, byLemma7,wehave that

∑
e∈E\C r(e) ≥

nλ/(2(k − 1)).
Moreover,

∑
e∈E r(e) ≤ m(n/2(k − 1)) since every hedge e has r(e) ≤ n/(2(k −

1)). Again, by Lemma 7, we have that m ≥ 2λ. ��
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Lemma 9 For every x ∈ (0, 1/2) and c ≥ 4, we have (1 − x) · (1 − x/c)−3c/2 ≥ 1.

Proof Let f (x) := (1 − x) · (1 − x/c)−3c/2. Then

f ′(x) =
(
1 − x

c

)− 3c
2 ·

(
3c(1 − x)

2(c − x)
− 1

)

.

Since the first factor (1 − x/c)−3c/2 > 0 for all x ∈ (0, 1/2), c ≥ 4, the sign of
f ′(x) depends on the sign of 3c(1 − x)/(2(c − x)) − 1. If we solve f ′(x) = 0
for x , we have x = c/(3c − 2). Since c ≥ 4, we have that 2/c ≤ 1 and hence
c/(3c − 2) = 1/(3 − 2/c) ≤ 1/2. Then c/(3c − 2) divides the interval (0, 1/2) into
two pieces and we consider the sign of f ′(x) in these two pieces separately. When
0 < x < c/(3c − 2),

3c(1 − x)

2(c − x)
− 1 = c − x(3c − 2)

2(c − x)
> 0.

When x > c/(3c − 2),

c − x(3c − 2)

2(c − x)
< 0.

Therefore, we know f ′(x) ≥ 0 for x ∈ (0, c/(3c − 2)] and f ′(x) < 0 for x ∈
(c/(3c − 2), 1/2). Since f (0) = 1, f (x) ≥ 1 for x ∈ (0, c/(3c − 2)]. Now we
only need to show that f (x) ≥ 1 for x ∈ (c/(3c − 2), 1/2). Since f ′(x) < 0 for
x ∈ (c/(3c − 2), 1/2), we only need to show that f (x) ≥ 1 when x = 1/2. We have
f (1/2) = 1/2 · (1 − 1/(2c))−3c/2, which is a decreasing function of c for c ≥ 1/2.
We note that limc→∞ 1/2 · (1 − 1/(2c))−3c/2 = e3/4/2 > 1, and hence we have
f (1/2) > 1. ��
We now lower bound the success probability of the algorithm.

Lemma 10 For an n-vertex input hedgegraph, the contraction algorithmgiven inFig. 2
outputs a (1 + ε)-approximate minimum hedge k-cut-set with probability at least
n−O(k log(1/ε)).

Proof LetH(n, �) be the family of hedgegraphs on n vertices for which the contraction
algorithm will always terminate using at most � branchings. We say that the algorithm
succeeds on an input hedgegraph H if it outputs a (1 + ε)-approximate minimum
hedge k-cut-set of H . Let q(H) denote the probability that the algorithm succeeds on
H . We define

qn,� := inf
H∈H(n,�)

q(H).

For notational simplicity, let γ := ε/(1 + ε). We will first prove that

qn,� ≥ n−6(k−1) ·
(γ

2

)� ∀ n ≥ k. (7)
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Let G ∈ H(n, �), with vertex set V = [n] and hedge set E . Let m := |E |. Let us
fix a minimum hedge k-cut-set C of G and suppose that its value is λ. We distinguish
three cases and handle them differently.

1. Suppose G is small. We prove statement (7) by induction on n. To base the induc-
tion, we consider n = k. Then, G has only one hedge k-cut-set and the algorithm
returns it. So q(G) = 1 and hence qn,� = 1.

We next show the induction step. If the graph underlying G has at least k compo-
nents, then, the empty set is the only minimum hedge k-cut-set and the algorithm
returns it. Hence, q(G) = 1. Thus, we may assume that n > k and the graph
underlying G has fewer than k components.

The algorithm succeeds on G if it contracts a hedge e that is not in C and the
algorithm succeeds on the resulting hedgegraph G/e which has n − r(e) + s(e)
vertices. Hence, q(G) ≥ 1/m · ∑

e∈E\C q(G/e). We note that G/e ∈ H(n −
r(e) + s(e), �) and that n − r(e) + s(e) ≤ n − r(e)/2 for any hedge e. Therefore,

q(G) ≥ 1

m

∑

e∈E\C
q(G/e)

≥ 1

m

∑

e∈E\C
qn−r(e)+s(e),� (by definition of qn,l)

≥ 1

m

∑

e∈E\C
(n − r(e) + s(e))−6(k−1) ·

(γ

2

)�

(by inductive hypothesis)

≥ 1

m

∑

e∈E\C

(

n − r(e)

2

)−6(k−1)

·
(γ

2

)�

= m − λ

m

(γ

2

)� 1

m − λ

∑

e∈E\C

(

n − r(e)

2

)−6(k−1)

.

Since k ≥ 2, and n − r(e)/2 ≥ 1 for all hedges e, the function f (r(e)) :=
(n − r(e)/2)−6(k−1) is convex as a function of r(e) for every hedge e ∈ E . By
Jensen’s inequality, we obtain

1

m − λ

∑

e∈E\C

(

n − r(e)

2

)−6(k−1)

≥
(

n −
∑

e∈E\C r(e)

2(m − λ)

)−6(k−1)

.

Therefore, we have

q(G) ≥ m − λ

m
·
(γ

2

)� ·
(

n −
∑

e∈E\C r(e)

2(m − λ)

)−6(k−1)
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≥ m − λ

m
·
(γ

2

)� ·
(

n − nλ/(2(k − 1))

2m

)−6(k−1)

(by Lemma 8)

= (1 − λ

m
)
(γ

2

)�

n−6(k−1)
(

1 − λ

4(k − 1)m

)−6(k−1)

=
(γ

2

)�

n−6(k−1) · (1 − x)

(

1 − x

4(k − 1)

)−6(k−1)

.

The last equality follows by setting x := λ/m. We have x ∈ (0, 1/2) sincem ≥ 2λ
by Lemma 8.We recall that we would like to prove that q(G) ≥ n−6(k−1) · (γ /2)�,
so we only need to prove that (1 − x) (1 − x/(4(k − 1)))−6(k−1) ≥ 1 for x ∈
(0, 1/2). By setting c = 4(k − 1) in Lemma 9 it indeed holds.

2. SupposeG is large and |L\C | ≥ γ · |L|. We prove statement (7) by induction on n.
The base case of n = k and the inductive case where the graph underlyingG has at
least k components can be handled the same way as in case 1. Therefore, we may
again assume that n > k and the graph underlyingG has fewer than k components.

The algorithm succeeds if it goes to branch (b), contracts a hedge e ∈ L\C , and
succeeds on the resulting graph H2 = G/e. By the condition that |L\C | ≥ γ · |L|,
the probability of picking a hedge e ∈ L\C to contract is at least γ . Hence,
q(G) ≥ 1/2 · γ · q(H2). The algorithm contracts either a moderate or a large
hedge e for which r(e) ≥ n/(4(k − 1)) and H2 has n− r(e)+ s(e) vertices where
n−r(e)+ s(e) ≤ n−r(e)/2 ≤ n−1. We also note that H2 ∈ H(|V (H2)|, �−1).
Therefore,

q(G) ≥ 1

2
· γ · q(H2)

≥ 1

2
· γ · q|V (H2)|,�−1 (by definition of qn,l)

≥ 1

2
· γ · (|V (H2)|)−6(k−1) ·

(γ

2

)�−1
(by inductive hypothesis)

≥ 1

2
· γ · n−6(k−1)

(γ

2

)�−1

= n−6(k−1) ·
(γ

2

)�

.

3. Suppose G is large and |L\C | < γ · |L|. We will prove that q(G) ≥ n−6(k−1) ·
(γ /2)� by induction on �. The following claim shows the base case of the statement,
i.e., for � = 0:

Claim q(G) ≥ n−6(k−1) for all n ≥ k and G ∈ H(n, 0).

Proof We prove by induction on n. For the base case where n = k, we have q(G) =
1 ≥ n−6(k−1) for all G ∈ H(n, 0). For the inductive step, consider G ∈ H(n, 0) to be
a hedgegraph on n > k vertices and m hedges with a fixed minimum hedge k-cut-set
C in G. We note that G is small since G ∈ H(n, 0), therefore we are in case 1. Hence,
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we have

q(G) ≥ n−6(k−1) ·
(γ

2

)� = n−6(k−1).

by the same proof as that of case 1. ��
Next we show the inductive step where l ≥ 1. If n = k or if the graph underlying

G has at least k components, the algorithm again succeeds on G with probability 1 as
argued in case 1 and thus wemay assume that n > k andG has less than k components.
We will show that the algorithm succeeds if it goes to branch (a) and succeeds on
the resulting graph H1 = G − L . Suppose the algorithm follows branch (a). Since
|L\C | < γ · |L|, we have |L ∩C | = |L|− |L\C | > (1− γ ) · |L|. Then, the value of a
minimum hedge k-cut-set in H1 is at most |C−L| = |C |−|L∩C | < |C |−(1−γ )|L|.
If the recursive call on H1 succeeds, then the hedge k-cut-set it returns is of size at
most (1+ε)(|C |− |L|(1−γ )) = |C |(1+ε)−|L|. Consequently, the algorithm on G
returns a hedge k-cut-set of size at most (|C |(1+ ε) − |L|) + |L| = |C |(1+ ε), i.e., a
(1+ε)-approximate minimum hedge k-cut-set of G. By definition, H1 ∈ H(n, �−1).
Clearly, the algorithm goes to branch (a) with probability 1/2. Therefore, by the above
argument and the inductive hypothesis,

q(G) ≥ 1

2
· q(H1) ≥ 1

2
· qn,�−1 ≥ 1

2
·
(γ

2

)�−1 · n−6(k−1) ≥
(γ

2

)� · n−6(k−1).

In all cases, we have shown that q(G) ≥ (γ /2)� · n−6(k−1) for an arbitrary G ∈
H(n, �). Therefore, for all n ≥ k, we have

qn,� = inf
H∈H(n,�)

q(H) ≥ n−6(k−1) ·
(γ

2

)�

.

We know that γ < 1. Substituting the upper bound on � from Lemma 4, we obtain
that

qn,� ≥ n−6(k−1)
(γ

2

)� ≥ n−6(k−1)
(γ

2

)log 8(k−1)
8(k−1)−1

n
.

If ε ≥ 1, then γ ≥ 1/2, so qn,� is at least inverse polynomial in n. If ε < 1, then
γ = ε/(1 + ε) > ε/2. So the success probability is at least

n−6(k−1)
(ε

4

)log 8(k−1)
8(k−1)−1

n
= n−O(k log 1

ε
).

��
Theorem 3 follows from Lemmas 10 and 5 by executing the contraction algorithm

nO(k log 1/ε) log n times and returning a hedge k-cut-set with theminimumvalue among
all executions.

Next, in order to prove Theorem 4, we bound the probability that the contraction
algorithm returns any fixed minimum hedge k-cut-set. We note that the following
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result cannot be obtained by setting ε < 1/λ in Lemma 10 since Lemma 10 only lower
bounds the probability that some (1 + ε)-approximate minimum hedge k-cut-set is
returned by the algorithm while the following result lower bounds the probability that
any specificminimumhedge k-cut-set is returned by the algorithm. The proof structure
of the following lemma is similar to that of Lemma 10. However, we point out that
the condition on which we distinguish the second and third cases (and consequently
the proof of these two cases) are different from that of Lemma 10.

Lemma 11 For an n-vertex input hedgegraph, the contraction algorithmgiven inFig. 2
outputs any fixed minimum hedge k-cut-set with value λ with probability n−O(k log λ).

Proof For a hedgegraph H , letO(H) denote the set of minimum k-cut-sets in H . Let
H(n, �) be the family of hedgegraphs on n vertices for which the contraction algorithm
will always terminate using at most � branchings. Let μ(H ,C) denote the probability
that the algorithm returns C on H . We define

μn,� := inf
H∈H(n,�)

min
C∈O(H)

μ(H ,C).

We will prove that

μn,� ≥ n−6(k−1) ·
(

1

2(1 + λ)

)�

∀ n ≥ k.

Let G ∈ H(n, �), with vertex set V = [n] and hedge set E . Let m := |E |. Let us fix a
minimum hedge k-cut-set C of G and suppose that its value is λ. We again distinguish
three cases. In each case, arguments identical to that in the proof of Lemma 10 address
the case of n = k and when the graph underlying G has at least k components. So, we
may again assume that G has greater than k vertices and fewer than k components.

1. Suppose G is small. The arguments for this case are identical to that of the first
case in the proof of Lemma 10. We avoid repeating in the interests of brevity.

2. Suppose G is large and |L\C | ≥ 1. We will prove the statement by induction
on n. The algorithm returns C on G if it goes to branch (b), contracts a hedge
e ∈ L\C , and returns C on the resulting graph H2 = G/e. The probability of
picking a hedge e ∈ L\C to contract is |L\C |/|L|. Since |L\C | ≥ 1 andmoreover
|L ∩ C | ≤ |C | = λ, we have |L\C |/|L| ≥ 1/(1 + λ). The algorithm contracts
either a moderate or a large hedge e for which r(e) ≥ n/(4(k − 1)) and H2 has
n − r(e) + s(e) vertices where n − r(e) + s(e) ≤ n − r(e)/2. Hence, H2 has at
most n − r(e)/2 ≤ n − 1 vertices. We also note that H2 ∈ H(|V (H2)|, � − 1)
and if the hedge e that is contracted to obtain H2 is not in C , then C ∈ O(H2).
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Therefore,

μ(G,C) ≥ 1

2
· 1

(1 + λ)
· μ(H2,C)

≥ 1

2(1 + λ)
· μ|V (H2)|,�−1 (by definition of μn,l)

≥ (|V (H2)|)−6(k−1) ·
(

1

2(1 + λ)

)�

(by inductive hypothesis)

≥ n−6(k−1) ·
(

1

2(1 + λ)

)�

.

3. Suppose G is large and L ⊆ C . In this case, we will prove the statement by
induction on �. The algorithm returns C on G if it goes to branch (a) and returns
C − L on H1 = G − L . We note that H1 ∈ H(n, � − 1) and C\L ∈ O(H1).
Therefore,

μ(G,C) ≥ 1

2
· μ(H1,C\L) ≥ 1

2
· μn,�−1.

By induction on �, we may now show that μ(G,C) ≥ n−6(k−1) · (1/2(1 + λ))�.
The rest of the proof is identical to that of case 3 of the proof of Lemma 10, so we
avoid repeating it.

In all cases, we have shown that μ(G,C) ≥ n−6(k−1)(1/2(1 + λ))� for an arbitrary
G ∈ H(n, �) and C ∈ O(G). Therefore, for all n ≥ k, we have

μn,� ≥ n−6(k−1) ·
(

1

2(1 + λ)

)�

.

Substituting the upper bound on � from Lemma 4 gives

μn,� ≥ n−6(k−1) ·
(

1

2(1 + λ)

)log 8(k−1)
8(k−1)−1

n

= n−O(k log λ).

��
Lemmas 11 and 5 lead to Corollary 2 by executing the contraction algorithm

nO(k log λ) log n times and returning a hedge k-cut-set with the minimum value among
all executions (the value λ can be found by a binary search). Lemma 11 also leads to
Theorem 4 similar to the proof of Corollary 1 from Lemma 5.
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