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Abstract
In the multiway cut problem, we are given an undirected graph with non-negative edge
weights and a collection of k terminal nodes, and the goal is to partition the node set of
the graph into k non-empty parts each containing exactly one terminal, so that the total
weight of the edges crossing the partition is minimized. The multiway cut problem for
k ≥ 3 is APX-hard. For arbitrary k, the best-known approximation factor is 1.2965
due to Sharma and Vondrák (Proceedings of the forty-sixth annual ACM symposium
on theory of computing, STOC, 2014) while the best known inapproximability result
due toAngelidakis et al. (Integer programming and combinatorial optimization, IPCO,
2017) rules out efficient algorithms to achieve an approximation factor less than 1.2
under the unique games conjecture (UGC). In thiswork,we improve the lower bound to
1.20016underUGCby constructing an integrality gap instance for theCKR relaxation.
The CKR relaxation embeds the graph into a simplex and it is known that its integrality
gap translates to inapproximability underUGC.A technical challenge in improving the
integrality gap has been the lack of geometric tools to understand higher-dimensional
simplices. Our instance is a non-trivial 3-dimensional instance that overcomes this
technical challenge. We analyze the gap of the instance by viewing it as a convex
combination of 2-dimensional instances and a uniform 3-dimensional instance. We
believe that this technique could be exploited further to construct instances with larger
integrality gap. One of the ingredients of our proof technique is a generalization of a
result on Sperner admissible labelings due to Mirzakhani and Vondrák (Proceedings
of the twenty-sixth annual ACM-SIAM symposium on discrete algorithms, SODA,
2015) that might be of independent combinatorial interest.

An extended abstract of this work appeared in the 20th conference on Integer Programming and
Combinatorial Optimization (IPCO 2019).
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1 Introduction

In the multiway cut problem, we are given an undirected graph with non-negative edge
weights and a collection of k terminal nodes and the goal is to find a minimum weight
subset of edges to delete so that the k input terminals cannot reach each other. Equiv-
alently, the goal is to find a partition of the nodes into k sets with each set containing
exactly one terminal, such that the weight of the union of the edge boundaries of the
sets is minimized. For convenience, we will use k-way cut to denote this problem
when we would like to highlight the dependence on k and multiway cut to denote
this problem when k grows with the size of the input graph. The 2-way cut problem
is the classic minimum {s, t}-cut problem which is solvable in polynomial time. For
k ≥ 3, Dahlhaus et al. [6] showed that the k-way cut problem is APX-hard and gave
a (2 − 2/k)-approximation. Owing to its applications in partitioning and clustering,
k-way cut has been intensely investigated in the algorithms literature. Several novel
rounding techniques in the approximation literature were discovered to address the
approximability of this problem.

The best-known approximability as well as inapproximability results are based on a
linear programming relaxation, popularly known as the CKR relaxation in honor of the
authors—Călinescu, Karloff and Rabani—who introduced it [4]. The CKR relaxation
takes a geometric perspective of the problem. For a graph G = (V , E) with edge
weights w : E → R+ and terminals t1, . . . , tk , the CKR relaxation is given by

min
1

2

∑

e={u,v}∈E
w(e)‖xu − xv‖1

s.t.

xu ∈ Δk ∀ u ∈ V ,

xti = ei ∀ i ∈ [k],
where Δk :={(x1, . . . , xk) ∈ [0, 1]k : ∑k

i=1 xi = 1} is the (k − 1)-dimensional
simplex, ei ∈ {0, 1}k is the extreme point of the simplex along the i th coordinate axis,
i.e., eij = 1 if and only if j = i , and [k] denotes the set {1, . . . , k}.

Călinescu, Karloff and Rabani designed a rounding scheme for the relaxationwhich
led to a (3/2 − 1/k)-approximation thus improving on the (2 − 2/k)-approximation
by Dahlhaus et al. For 3-way cut, Cheung et al. [5] as well as Karger et al. [8]
designed alternative rounding schemes that led to a 12/11-approximation factor and
also exhibitedmatching integrality gap instances.We recall that the integrality gap of a
minimization LP is the supremum of the possible ratios between the integral optimum
value and the LP optimum value. Determining the exact integrality gap of the CKR
relaxation for k ≥ 4 has been an intriguing open question. After the results by Karger
et al. and Cunningham et al., a rich variety of rounding techniques were developed to
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improve the approximation factor of k-way cut for k ≥ 4 [2,3,11]. The best known
approximation factor for multiway cut is 1.2965 due to Sharma and Vondrák [11].

On the hardness of approximation side, Manokaran et al. [9] showed that the hard-
ness of approximation for k-way cut is at least the integrality gap of the CKR relaxation
assuming the unique games conjecture (UGC). More precisely, if the integrality gap
of the CKR relaxation for k-way cut is τk , then it is UGC-hard to approximate k-way
cut within a factor of τk − ε for every constant ε > 0. As an immediate consequence
of this result, we know that the 12/11-approximation factor for 3-way cut is tight
under UGC. For k-way cut, Freund and Karloff [7] constructed an instance showing
an integrality gap of 8/(7+ (1/(k−1))). This was the best known integrality gap until
Angelidakis et al. [1] gave a remarkably simple construction showing an integrality
gap of 6/(5 + (1/(k − 1))) for k-way cut. In particular, this gives an integrality gap
of 1.2 for multiway cut.

We note that the known upper and lower bounds on the approximation factor for
multiway cut match only up to the first decimal digit and thus the approximability of
this problem is far from resolved. Indeed, Angelidakis, Makarychev and Manurangsi
raise the question of whether the lower bound can be improved. In this work, we
improve on the lower bound by constructing an instance with integrality gap 1.20016.

Theorem 1 For every constant ε > 0, there exists an instance of multiway cut such
that the integrality gap of the CKR relaxation for that instance is at least 1.20016− ε.

The above result in conjunctionwith the result ofManokaran et al. immediately implies
that multiway cut is UGC-hard to approximate within a factor of 1.20016−ε for every
constant ε > 0.

One of the ingredients of our technique underlying the proof of Theorem 1 is a
generalization of a result on Sperner admissible labelings due to Mirzakhani and
Vondrák [10] that might be of independent combinatorial interest (see Theorem 6).

2 Background and result

Before outlining our techniques, we briefly summarize the background literature that
we build upon to construct our instance. We rely on two significant results from the
literature. In the context of the k-way cut problem and the CKR relaxation, a cut is
a function P : Δk → [k + 1] such that P(ei ) = i for all i ∈ [k], where we use the
notation [k] := {1, 2, . . . , k}. The use of k+1 labels as opposed to k labels to describe a
cut is slightly non-standard, but is useful for reasons thatwill become clear later on. The
approximation ratio τk(P)of a distributionP over cuts is givenby itsmaximumdensity:

τk(P) := sup
x,y∈Δk ,x �=y

PrP∼P (P(x) �=P(y))
(1/2)‖x−y‖1 .

Karger et al. [8] defined

τ ∗
k := infP τk(P),
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and moreover showed that there exists P that achieves the infimum. Hence, τ ∗
k =

minP τk(P). With this definition of τ ∗
k , Karger et al. [8] showed that for every ε > 0,

there is an instance of multiway cut with k terminals for which the integrality gap of
the CKR relaxation is at least τ ∗

k − ε. Thus, Karger et al.’s result reduced the problem
of constructing an integrality gap instance for multiway cut to proving a lower bound
on τ ∗

k .
Next, Angelidakis et al. [1] reduced the problem of lower bounding τ ∗

k further by
showing that it is sufficient to restrict our attention to non-opposite cuts as opposed
to all cuts. A cut P is a non-opposite cut if P(x) ∈ Support(x) ∪ {k + 1} for every
x ∈ Δk , where we use the notation Support(x) := {i ∈ [k] | xi �= 0}. LetΔk,n :=Δk ∩
((1/n)Z)k where (1/n)Z := {i/n | i ∈ Z}. For a distribution P over cuts, let

τk,n(P):= max
x,y∈Δk,n ,x �=y

PrP∼P (P(x) �= P(y))

(1/2)‖x − y‖1 , and

τ̃ ∗
k,n :=min{τk,n(P) : P is a distribution over non-opposite cuts}.

A lower bound on τ̃ ∗
k,n can be obtained by constructing a (k−1)-dimensional instance

that has large integrality gap against non-opposite cuts. Angelidakis, Makarychev and
Manurangsi showed that τ̃ ∗

k,n − τ ∗
K = O(kn/(K − k)) for all K > k as follows:

they construct a (K − 1)-dimensional instance that contains the (k − 1)-dimensional
instance achieving a gap of τ̃ ∗

k,n against non-opposite cuts on all its (k−1)-dimensional
faces. They show that the resulting (K − 1)-dimensional instance achieves a gap of
τ̃ ∗
k,n − O(kn/(K − k)) against all cuts by observing that every cut in ΔK ,n is non-
opposite on most of its (k − 1)-dimensional faces when K > nk.

Thus, in order to lower bound the integrality gap of theCKR relaxation formultiway
cut, it suffices to lower bound τ̃ ∗

k,n . That is, it suffices to construct an instance that has
large integrality gap against non-opposite cuts. As a central contribution, Angelidakis,
Makarychev and Manurangsi constructed an instance showing that τ̃ ∗

3,n ≥ 1.2 −
O(1/n). Now, by setting n = Θ(

√
K ), we see that τ ∗

K is at least 1.2 − O(1/
√
K ).

Furthermore, they also showed that their lower bound on τ̃ ∗
3,n is almost tight, i.e.,

τ̃ ∗
3,n ≤ 1.2.
We remark that τ̃ ∗

k,n can be greater than τ ∗
k and giving a lower bound for τ̃ ∗

k,n does
not immediately imply a lower bound on τ ∗

k . For instance τ ∗
3 = 12/11 whereas τ̃ ∗

3,n
can be arbitrarily close to 1.2.

The main technical challenge towards improving τ̃ ∗
4,n is that one has to deal with

the 3-dimensional simplex Δ4. Indeed, all known gap instances including that of
Angelidakis, Makarychev and Manurangsi are constructed using the 2-dimensional
simplex. In the 2-dimensional simplex, the properties of non-opposite cuts are easy to
visualize and their cut-values are convenient to characterize using simple geometric
observations. However, the values of non-opposite cuts in the 3-dimensional simplex
become difficult to characterize. Our main contribution is a simple argument based on
properties of lower-dimensional simplices that overcomes this technical challenge.We
construct a 3-dimensional instance that has gap larger than 1.2 against non-opposite
cuts.
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Theorem 2 τ̃ ∗
4,n ≥ 1.20016 − O(1/n).

Theorem 1 follows from Theorem 2 using the discussion above.

3 Outline of ideas

Let G = (V , E) be the graph with node set Δ4,n and edge set E4,n := {xy : x, y ∈
Δ4,n, ‖x − y‖1 = 2/n}, where the terminals are the four unit vectors. In order to
lower bound τ̃ ∗

4,n , we will come up with weights on the edges of G such that every
non-opposite cut has cost at least α = 1.20016 andmoreover the cumulative weight of
all edges is n + O(1). This suffices to lower bound τ̃ ∗

4,n by the following proposition.

Proposition 1 Suppose that there exist weights w : E4,n → R≥0 on the edges of G
such that every non-opposite cut has cost at least α and the cumulative weight of all
edges is n + O(1). Then, τ̃ ∗

4,n ≥ α − O(1/n).

Proof For an arbitrary distribution P over non-opposite cuts, we have

τk,n(P) = max
x,y∈Δk,n ,x �=y

PrP∼P (P(x) �= P(y))

(1/2)‖x − y‖1
≥ max

xy∈E4,n

PrP∼P (P(x) �= P(y))

(1/2)‖x − y‖1
= max

xy∈E4,n

PrP∼P (P(x) �= P(y))

1/n

≥
∑

xy∈E4,n

w(xy)PrP∼P (P(x) �= P(y))

(1/n)(
∑

e∈E4,n
w(e))

≥ α

1 + O(1/n)
= α − O(1/n),

where the last inequality follows from the hypothesis that every non-opposite cut has
cost at least α and the cumulative weight of all edges is n + O(1). ��

We obtain our weighted instance from four instances that have large gap against
different types of cuts, and then compute the convex combination of these instances
that gives the best gap against all non-opposite cuts.

All of our four instances are defined as edge-weights on the graph G = (V , E). We
identify Δ3,n with the facet of Δ4,n defined by x4 = 0. Our first three instances are
2-dimensional instances, i.e. only edges induced by Δ3,n have positive weight. The
fourth instance has uniform weight on E4,n .

We first explain the motivation behind Instances 1,2, and 4, since these are easy to
explain. Let (see Fig. 1)

Li j := {xy ∈ E4,n : Support(x),Support(y) ⊆ {i, j}}.
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Fig. 1 One face of the simplex
with edge-sets L12, L23 and L31

1. Instance 1 is simply the instance of Angelidakis et al. [1] onΔ3,n . It has gap 1.2− 1
n

against all non-opposite cuts, since non-opposite cuts inΔ4,n induce non-opposite
cuts on Δ3,n . Additionally, we show in Lemma2 that the gap is strictly larger than
1.2 by a constant if the following two conditions hold:

– there exist i, j ∈ [3] such that Li j contains only one edge whose end-nodes
have different labels (a cut with this property is called a non-fragmenting cut),
and

– Δ3,n has a lot of nodes with label 5.

2. Instance 2 has uniformweight on L12, L13 and L23, and 0 on all other edges. Here,
a cut in which each Li j contains at least two edges whose end-nodes have different
labels (a fragmenting cut) has large weight. Consequently, this instance has gap at
least 2 against such cuts.

3. Instance 4 has uniform weight on all edges in E4,n . A beautiful result due to
Mirzakhani and Vondrák [10] implies that non-opposite cuts with no node of label
5 have large weight. Consequently, this instance has gap at least 3/2 against such
cuts. We extend their result in Lemma1 to show that the weight remains large if
Δ3,n has few nodes with label 5.

At first glance, the arguments above seem to imply that a convex combination of
these three instances already gives a gap strictly larger than 1.2 for all non-opposite
cuts. However, there exist two non-opposite cuts such that at least one of them has
cost at most 1.2 in every convex combination of these three instances (see Sect. 7.1).
One of these two cuts is a fragmenting cut that has almost zero cost in Instance 4 and
the best possible cost, namely 1.2, in Instance 1. Instance 3 is constructed specifically
to boost the cost against this non-opposite cut. It has positive uniform weight on 3
equilateral triangles, incident to e1, e2 and e3 on the face Δ3,n . We call the edges of
these triangles red edges. The side length of these triangles is a parameter, denoted by
c, that is optimized at the end of the proof. Essentially, we show that if a non-opposite

123



Improving the integrality gap for multiway cut

cut has small cost both on Instance 1 and Instance 4 (i.e., weight 1.2 on Instance 1 and
O(1/n2) weight on Instance 4), then it must contain red edges.

Our lower bound of 1.20016 is obtained by optimizing the coefficients of the convex
combination and the parameter c. By Proposition 1 and the results of Angelidakis,
Makarychev and Manurangsi, we obtain that τ ∗

K ≥ 1.20016 − O(1/
√
K ), i.e., the

integrality gap of the CKR relaxation for k-way cut is at least 1.20016 − O(1/
√
k).

We complement our lower bound of 1.20016 by also showing that there exist non-
opposite cuts that achieve a factor of 1.20067 for convex combinations of our four
instances (see Sect. 7.2).

4 A 3-dimensional gap instance against non-opposite cuts

We will focus on the graph G = (V , E) with the node set V := Δ4,n being the
discretized 3-dimensional simplex and the edge set E4,n := {xy : x, y ∈ Δ4,n, ‖x −
y‖1 = 2/n}. The four terminals s1, . . . , s4 will be the four extreme points of the
simplex, namely si = ei for i ∈ [4]. In this context, a cut is a function P : V → [5]
such that P(si ) = i for all i ∈ [4]. The cut-set corresponding to P is defined as

δ(P) := {xy ∈ E4,n : P(x) �= P(y)}.

For a set S of nodes, we will also use δ(S) to denote the set of edges with exactly
one end node in S. Given a weight function w : E4,n → R+, the cost of a cut P is∑

e∈δ(P) w(e). Our goal is to come up with weights on the edges so that the resulting
4-way cut instance has gap at least 1.20016 against non-opposite cuts.

We recall that Li j denotes the boundary edges between terminals si and s j , i.e.,
Li j = {xy ∈ E4,n : Support(x),Support(y) ⊆ {i, j}}. We will denote the boundary
nodes between terminals si and s j as Vi j , i.e.,

Vi j := {
x ∈ Δ4,n : Support(x) ⊆ {i, j}} .

Let c ∈ (0, 1/2) be a constant to be fixed later, such that cn is integral. For each
i ∈ [3], we define node sets Ui , Ri , Closure(Ri ) and edge set Γi as follows:

Ui := {x ∈ Δ4,n : x4 = 0, xi = 1 − c},
Ri := Ui ∪ {x ∈ Vi j : xi ≥ 1 − c, j ∈ [3]\{i}},

Closure(Ri ) := {x ∈ Δ4,n : x4 = 0, xi ≥ 1 − c}, and

Γi := {
xy ∈ E4,n : x, y ∈ Ri

}
.

We will refer to the nodes in Ri as red1 nodes near terminal si and the edges in Γi as
the red edges near terminal si (see Fig. 2). Let Face(s1, s2, s3) denote the subgraph of
G induced by the nodes whose support is contained in {1, 2, 3}. We emphasize that

1 We use the term “red” as a convenient way for the reader to remember these nodes and edges. The exact
color is irrelevant.
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Fig. 2 Definition of red nodes
and edges near terminal s1.
Dashed part corresponds to
(R1, Γ1)

red edges and red nodes are present only in Face(s1, s2, s3) and that the total number
of red edges is exactly 9cn.

4.1 Gap instance as a convex combination

Our gap instance is a convex combination of the following four instances.

1. Instance I1: our first instance constitutes the 3-way cut instance constructed by
Angelidakis et al. [1] that has gap 1.2 against non-opposite cuts. To ensure that
the total weight of all the edges in their instance is exactly n, we will scale their
instance by 6/5. Let us denote the resulting instance as J . In I1, we simply use the
instance J on Face(s1, s2, s3) and set the weights of the rest of the edges in E4,n
to be zero.

2. Instance I2: in this instance, we set the weights of the edges in L12, L23, L13 to
be 1/3 and the weights of the rest of the edges in E4,n to be zero.

3. Instance I3: in this instance, we set the weights of the red edges to be 1/9c and
the weights of the rest of the edges in E4,n to be zero.

4. Instance I4: in this instance, we set the weight of every edge in E4,n to be 1/n2.

We note that the total weight of all edges in each of the above instances is n+O(1).
For multipliers λ1, . . . , λ4 ≥ 0 to be chosen later that will satisfy

∑4
i=1 λi = 1,

let the instance I be the convex combination of the above four instances, i.e., I =
λ1 I1 + λ2 I2 + λ3 I3 + λ4 I4. By the properties of the four instances, it immediately
follows that the total weight of all edges in the instance I is also n + O(1).

4.2 Gap of the convex combination

The following theorem is the main result of this section.

Theorem 3 For every n ≥ 10 and c ∈ (0, 1/2) such that cn is integer, every non-
opposite cut on I has cost at least the minimum of the following two terms:
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(i) λ2 + (1.2 − 1
n )λ1 + min

α∈
[
0, 12

] {
0.4αλ1 + 3

( 1
2 − α

)
λ4

}

(ii) 2λ2 + (1.2 − 5
2n )λ1 + 3min

{
2λ3
9c ,min

α∈
[
0, c

2
2

]
{
0.4αλ1 + 3

(
c2
2 − α

)
λ4

}}

Before proving Theorem 3, we see its consequence.

Corollary 1 There exist constants c ∈ (0, 1/2) and λ1, λ2, λ3, λ4 ≥ 0 with
∑4

i=1 λi =
1 such that the cost of every non-opposite cut in the resulting convex combination I is
at least 1.20016 − O(1/n).

Proof The corollary follows from Theorem 3 by setting λ1 = 0.751652, λ2 =
0.147852, λ3 = 0.000275, λ4 = 0.100221 and c = 0.074125 (this is the optimal
setting to achieve the largest lower bound based on Theorem 3). ��

Corollary1 in conjunction with Proposition 1 immediately implies Theorem 2.
The following theorem (shown in Sect. 7.2) complements Corollary1 by giving an

upper bound on the best possible gap that is achievable using the convex combination
of our four instances.

Theorem 4 For every constant c ∈ (0, 1/2) and every λ1, λ2, λ3, λ4 ≥ 0 with∑4
i=1 λi = 1, there exists a non-opposite cut whose cost in the resulting convex

combination I is at most 1.20067 + O(1/n).

In light of Corollary1 and Theorem 4, if we believe that the integrality gap of
the CKR relaxation is more than 1.20067, then considering convex combinations of
alternative instances is a reasonable approach towards proving this.

The rest of the section is devoted to proving Theorem 3. We rely on two main
ingredients in the proof. The first ingredient is a statement about non-opposite cuts
in the 3-dimensional discretized simplex. We prove this in Sect. 5, where we also
give a generalization to higher dimensional simplices, which might be of independent
interest.

Lemma 1 Let P be a non-opposite cut on Δ4,n with α(n + 1)(n + 2) nodes from
Face(s1, s2, s3) labeled as 1, 2, or 3 for someα ∈ [0, 1/2]. Then, |δ(P)| ≥ 3αn(n+1).

The constant 3 that appears in the conclusion of Lemma 1 is the best possible for
any fixed α (if n → ∞). To see this, consider the non-opposite cut P obtained by
labeling si to be i for every i ∈ [4], all nodes at distance at most

√
2α from s1 to be

1, and all remaining nodes to be 5. The number of nodes from Face(s1, s2, s3) labeled
as 1, 2, or 3 is αn2 + O(n). The number of edges in the cut is 3αn2 + O(n).

The second ingredient involves properties of the 3-way cut instance constructed
by Angelidakis et al. [1]; these are discussed in Sect. 6. We need two properties that
are summarized in Lemma2 and Corollary2. We define a cut Q : Δ3,n → [4] to be
a fragmenting cut if |δ(Q) ∩ Li j | ≥ 2 for every distinct i, j ∈ [3]; otherwise it is a
non-fragmenting cut. We recall that J denotes the instance obtained from the 3-way
cut instance of Angelidakis, Makarychev and Manurangsi by scaling it up by 6/5, so
the total edge-weight is exactly n.

The first property is that non-opposite non-fragmenting cuts in Δ3,n that label a
large number of nodes with label 4 have cost much larger than 1.2.
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Lemma 2 Let Q : Δ3,n → [4] be a non-opposite cut with αn2 nodes labeled as 4 for
some α ∈ [0, 1/2]. If Q is a non-fragmenting cut and n ≥ 10, then the cost of Q on
J is at least 1.2 + 0.4α − 1

n .

Due to space limitations, the proof of Lemma2 is presented in the online supple-
ment. The proof involves modifying Q to obtain a non-opposite cut Q′ while reducing
its cost by 0.4α. By the main result of [1], the cost of every non-opposite cut Q′ on J is
at least 1.2− 1

n . Therefore, it follows that the cost of Q on J is at least 1.2− 1
n +0.4α.

We emphasize that while it might be possible to improve the constant 0.4 that appears
in the conclusion of Lemma 2, it does not lead to much improvement on the overall
integrality gap as illustrated by the results in Sect. 7.2.

The second property is that non-opposite cuts which do not remove any of the red
edges, but label a large number of nodes in the red region with label 4 have cost much
larger than 1.2.

Corollary 2 Let Q : Δ3,n → [4] be a non-opposite cut and n ≥ 10. For each i ∈ [3],
let

Ai :=
{

{v ∈ Closure(Ri ) : Q(v) = 4} if δ(Q) ∩ Γi = ∅,

∅ otherwise.

Then, the cost of Q on J is at least 1.2 + 0.4
∑3

i=1 |Ai |/n2 − 5
2n .

In order to show Corollary2, we first derive that the cost of the edges δ(∪3
i=1Ai )

in the instance J is at least 0.4
∑3

i=1 |Ai |/n2 − 3
2n using Lemma2. Next, we modify

Q to obtain a non-opposite cut Q′ such that δ(Q′) = δ(Q)\δ(∪3
i=1Ai ). By the main

result of [1], the cost of every non-opposite cut Q′ on J is at least 1.2− 1
n . Therefore,

it follows that the cost of Q on J is at least 1.2 + 0.4
∑3

i=1 |Ai |/n2.
We now have the ingredients to prove Theorem 3.

Proof of Theorem 3 Let P : Δ4,n → [5] be a non-opposite cut. Let Q be the cut P
restricted to Face(s1, s2, s3), i.e., for every v ∈ Δ4,n with Support(v) ⊆ [3], let

Q(v) :=
{
P(v) if P(v) ∈ {1, 2, 3},
4 if P(v) = 5.

We consider two cases.

Case 1: Q is a non-fragmenting cut. Let the number of nodes in Face(s1, s2, s3) that
are labeled by Q as 4 (equivalently, labeled by P as 5) be α(n + 1)(n + 2) for some
α ∈ [

0, 1
2

]
. Since |{x ∈ Face(s1, s2, s3) : Q(x) = 4}| ≥ αn2, Lemma2 implies that

the cost of Q on J , and hence the cost of P on I1, is at least 1.2+0.4α− 1
n . Moreover,

the cost of P on I2 is at least 1 since at least one edge in Li j should be in δ(P) for
every pair of distinct i, j ∈ [3]. To estimate the cost on I4, we observe that the number
of nodes on Face(s1, s2, s3) labeled by P as 1, 2, or 3 is (1/2− α)(n + 1)(n + 2). By
Lemma1, we have that |δ(P)| ≥ 3(1/2 − α)n(n + 1) and thus, the cost of P on I4 is
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at least 3(1/2 − α). Therefore, the cost of P on the convex combination instance I is
at least

λ2 +
(
1.2 − 1

n

)
λ1 + min

α∈
[
0, 12

]

{
0.4αλ1 + 3

(
1

2
− α

)
λ4

}
.

Case 2: Q is a fragmenting cut. Then, the cost of P on I2 is at least 2 as a fragmenting
cut contains at least 2 edges from each Li j for distinct i, j ∈ [3].

We will now compute the cost of P on the other instances. Let r := |{i ∈ [3] :
δ(P) ∩ Γi �= ∅}|, i.e., r is the number of red triangles that are intersected by the cut
P . We will derive lower bounds on the cost of the cut in each of the three instances
I1, I3 and I4 based on the value of r ∈ {0, 1, 2, 3}. For each i ∈ [3], let

Ai :=
{

{v ∈ Closure(Ri ) : P(v) = 5} if δ(P) ∩ Γi = ∅,

∅ otherwise,

and let α := |A1 ∪ A2 ∪ A3|/((n + 1/c)(n + 2/c)). Since c < 1/2, the sets Ai

and A j are disjoint for distinct i, j ∈ [3]. We note that α ∈ [0, (3 − r)c2/2] since
|Ai | ≤ (cn + 1)(cn + 2)/2 and Ai ∩ A j = ∅.

In order to lower bound the cost of P on I1, we will use Corollary2. We recall that
Q is the cut P restricted to Face(s1, s2, s3), so the cost of P on I1 is the same as the
cost of Q on J . Moreover, by Corollary2, the cost of Q on J is at least 1.2+0.4α− 5

2n ,

because α ≤ ∑3
i=1 |Ai |/n2. Hence, the cost of P on I1 is at least 1.2 + 0.4α − 5

2n .
The cost of P on I3 is at least 2r/9c by the following claim.

Claim 1 Let i ∈ [3]. If δ(P) ∩ Γi �= ∅, then |δ(P) ∩ Γi | ≥ 2.

Proof The subgraph (Ri , Γi ) is a cycle. If P(x) �= P(y) for some xy ∈ Γi , then the
path Γi − xy must also contain two consecutive nodes labeled differently by P . ��

Next we compute the cost of P on I4. If r = 3, then the cost of P on I4 is at least
0. Suppose r ∈ {0, 1, 2}. For a red triangle i ∈ [3] with δ(P) ∩ Γi = ∅, we have at
least (cn + 1)(cn + 2)/2− |Ai | nodes from Closure(Ri ) that are labeled as 1, 2, or 3.
Moreover, the nodes inClosure(Ri ) andClosure(R j ) are disjoint for distinct i, j ∈ [3].
Hence, the number of nodes in Face(s1, s2, s3) that are labeled as 1, 2, or 3 is at least
(3−r)(cn+1)(cn+2)/2−α(n+1/c)(n+2/c) = ((3−r)c2/2−α)(n+1/c)(n+2/c),
which is at least ((3−r)c2/2−α)(n+1)(n+2), since c ≤ 1. Therefore, by Lemma1,
we have |δ(P)| ≥ 3((3 − r)c2/2 − α)n2 and thus, the cost of P on I4 is at least
3((3 − r)c2/2 − α).

Thus, the cost of P on the convex combination instance I is at least 2λ2 + (1.2 −
5
2n )λ1 + γ (r , α) for some α ∈ [0, (3 − r)c2/2], where

γ (r , α) :=
{ 6λ3

9c , if r = 3,

0.4αλ1 + 2r
9cλ3 + 3

(
(3−r)c2

2 − α
)

λ4, if r ∈ {0, 1, 2}.

In particular, the cost of P on the convex combination instance I is at least 2λ2 +
(1.2 − 5/(2n))λ1 + γ ∗, where
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γ ∗ := min
r∈{0,1,2,3} min

α∈
[
0, (3−r)c2

2

] γ (r , α).

Now, Claim2 completes the proof of the theorem. ��
Claim 2

γ ∗ ≥ 3min

⎧
⎨

⎩
2λ3
9c

, min
α∈

[
0, c

2
2

]

{
0.4αλ1 + 3

(
c2

2
− α

)
λ4

}⎫
⎬

⎭ .

Proof Let γ (r) := minα∈[0,(3−r)c2/2] γ (r , α). If r = 3, then the claim is clear. We
consider the three remaining cases.

1. Say r = 0. Then,

γ (0) = min
α∈

[
0, 3c

2
2

]

{
0.4αλ1 + 3

(
3c2

2
− α

)
λ4

}

= 3 min
α∈

[
0, c

2
2

]

{
0.4αλ1 + 3

(
c2

2
− α

)
λ4

}
.

2. Say r = 1. Then,

γ (1) = min
α∈[0,c2]

{
0.4αλ1 + 2

9c
λ3 + 3

(
c2 − α

)
λ4

}

= 2

9c
λ3 + min

α∈
[
0, c

2
2

]
{
2 · 0.4αλ1 + 3

(
c2 − 2α

)
λ4

}

= 2

9c
λ3 + 2 min

α∈
[
0, c

2
2

]

{
0.4αλ1 + 3

(
c2

2
− α

)
λ4

}

≥ 3min

⎧
⎨

⎩
2λ3
9c

, min
α∈

[
0, c

2
2

]

{
0.4αλ1 + 3

(
c2

2
− α

)
λ4

}⎫
⎬

⎭ ,

where the last inequality is from the identity x+2y ≥ 3min{x, y} for all x, y ∈ R.
3. Say r = 2. Then,

γ (2) = min
α∈

[
0, c

2
2

]

{
0.4αλ1 + 4

9c
λ3 + 3

(
c2

2
− α

)
λ4

}

= 4

9c
λ3 + min

α∈
[
0, c

2
2

]

{
0.4αλ1 + 3

(
c2

2
− α

)
λ4

}

≥ 3min

⎧
⎨

⎩
2λ3
9c

, min
α∈

[
0, c

2
2

]

{
0.4αλ1 + 3

(
c2

2
− α

)
λ4

}⎫
⎬

⎭ ,
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where the last inequality is from the identity 2x+ y ≥ 3min{x, y} for all x, y ∈ R.

��

5 Size of non-opposite cuts in1k,n

In this section, we prove Lemma1. In fact, we prove a general result forΔk,n , that may
be useful for obtaining improved bounds by considering higher dimensional simplices.
Our result is an extension of a theorem of Mirzakhani and Vondrák [10] on Sperner
admissible labelings.

A labeling � : Δk,n → [k] is Sperner admissible if �(x) ∈ Support(x) for every
x ∈ Δk,n . We say that x ∈ Δk,n has an inadmissible label if �(x) /∈ Support(x). Let
Hk,n denote the hypergraph whose node set is Δk,n and whose hyperedge set is

E :=
{{

n − 1

n
x + 1

n
e1,

n − 1

n
x + 1

n
e2, . . . ,

n − 1

n
x + 1

n
ek

}
: x ∈ Δk,n−1

}
.

Each hyperedge e ∈ E has k nodes, and if x, y ∈ e, then there exist distinct i, j ∈ [n]
such that x − y = 1

n ei − 1
n e j . We remark that Hk,n has

(n+k−1
k−1

)
nodes and

(n+k−2
k−1

)

hyperedges. Geometrically, the hyperedges correspond to simplices that are translates
of each other and share at most one node. Given a labeling �, a hyperedge of Hk,n is
monochromatic if all of its nodes have the same label.Mirzakhani andVondrák showed
that a Sperner admissible labeling of Hk,n does not have too many monochromatic
hyperedges,which implies that the number of non-monochromatic hyperedges is large.

Theorem 5 (Proposition 2.1 in [10]) Let � be a Sperner admissible labeling of Δk,n.
Then, the number of monochromatic hyperedges in Hk,n is at most

(n+k−3
k−1

)
, and

therefore the number of non-monochromatic hyperedges is at least
(n+k−3

k−2

)
.

Our main result of this section is an extension of the above result to the case when
there are some inadmissible labels on a single face of Δk,n . We show that a labeling
in which all inadmissible labels are on a single face still has a large number of non-
monochromatic hyperedges. We will denote the nodes x ∈ Δk,n with Support(x) ⊆
[k − 1] as Face(s1, . . . , sk−1).

Theorem 6 Let � be a labeling of Δk,n such that all nodes with an inadmissible label
have label k and the number of such nodes is β

(n+k−2)!
n! for some β ∈ [0, 1/(k − 2)!].

Then, the number of non-monochromatic hyperedges of Hk,n is at least

(
1

(k − 2)! − β

)
(n + k − 3)!

(n − 1)! .

Proof Let Z := {x ∈ Face(s1, . . . , sk−1) : �(x) = k}, i.e. Z is the set of nodes having
an inadmissible label. Let us call a hyperedge of Hk,n inadmissible if the label of one
of its nodes is inadmissible.

Claim 3 There are at most β (n+k−3)!
(n−1)! inadmissible monochromatic hyperedges.
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Proof Let E ′ be the set of inadmissible monochromatic hyperedges. Each hyperedge
e ∈ E ′ has exactly k−1 nodes fromFace(s1, . . . , sk−1) and they all have the same label
as e is monochromatic. Thus, each e ∈ E ′ contains k − 1 nodes from Z . We define an
injective map ϕ : E ′ → Z by letting ϕ(e) to be the node x ∈ e∩ Z with the largest 1st
coordinate. Notice that if x = ϕ(e), then the other nodes of e are x−(1/n)e1+(1/n)ei
(i = 2, . . . , k), and all but the last one are in Z . In particular, x1 is positive.

Let Z ′ ⊆ Z be the image of ϕ. For x ∈ Z and i ∈ {2, . . . , k − 1}, let
Zi
x := {y ∈ Z : y j = x j ∀ j ∈ [k − 1]\{1, i}}.

Since yk = 0 and ‖y‖1 = 1 for every y ∈ Z , the nodes of Zi
x are on a line containing

x . It also follows that Zi
x ∩ Z j

x = {x} if i �= j . Let

Z ′′ := {x ∈ Z : ∃i ∈ {2, . . . , k − 1} such that xi ≥ yi ∀y ∈ Zi
x }.

We observe that if x ∈ Z ′, then for each i ∈ {2, . . . , k − 1}, the node y = x −
(1/n)e1 + (1/n)ei is in Z and hence, y ∈ Zi

x with yi > xi . In particular, this implies
that Z ′ ∩ Z ′′ = ∅. We now compute an upper bound on the size of Z\Z ′′, which gives
an upper bound on the size of Z ′ and hence also on the size of E ′, as |Z ′| = |E ′|. For
each node x ∈ Z\Z ′′ and for every i ∈ {2, . . . , k − 1}, let zix be the node in Z ′′ ∩ Zi

x

with the largest i th coordinate. Clearly zix �= z jx if i �= j , because Zi
x ∩ Z j

x = {x}.
For given y ∈ Z ′′ and i ∈ {2, . . . , k − 1}, we want to bound the size of S := {x ∈

Z\Z ′′ : zix = y}. Consider a ∈ S. Then, zia = y implies that the node in Z ′′ ∩ Zi
a

with the largest i th coordinate is y. That is, y j = a j for all j ∈ [k − 1]\{1, i} and
moreover yi ≥ ai . If yi = ai , then y = a, so a is in Z ′′ which contradicts a ∈ S.
Thus, yi > ai for any a ∈ S, i.e. the nodes in S are on the line Zi

y and their i th
coordinate is strictly smaller than yi . This implies that |S| ≤ nyi . Consequently, the
size of the set {x ∈ Z\Z ′′ : y = zix for some i ∈ {2, . . . , k − 1}} is at most n, since∑k−2

i=2 yi ≤ ‖y‖1 = 1.
For each x ∈ Z\Z ′′, we defined k−2 distinct nodes z2x , . . . , z

k−1
x ∈ Z ′′. Moreover,

for each y ∈ Z ′′, we have at most n distinct nodes x in Z\Z ′′ for which there exists
i ∈ {2, . . . , k − 1} such that y = zix . Hence, (k − 2)|Z\Z ′′| ≤ n|Z ′′|, and therefore
|Z\Z ′′| ≤ (n/(n + k − 2))|Z |. This gives

|E ′| = |Z ′| ≤ |Z\Z ′′| ≤ n

n + k − 2
|Z |

≤ β
(n + k − 2)!

n!
n

n + k − 2
= β

(n + k − 3)!
(n − 1)! ,

as required. ��
Let �′ be a Sperner admissible labeling obtained from � by changing the label

of each node in Z to an arbitrary admissible label. By Theorem 5, the number of
monochromatic hyperedges for �′ is at most

(n+k−3
k−1

)
. By combining this with the

claim, we get that the number of monochromatic hyperedges for � is at most
(n+k−3

k−1

)+
β

(n+k−3)!
(n−1)! . Since Hk,n has

(n+k−2
k−1

)
hyperedges, the number of non-monochromatic

hyperedges is at least
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(
n + k − 2

k − 1

)
−

(
n + k − 3

k − 1

)
− β

(n + k − 3)!
(n − 1)! =

(
n + k − 3

k − 2

)
− β

(n + k − 3)!
(n − 1)!

=
(

1

(k − 2)! − β

)
(n + k − 3)!

(n − 1)! .

��
We note that Theorem 6 is tight for the extreme cases where β = 0 and β =

1/(k − 2)!.
We now derive Lemma1 from Theorem 6. We restate Lemma1 for convenience.

Lemma 1 Let P be a non-opposite cut on Δ4,n with α(n + 1)(n + 2) nodes from
Face(s1, s2, s3) labeled as 1, 2, or 3 for someα ∈ [0, 1/2]. Then, |δ(P)| ≥ 3αn(n+1).

Proof Let � be the labeling of Δ4,n obtained from P by setting �(x) = 4 if P(x) = 5,
and �(x) = P(x) otherwise. This is a labeling with ( 12 −α)(n+1)(n+2) nodes having
an inadmissible label, all with label 4. We apply Theorem 6 with parameters k = 4,
β = 1

2 − α, and the labeling �. By the theorem, the number of non-monochromatic
hyperedges in H4,n = (Δ4,n, E) under labeling � is at least αn(n + 1).

We observe that for each hyperedge e = {u1, u2, u3, u4} ∈ E , the subgraph G[e]
induced by the nodes in e contains 6 edges. Also, for any two hyperedges e1 and e2,
the edges in the induced subgraphs G[e1] and G[e2] are disjoint as e1 and e2 can share
at most one node. Moreover, for each non-monochromatic hyperedge e ∈ E , at least 3
edges of G[e] are in δ(P). Thus, the number of edges of G that are in δ(P) is at least
3αn(n + 1). ��

6 Properties of the 3-way cut instance in [1]

In this section, we prove certain properties of the gap instance in [1]. We will use
these properties to prove Lemma2—due to space limitations, we present the proof of
Lemma2 in the online supplement. Next, we derive Corollary2 from Lemma2.

6.1 The gap instance in [1]

In this section, we summarize the relevant background about the gap instance against
non-opposite 3-way cuts designed byAngelidakis et al. [1]. For our purposes, we scale
the costs of their instance by a factor of 6/5 as it will be convenient to work with them.
We describe this scaled instance now.

Let G = (Δ3,n, E3,n) where E3,n := {xy : x, y ∈ Δ3,n, ‖x − y‖1 = 2/n}. Their
instance is obtained by dividing Δ3,n into a middle hexagon H := {x ∈ Δ3,n : xi ≤
2/3 ∀ i ∈ [3]} and three corner triangles T1, T2, T3, where Ti := {x ∈ Δ3,n : xi >

2/3}. To define the edge costs, we let ρ := 3/(5n). The cost of the edges in G[H ] is
ρ. The cost of the non-boundary edges in G[Ti ] that are not parallel to the opposite
side of ei is also ρ. The cost of the non-boundary edges in G[Ti ] that are parallel to the
opposite side of ei are zero. The cost of the boundary edges in Li j are as follows: the
edge closest to ei has cost (n/3)ρ, the second closest edge to ei has cost (n/3−1)ρ, and

123



K. Bérczi et al.

Fig. 3 The instance in [1] for
n = 9

so on. See Fig. 3 for an example. We will denote the resulting graph with edge-costs
as J . The cost of a subset F of edges on the instance J is CostJ (F) := ∑

e∈F w(e).
For a subset of edges F ⊂ E3,n , let G − F denote the graph (Δ3,n, E3,n\F). We

need the following two results about their instance. The first result shows that the cost
of non-opposite cuts on their instance is at least 1.2.

Lemma 3 [1] For every non-opposite cut Q : Δ3,n → [4], the cost of Q on instance
J is at least 1.2 − 1

n .

The second result shows that if we remove a set of edges to ensure that a terminal
si cannot reach any node in the opposite side Vjk , then the cost of such a subset of
edges is at least 0.4.

Lemma 4 For {i, j, k} = [3] and for every subset F of edges in E3,n such that si
cannot reach Vjk in G − F, the cost of F on instance J is at least 0.4 − ( 1n )/3.

Although Lemma4 is not explicitly stated in [1], its proof appears under Case 1 in the
Proof of Lemma3 of [1]. The factor 0.4 that we have here is because we scaled their
costs by a factor of 6/5.

We next define non-oppositeness as a property of the cut-set as it will be convenient
to work with this property for cut-sets rather than for cuts.

Definition 1 A set F ⊆ E3,n of edges is a non-opposite cut-set if there is no path from
s1 to V23 in G − F , no path from s2 to V13 in G − F , and no path from s3 to V12 in
G − F .

We summarize the connection between non-opposite cut-sets and non-opposite
cuts.

Proposition 2

(i) If Q : Δ3,n → [4] is a non-opposite cut, then δ(Q) is a non-opposite cut-set.
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(ii) For every non-opposite cut-set F ⊆ E3,n, the cost of F on instance J is at least
1.2 − 1

n .

Proof (i) Suppose not. Without loss of generality, suppose there exists a path from s1
to V23 in G − δ(Q). Then, by the definition of δ(Q), all nodes of the path have the
same label, so there exists a node u ∈ V23 that is labeled as 1, contradicting the
fact that Q is a non-opposite cut.

(ii) Consider a labeling L : Δ3,n → [4] where L = i if the node v is reachable from
terminal si in G − F and L(v) = 4 if the node v is reachable from none of the
three terminals in G − F . Since F is a non-opposite cut-set, it follows that � is a
non-opposite cut. Moreover, δ(L) ⊆ F . Therefore, the claim follows by Lemma3.

��
We defer the proof of Lemma2 to the online supplement of this article.

6.2 Proof of Corollary 2

We restate and prove Corollary2 now.

Corollary 2 Let Q : Δ3,n → [4] be a non-opposite cut and n ≥ 10. For each i ∈ [3],
let

Ai :=
{

{v ∈ Closure(Ri ) : Q(v) = 4} if δ(Q) ∩ Γi = ∅,

∅ otherwise.

Then, the cost of Q on J is at least 1.2 + 0.4
∑3

i=1 |Ai |/n2 − 5
2n .

Proof Let A := A1 ∪ A2 ∪ A3. We will show that CostJ (δ(A)) is at least
0.4

∑3
i=1 |Ai |/n2 − 3/(2n) and that there exists a non-opposite cut Q′ satisfying

δ(Q′) = δ(Q)\δ(A). By Lemma3, CostJ (δ(Q′)) ≥ 1.2 − 1/n and the corollary
follows.

We first show a lower bound on the total cost of the edges in δ(A).

Claim 4 CostJ (δ(A)) ≥ 0.4
∑3

i=1 |Ai |/n2 − 3
2n .

Proof We will consider a specific non-opposite non-fragmenting cut to give a lower
bound on the cost of δ(A) on J . Let Q0 be defined as follows (see Fig. 4):

Q0(x) :=

⎧
⎪⎨

⎪⎩

1 if x1 ≥ 1/2,

2 if x1 < 1/2, x2 ≥ 1/2,

3 otherwise.

Then, each edge in δ(Q0) has a cost of 1.2/(2n) and the number of edges in δ(Q0)

is 2n + 1. Hence, CostJ (δ(Q0)) ≤ 1.2 + 1/(2n). Moreover, Q0 is a non-opposite
non-fragmenting cut. We now combine δ(A) and δ(Q0) into a single cut by defining

Q′
0(x) :=

{
Q0(x) if x /∈ A,

4 otherwise.
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Fig. 4 The labeling Q0

We observe that Q′
0 is a non-opposite cut as it is obtained from a non-opposite

cut by relabeling a subset of nodes that lie in the strict interior of Closure(Ri ) as 4.
As Ai �= ∅ implies δ(Ai ) ∩ Γi = ∅, we have that δ(Q′

0) intersects each side of the
triangle the same number of times as δ(Q0). That is, Q′

0 is also a non-fragmenting
cut. Therefore, we can apply Lemma 2 for Q′

0. The number of nodes labeled by Q′
0

as 4 is exactly |A|. Hence,

CostJ (δ(Q
′
0)) ≥ 1.2 − 1

n
+ 0.4

|A|
n2

.

By Q0(v) = i for each v ∈ Closure(Ri ) and by δ(Ai ) ∩ Γi = ∅ for i ∈ [3], we have
δ(Q′

0) = δ(A) ∪ δ(Q0), implying

CostJ (δ(A)) + CostJ (δ(Q0)) ≥ CostJ (δ(A) ∪ δ(Q0))

= CostJ (δ(Q
′
0)) ≥ 1.2 − 1

n
+ 0.4

|A|
n2

.

We recall that CostJ (δ(Q0)) ≤ 1.2 + 1/(2n). Hence, CostJ (δ(A)) ≥ 0.4|A|/n2 −
3/(2n). ��

Let K ⊆ [3] denote the set of indices i for which δ(Q) ∩ Γi = ∅ and let Q′ be a
labeling obtained from Q by setting

Q′(v) :=
{
i if v ∈ Closure(Ri ) for some i ∈ K ,

Q(v) otherwise.

Claim 5 Q′ is a non-opposite cut with

CostJ (δ(Q
′)) ≤ CostJ (δ(Q)) − CostJ (δ(A)).
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Proof The cut Q is non-opposite and Q′(v) ∈ Support(v) for each relabeled node v,
hence Q′ is also a non-opposite cut. For any index i ∈ K , δ(Q) ∩ Γi = ∅ implies
Q(v) = i for v ∈ Ri . Thus, we have δ(Q′) ⊆ δ(Q)\δ(A) and the claim follows. ��

As Q′ is a non-opposite cut, Lemma3 implies CostJ (δ(Q′)) ≥ 1.2 − 1/n. By
Claim 4, CostJ (δ(A)) ≥ 0.4

∑3
i=1 |Ai |/n2 − 3/(2n). These together with Claim 5

imply that CostJ (δ(Q)) ≥ 1.2 − 5/(2n) + 0.4
∑3

i=1 |Ai |/n2, finishing the proof of
the corollary. ��

7 Limitations of our instances

In this section, we will show two results. In Sect. 7.1, we will show that instances I1,
I2 and I4 are insufficient to obtain a gap better than 1.2. This result also motivates
our choice of instance I3. In Sect. 7.2, we will show that instances I1, I2, I3 and I4
are insufficient to obtain a gap better than 1.20067, thus exhibiting a limitation of our
choice of instance I3.

7.1 Insufficiency of instances I1, I2 and I4 to beat 1.2

In this section, we will show that convex combinations of instances I1, I2 and I4 are
insufficient to obtain an instance which has gap larger than 1.2 against non-opposite
cuts. For this, we will exhibit two non-opposite cuts P and P ′ such that at least one of
themwill have cost at most 1.2 in every convex combination of instances I1, I2 and I4.

1. Consider the cut Q0 in Δ3,n defined in the proof of Claim4. Extend it to a cut P
in Δ4,n as follows:

P(x) :=
{
Q0(x) if x4 = 0,

4 if x4 > 0.

Then, P is a non-opposite cutwith the cost of P on I1, I2 and I4 being 1.2+O(1/n),
1 and 1.5+O(1/n2) respectively. Hence, the cost of P on the convex combination
λ1 I1 + λ2 I2 + λ4 I4 is at most 1.2λ1 + λ2 + 1.5λ4 + O(1/n).

2. Consider the cut P ′ in Δ4,n defined as follows:

P ′(x) :=
{
i if x = ei ,

5 otherwise.

Then, P ′ is a non-opposite cut with the costs of P ′ on I1, I2 and I4 being 1.2,
2 and O(1/n2) respectively. Hence, the cost of P ′ on the convex combination
λ1 I1 + λ2 I2 + λ4 I4 is at most 1.2λ1 + 2λ2 + O(1/n2).

Consequently, for every convex combination defined by λ1, λ2, λ4, there exists a non-
opposite cut whose cost on the convex combination instance λ1 I1 + λ2 I2 + λ4 I4 is at
most

min {1.2λ1 + λ2 + 1.5λ4, 1.2λ1 + 2λ2} + O(1/n).
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The following claim shows that the above expression is at most 1.2 + O(1/n2) for
every convex combination.

Claim 6 For every λ1, λ2, λ4 ≥ 0 with λ1 + λ2 + λ4 = 1, we have

min {1.2λ1 + λ2 + 1.5λ4, 1.2λ1 + 2λ2} ≤ 1.2.

Proof For the sake of contradiction, suppose that the claim is false. Then, both expres-
sions are greater than 1.2.

1. We have 1.2λ1+λ2+1.5λ4 > 1.2 which implies that λ2+1.5λ4 > 1.2(1−λ1) =
1.2λ2 + 1.2λ4. Hence, 3λ4 > 2λ2.

2. Wehave1.2λ1+2λ2 > 1.2,which implies that 2λ2 > 1.2(1−λ1) = 1.2λ2+1.2λ4.
Hence, 2λ2 > 3λ4, a contradiction.

��
We emphasize that instance I3 is constructed specifically to boost the cost against

the non-opposite cut P ′.

7.2 Limitation of instances I1, I2, I3, and I4

In this section, we will show that convex combinations of instances I1, I2, I3, and
I4 are insufficient to obtain an instance which has gap larger than 1.20067 against
non-opposite cuts.

Proof of Theorem 4 To show this, we exhibit three non-opposite cuts P1, P2 and P3
such that at least one of them will have cost at most 1.20067 + O(1/n) in every
convex combination of instances I1, I2, I3, and I4.

1. P1 is same as the non-opposite cut P defined in Sect. 7.1. The cost of P1 on
instances I1, I2, I3, and I4 are 1.2+O(1/n), 1, 0, and 1.5+O(1/n2) respectively.
Consequently, the cost of P1 on the convex combination λ1 I1+λ2 I2+λ3 I3+λ4 I4
is at most 1.2λ1 + λ2 + 1.5λ4 + O(1/n).

2. P2 is same as the non-opposite cut P ′ defined in Sect. 7.1. The cost of P2 on
I1, I2, I3, and I4 are 1.2, 2, 6/9c, and O(1/n2) respectively. Consequently, the
cost of P2 on the convex combination λ1 I1 + λ2 I2 + λ3 I3 + λ4 I4 is at most
1.2λ1 + 2λ2 + 6

9cλ3 + O(1/n2).
3. Let P3 be defined as follows:

P3(x) :=

⎧
⎪⎨

⎪⎩

4 if x = e4,

i if x4 = 0, xi ≥ 1 − c, i ∈ {1, 2, 3},
5 otherwise.

Then, P3 is a non-opposite cut with the cost of P3 on I2, I3, and I4 being 2, 0,
and 9c2/2 + O(1/n) respectively. Moreover, if c < 1/9, then cost of P3 on
I1 is 1.2. Hence, if c < 1/9, then the cost of P3 on the convex combination
λ1 I1 + λ2 I2 + λ3 I3 + λ4 I4 is at most 1.2λ1 + 2λ2 + (9c2/2)λ4 + O(1/n).
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Consequently, there exists a non-opposite cut on instance λ1 I1 + λ2 I2 + λ3 I3 + λ4 I4
whose cost is at most

min

{
1.2λ1 + λ2 + 1.5λ4, 1.2λ1 + 2λ2 + 6

9c
λ3

}
+ O(1/n) if c ≥ 1/9 and

min

{
1.2λ1 + λ2 + 1.5λ4, 1.2λ1 + 2λ2 + 6

9c
λ3, 1.2λ1 + 2λ2 + 9c2

2
λ4

}

+ O(1/n) if c < 1/9.

The following claim shows that the above terms are at most 1.20067 + O(1/n) for
every convex combination, thus completing the proof of the theorem. ��
Claim 7 For every λ1, λ2, λ3, λ4 ≥ 0 with λ1 + λ2 + λ3 + λ4 = 1, we have

1. min
{
1.2λ1 + λ2 + 1.5λ4, 1.2λ1 + 2λ2 + 6

9cλ3
} ≤ 1.2 if c ≥ 1/9, and

2. min
{
1.2λ1 + λ2 + 1.5λ4, 1.2λ1 + 2λ2 + 6

9cλ3, 1.2λ1 + 2λ2 + 9c2
2 λ4

}
≤

1.20067 if c < 1/9.

Proof Minimum of a set of values is at most the convex combination of the values.

1. Suppose c ≥ 1/9. Then,

min

{
1.2λ1 + λ2 + 1.5λ4, 1.2λ1 + 2λ2 + 6

9c
λ3

}

≤ 0.8(1.2λ1 + λ2 + 1.5λ4) + 0.2

(
1.2λ1 + 2λ2 + 6

9c
λ3

)

= 1.2λ1 + 1.2λ2 + 1.2λ4 + 1.2

9c
λ3

≤ 1.2λ1 + 1.2λ2 + 1.2λ4 + 1.2λ3 (since c ≥ 1/9)

= 1.2.

The last equality above is because λ1 + λ2 + λ3 + λ4 = 1.
2. Suppose c < 1/9. Let

β := max

{
3 − 9c2/2

2.5 − 9c2/2 + 27c3/4
: 0 ≤ c <

1

9

}
.

Then, it is straightforward toverify that 1.2 ≤ β ≤ 1.20067. For c < 1/9, it follows
that β(1 − 3c/2) ≥ 1. Hence, the multipliers (2 − β), 3cβ/2, β − 3cβ/2 − 1 are
non-negative and sum to one. Therefore,

min

{
1.2λ1 + λ2 + 1.5λ4, 1.2λ1 + 2λ2 + 6

9c
λ3, 1.2λ1 + 2λ2 + 9c2

2
λ4

}

≤ (2 − β)(1.2λ1 + λ2 + 1.5λ4) +
(
3cβ

2

) (
1.2λ1 + 2λ2 + 6

9c
λ3

)
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+
(

β − 3cβ

2
− 1

) (
1.2λ1 + 2λ2 + 9c2

2
λ4

)

= 1.2λ1 + βλ2 + βλ3 +
(
3 − 9c2

2
− β

(
1.5 − 9c2

2
+ 27c3

4

))
λ4

≤ 1.2λ1 + βλ2 + βλ3 + βλ4 (1)

≤ β

≤ 1.20067. (2)

Inequality (1) follows from the definition of β and inequality (2) follows from the
fact that 1.2 ≤ β and λ1 + λ2 + λ3 + λ4 = 1.

��

8 Conclusion

In this work, we improve the integrality gap of the CKR relaxation for multiway cut
to 1.20016. This immediately implies that multiway cut does not admit a (1.20016−
ε)-approximation for any constant ε > 0 assuming the unique games conjecture.
Our main contribution is a 3-dimensional instance that has a gap of 1.20016 against
non-opposite cuts. Our 3-dimensional instance is a convex combination of a uniform
3-dimensional instance and carefully constructed 2-dimensional instances.We are able
to analyze the integrality gap of the convex combination by generalizing a result on
Sperner admissible labelings due to Mirzakhani and Vondrák. Moreover, we illustrate
the limitations of our ingredient instances in the convex combination by showing
that there exist non-opposite cuts that achieve a factor of 1.20067 for every convex
combination of our four instances.

We note that our generalized result on Sperner admissible labelings holds for arbi-
trary dimensions. We believe that this generalized result could be helpful in improving
the integrality gap further. In particular, it would be interesting to find the best possi-
ble gap that can be achieved using 3-dimensional instances against non-opposite cuts.
We note that Angeledakis, Makarychev, and Manurangsi’s gap instance achieve the
best possible gap for 2-dimensional instances against non-opposite cuts [1]. A natural
approach towards constructing the best possible 3-dimensional gap instance against
non-opposite cuts is to consider alternative 2-dimensional instances in the convex
combination instead of the ones that we use in our construction.
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