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Abstract

Biomarker testing, where a biochemical marker is used to predict the presence or absence
of a disease in a subject, is an essential tool in public health screening. For many diseases,
related biomarkers may have a wide range of concentration among subjects, particularly
among the disease positive subjects. Furthermore, biomarker levels may fluctuate based on
external or subject-specific factors. These sources of variability can increase the likelihood of
subject misclassification based on a biomarker test. We study the minimization of the subject
misclassification cost for public health screening of non-infectious diseases, considering regret
and expectation-based objectives, and derive various key structural properties of optimal
screening policies. Our case study of newborn screening for cystic fibrosis, based on real
data from North Carolina, indicates that substantial reductions in classification errors can be
achieved through the use of the proposed optimization-based models over current practices.

Keywords: Health care, Public health screening, Biomarker testing, Unobservable risk, Thresh-
old optimization, Newborn screening



1 Introduction and Motivation

A biomarker is a measurable characteristic that is used as an indicator of some biological
state or condition, such as a disease or disorder (we use the term “disease" to refer to all such
conditions). Biomarker testing plays an integral role in screening, diagnosis, monitoring, and
management of many diseases, including genetic diseases such as cystic fibrosis [38, [65], car-
diovascular diseases [64], Alzheimer’s disease [24], asthma [63], neurological diseases [43], and
various types of cancer [10,[12]. As an example of a biomarker, consider cystic fibrosis, which of-
ten leads to elevated immunoreactive trypsinogen (IRT) levels; therefore, cystic fibrosis screening
in the United States (US) typically includes a biomarker test that measures the IRT concentra-
tion (the IRT test) [38, [65]. In this paper, our focus is on using biomarkers in population level
screening of non-infectious diseases. (Our models apply to non-infectious diseases, because we
do not model disease transmission among subjects, which is an important source of transmission
for infectious diseases.)

Biomarker testing offers a low cost and a convenient option for screening large populations,
and hence, is commonly used for screening purposes. However, biomarker tests may not be
perfectly reliable, and as a result, designing an effective biomarker screening policy becomes
challenging. What complicates policy design is that for many diseases, the concentration level of
the related biomarkers may have a wide range, particularly among the disease positive subjects.
This may occur due to subject-specific characteristics, such as weight, race, gender [17, [38] 43],
49, [65], level of disease progression, or other medical conditions of the subject [17, 23, 39]. As a
result, the range of biomarker concentrations in disease positive and disease negative populations
may overlap. Further, the test’s biomarker reading (measurement) may differ from the subject’s
true biomarker level, which is often not directly observable [71], [77], due to perturbations caused
by external factors. As an example, IRT readings in both cystic fibrosis positive and cystic
fibrosis negative subjects can be altered by outside temperature and humidity, and calibration
of the testing measurement kit [17, B8, 49, [65]. These natural variations and perturbations
in biomarker concentrations increase the likelihood of subject misclassification, i.e., a disease
negative subject classified as test positive (a false positive classification), or a disease positive
subject classified as test negative (a false negative classification). False negative cases experience

delayed diagnoses, which may lead to poor health outcomes, and/or an increase in health care



expenditures. False positive cases, on the other hand, may be sent for further testing that is
unnecessary. In particular, to improve the accuracy of screening, subjects testing positive in
a biomarker test may undergo further, and typically more expensive, tests that have higher
sensitivity and specificity. For instance, in newborn screening for cystic fibrosis, subjects testing
positive in the initial biomarker (IRT) test are sent for further testing, including a genetic test
and the diagnostic sweat chloride test, depending on the state’s policy [I]. For many diseases,
the consequence of a false negative classification is more severe than that of a false positive
classification. Our goal is to devise an optimal biomarker screening policy so as to minimize the
consequences of subject misclassification, which are represented in terms of false negative and
false positive classification costs.

A number of papers develop optimal policies for different types of cancer screening, including
breast cancer screening (e.g. [0, [7, [0} [8 [57]) and prostate cancer screening (e.g., [12} 15} 50, 67,
78|), as well as for other screening purposes, such as childhood obesity [73]. The objective of
these papers is to maximize a utility function, and the focus is on sequential screening policies,
while we consider a one-time screening policy. Other studies investigate how to set biomarker
thresholds in pooled testing, which involves combining specimens (e.g., blood samples) from
multiple subjects into a pool and testing the entire pool with one test (e.g., [44], 55| [70, [71]). We
focus on settings where testing is performed on an individual basis, e.g., the biomarker level of
every subject is measured.

A stream of research investigates how to set a single decision threshold for screening or diag-
nostic purposes, based on the receiver operation characteristic (ROC) curve [47]. The threshold
can correspond to a risk threshold [13] 29, [68], or a biomarker threshold [30], 31, 58|, 611 [62) [69],
such that all subjects having a disease risk or biomarker concentration above a certain threshold
are classified as test positive, and all others are classified as test negative. A number of papers
study methods to estimate the sensitivity and specificity of a test at a number of biomarker
thresholds. These works then determine the “best" biomarker threshold, among the set of
thresholds considered, that yields the highest weighted sum of the sensitivity and specificity of
the test (e.g., [61], 62]). In particular, the aforementioned papers assume that biomarker distri-
butions for disease positive and disease negative populations are known, but their parameters

are uncertain, and utilize a Bayesian framework to update the distributions of those parameters



[61, 62]. As opposed to this, we study distribution-free approaches through robust optimization
models. Further, we propose an optimization framework for biomarker threshold selection, and
consider the potential perturbations in biomarker concentrations or readings due to external or
subject-specific factors.

There are a number of studies that determine optimal thresholds that maximize a utility
function, which assigns a utility to all possible outcomes (e.g., [21], [35 146]). For example, Deneef
et al. [2I] assess the tester’s utility by considering the trade-off between the number of false
positives and number of true positives, and characterize diagnostic threshold policies within an
expected utility framework. Pauker et al. [46] consider the options of administering treatment,
ordering a diagnostic test, and withholding treatment, and determine optimal thresholds on
the subject’s estimated disease risk, considering a two-threshold policy, so as to maximize the
expected utility.

This paper’s contribution is to determine an optimal data-driven screening policy for non-
infectious diseases that is informed by noisy, and possibly correlated, biomarker readings, and
other subject-specific attributes (e.g., weight, race, gender), when the true biomarker concentra-
tions are unobservable. In particular, we explore expectation-based and robust formulations of
this decision problem, and characterize various structural properties of optimal screening poli-
cies. Our models are generic, and apply also in settings where the distributions of biomarker
concentrations in disease positive and disease negative populations are unknown. We demon-
strate the effectiveness of the proposed data-driven policies through a case study on newborn
screening for cystic fibrosis in North Carolina, using a five-year data set from the North Car-
olina State Laboratory of Public Health. Cystic fibrosis is one of the most prevalent genetic
diseases, and newborn screening for cystic fibrosis is performed throughout the US. While the
IRT biomarker test is used in the newborn cystic fibrosis screening process of all fifty states,
each state determines its own screening policy, but there are no guidelines on how a state should
customize its biomarker screening policy, considering unique state-level inputs. The proposed
mathematical models, complemented by regression analyses on the North Carolina data set,
produce state-wide optimal policies that consider the demographics and climate of the state
(important inputs for cystic fibrosis screening), and that are easily implementable. Our case

study indicates that these optimal policies can substantially increase the classification accuracy



for cystic fibrosis screening over current practices.

The remainder of this paper is organized as follows. Section [2] presents the notation and
the decision problem. Then, Section [3| provides the expectation-based and robust formulations,
and Section [4] derives important structural properties of optimal policies. Section [f] studies the
price of robustness and the price of expectation-based optimization, which correspond to the
respective deviation of the expected misclassification cost produced by each model from the
minimum possible expected misclassification cost, i.e., when the true biomarker concentrations
are perfectly observable. Section [0] discusses our case study of cystic fibrosis newborn screening
program in North Carolina. Finally, Section [7] summarizes our findings and provides directions
for future research. To facilitate the presentation, all proofs, and some tables and derivations

are relegated to the Appendix.

2 The Notation and the Decision Problem

In this section, we present the notation and the decision problem. Throughout, we denote
vectors by an arrow; and random variables and their realization in upper-case and lower-case
letters, respectively. We use the notation that (X)* = max {X,0}. The terms positive and
negative refer to both a subject’s true disease status (true positive or true negative), and clas-
sification outcome (test positive or test negative).

In each period, the lab receives a set, €2, of subjects to be screened for and classified as positive
or negative for a certain non-infectious disease. Subjects testing positive in the biomarker
test can be sent for further testing, depending on the setting. Screening involves a test that
measures the concentration of a disease-related biomarker. While subjects with the disease tend
to have elevated biomarker levels, disease negative subjects may also have elevated biomarker
levels (or test readings above normal levels) due to subject-specific attributes (e.g., weight, race,
gender), external factors (e.g., temperature, humidity), or testing error. Hence, subject j, with
a true biomarker level, Yj, is a true positive for the disease with some probability (risk) P;(Y}),
which is non-decreasing in Y}, i.e., the higher the biomarker level, the higher the probability
that the subject has the disease. Then, given a biomarker level, Y;, the true positivity status
of subject j for the disease follows a Bernoulli distribution with a probability of P;(Y;), i.e.,

D;(Y;) ~ Bernoulli(P;(Y;)), with the random variable D; attaining a value of 1 if the subject



is true positive, and a value of 0, otherwise. To simplify the subsequent notation, we denote the
true risk of subject j by P;.

On the testing side, the true biomarker level, Y}, j € Q (hence the true risk, P;), is not
observable; and the biomarker test may provide a noisy reading, which we denote by }7] Further,
as discussed above, the biomarker reading vector in each testing period, denoted by ?, may
be correlated because of the possibility of common perturbations in biomarker measurements in
each period, due to external factors that may affect the reading for each subject in a similar
way (see the discussion and case study in Section @ Thus, our model can take into account
both a common perturbation in biomarker measurements for all subjects tested within the
same period, as well as independent perturbations due to subject-specific characteristics or
independent measurement errors.

Let (3; denote the values of a set of attributes for subject j that are known to influence
biomarker levels, e.g., weight, race, and gender. After observing the biomarker reading vector
Ty) and subject attribute vector 5) in each period, the tester: (1) derives point estimates for the
true biomarker level, i.e., y; = h(Q_j> ?), and disease risk, i.e., p; = g(¥;,;), for each subject
Jj € Q, via some estimation functions h(.) and ¢(.); (2) constructs an uncertainty set around
the true risk vector, ?, given by S(?) = qﬂfﬁj])jea; and (3) classifies each subject as test
positive or test negative (see Table [1| for the notation). Note that the width of the uncertainty
set on ?, i.e., the “budget of uncertainty" [I4], can be adjusted to reflect varying levels of
confidence around the random variables, as discussed subsequently.

We make no assumptions on the functional forms of h(?, ?) and ¢(¥,y), and our approach
is distribution-free, that is, our models do not require the distributions of biomarker levels in
disease positive and disease negative populations. Function h(H_;, ?), which is used to estimate
a subject’s true biomarker level, by removing the common perturbation and subject-specific
perturbations (due to the subject’s specific attributes) from the subject’s biomarker reading,
depends on the testing period’s biomarker reading vector, ?, and subject-specific attributes,
9_;. Therefore, we refer to y; = h((9—j> _gf) as the “processed" biomarker level for each subject
j € Q, ie., with perturbations removed. Then, function ¢(¥,%), which is used to estimate a

subject’s disease risk, depends only on the subject’s processed and raw reading levels, i.e., ¥ and

1, respectively.



Table 1: Random variables, point estimates, and uncertainty sets

Random variables (unobservable) ‘ Measurements ‘ Point estimates ‘ Uncertainty sets
= ~ . . = ~ - =
Y= (Yj)jeqn (true biomarker level vector) | § = (J;)jeq (biomarker reading vector) | ¥ = (;)je = (h(6;, ¥))jen
. = ~ ~ ~ _
P (Pj(Y;))jeq (true risk vector) P = (B))jen = (9(Uj, Uj))jeq S(?) = (@j«ﬁj})]{“

Remark 1. Various methods can be employed to derive the support of the risk vector, S(?) =
=
([pj,]ﬁj]) Q; for instance, by constructing an uncertainty set around Y, given by S(Y) =
p je
; or by letting p; =

<[gj7gj])jeﬂ’ which translates into S(?) = ([g(ﬂjaﬂj)vg@jagj)})

infoyea()19Ws,¥5)} and p; = supgyea( )19, Y;)}, where G(.) is the set of all possible risk

=
Y
i€

estimation functions, g(.).

In this setting, subject misclassification is possible, because the true biomarker level, Y
(hence, the true risk, P;), is not observable, and moreover, even if Y; were observed, the true
disease status would still not be observable (i.e., D; is a random variable). Consequently, a true
positive subject can be falsely classified as negative (i.e., a false negative classification), or a true
negative subject can be falsely classified as positive (i.e., a false positive classification).

Then the tester’s decision problem is how to classify each subject in set €2 as test positive
versus test negative for the disease, based on the biomarker reading vector, 7, and the subject-
specific attribute vector, 9?, j € €, which provide an estimated risk vector, ;?) = (pj)jeq,
so as to minimize a function of the misclassification cost in each period. Thus, the decision
variable set is a binary vector, 7 = (xj)jeq, where z; attains a value of 1 if subject j is
classified as test positive, and a value of 0, otherwise. Then, subject j, Vj, will be a false
positive if {z; =1,D; =0} & {z;(1 — D;) =1}, and a false negative if {x; =0,D; =1} &
{(1 —x;)Dj =1}. Letting cpy and cpp respectively denote the per subject cost of a false
negative classification and a false positive classification, the total misclassification cost, for a

given classification vector 7, can be expressed as:

C(?) = Z [CFN(l — xj)Dj + CFPQUj(l — Dj) .
JEQ

To simplify the notation, we omit the arguments in parentheses when clear from the context.



3 Mathematical Formulations of the Decision Problem

In this section, we provide two formulations of the decision problem under uncertainty on
the true subject risk, P;(Y;), j € Q: (i) an expectation-based optimization model (EM), and
(ii) a robust optimization model (RM).

In the expectation-based optimization model, the tester classifies each subject in set  as
test positive or test negative based on an estimated disease risk vector ?, S0 as to minimize the
perceived expected misclassification cost in each period. In doing so, the tester assumes that
E[Dﬂ?] = p; = 9(Y;,y;), which is not necessarily the case (see Section |5| for discussion of the
price of expectation-based optimization, i.e., the deviation of the EM optimal cost from the
minimum possible expected misclassification cost corresponding to the true risk vector, ?)

Problem EM:

minimizez_( ). o E [C(?)]?} = Ej Z [CFN(l —xj)Dj+ crppxj(l — Dj)] ;@2]
L \jeQ
= Z crn(l —xz;)E [Dj|;ﬂ +crpa;E [(1 - Dj)|;ﬂ ]
jeQ L

= Y |ern(L—2))pj + crpa;(1— )
jea L

subject to xj binary,Vj € (.

Observe that the EM objective function is additively separable in each z;, j € €1, given ?
This is because each pj, j € , is a function only of the subject’s measured biomarker level,
yj, and estimated (processed) biomarker level, 7;, which is derived by removing the common
perturbation term and subject-specific perturbations from the biomarker readings in each period,

via the h(.) function (see Table [I]).

Since perfect information on subject disease risk is not available to the tester, the optimal
value of the expectation-based model may deviate from the minimum possible expected misclas-
sification cost. Hence, in the following, we also provide a distribution-free approach, via a robust
optimization model, that requires only an uncertainty set around the disease risk. In the robust
optimization model, the tester classifies each subject in set () as test positive or test negative
based on the uncertainty set around ?, ie., S(?) = <[£j,ﬁj]>jeg (see Table . The objective

is to minimize the maximum Regret, where Regret represents the cost of not acting optimally



due to the unobservability of the true risk vector, ?, that is, for any classification, 7, and any

possible risk vector realization, p € S (?), we have:

Regret(@,9) = B|C(@)P| - B|C(@ (7)|7] &)
= > [CFN(l —x;)p; +crp (1l — Pj)] -3 [CFN(l —25(P))pj + erp () (1 - pj)
JEQ JEQ
= ZRegret(xj,pj),
jeQ

where Z*(7) is the optimal solution to the deterministic problem in which 7 is known, i.e.,
. = .
the solution to EM when p is replaced by 7.

In other words, Regret is the “additional" misclassification cost that is incurred due to im-
perfect information; in our context, imperfect information on the disease risk of each subject.
Mini-max Regret type objectives are used for various decision problems under uncertainty (e.g.,
[2, 5], 26, 42, 48, 54\ [76]), mainly because the mini-max Regret objective is less conservative than
traditional objective functions of robust formulations, such as the mini-max objective that min-
imizes the cost of the worst-case scenario [48]. The robust formulation of finding a classification,
?, that minimizes the maximum Regret over all possible realizations of the random vector, ?,
then follows:

Problem RM:

minimizez—(,,, {maxﬁes(?) {Regret(@, ?)}} (2)

subject to x; binary,Vj € Q.

The maximum Regret value for each 7 needs to be determined over the sample space of ?,
S (?), which is uncountable. In what follows, we study structural properties of the Regret
function to develop an effective algorithm for RM.

We use the superscripts E and R to denote the expressions that respectively correspond to
EM and RM, and use the superscript * to denote an optimal solution to each problem, e.g.,

Z*F and ?*R, respectively.



4 Structural Properties of EM and RM Optimal Solutions

We develop key structural properties of optimal EM and RM solutions in Section and
discuss the link between the objectives of minimizing the misclassification cost and maximizing
the test efficacy (Appendix B), so as to relate our optimization models to those studied in the

literature. In order to facilitate the presentation, all proofs are relegated to the Appendix.

4.1 Structural Properties of EM and RM Optimal Solutions

We first characterize the structural properties of an optimal EM solution.

_)
Theorem 1. Given a risk estimate vector, p, an optimal EM solution follows a risk-based
threshold policy, that is, for each subject j € Q, an optimal classification is given by:
o E
B 1, if pj = piy

3 ¥ [ ’
0, if p; <pjj

B __ Crp
where p}° = Py

The risk-based threshold policy prescribed in Theorem |1| depends on a threshold, pj;E , on the
probability of positivity (risk) of a subject, and the threshold is a function of the misclassification
cost parameters only. Theorem [I]leads to an equivalent formulation of EM in which the binary

decision vector, ?, is replaced by a single threshold value.

Corollary 1. An equivalent formulation for EM follows:

Problem EM:
S = . ~
minimizep,, cjo,1) [C(pth)| p} = CFN Z pj +crp Z (1—Dpj), (3)
JEQD; <ptn JEQD; >pen,
with an optimal solution given by p;f = CF;F%FP.

Next we analyze the robust formulation, RM. For this purpose, we first characterize the

structural properties of the Regret function.

Lemma 1. For any given classification outcome for subject j, x;, j € Q, the mazimum Regret



function can be characterized as follows:

J’_
(ﬁ-(CFN +crp) — CFP) , ifry=0
(CFP —Qj(CFP + CFN)) ,ofag=1

Lemma [I| allows us to reformulate RM as a tractable optimization problem.

Corollary 2. An equivalent formulation for RM follows:

Problem RM:

minimizeyz(xj)jeﬂ Z (maxpje[gj@} {Regret(:q,m)}) =
JjeEQ

Z [(1 - ;) (TDj(CFN +crp) — CFP)+ + T (CFP - Bj(CFP + CFN)>+:|
jen

subject to x; binary,Vj € Q.

Theorem 2. Given an uncertainty set around the true risk vector, S(?) = ([gj,ﬁj]) an

jeq’
optimal RM solution follows a risk-based threshold policy, that is, for each subject j € Q, an

optimal classification is given by:

'ﬁj+gj *F
LR 5 2= P
i pitp, ’
e VTR E

0, & =5 <P

B CFp
where p’ = e

Based on Theorems [I] and [2] optimal solutions to both EM and RM can be expressed in
terms of a risk threshold, pz‘f , which is compared with each subject’s estimated risk, pj, to
obtain an optimal EM solution, and with the average of the lower and upper bounds on the
subject’s risk, @, to obtain an optimal RM solution. Therefore, both policies are risk-based
threshold policies.

In Appendix B, we also provide an equivalent formulation of the decision problem so as
to link the EM objective, i.e., the minimization of the expected misclassification cost, to an
objective function commonly considered in the literature, i.e., the maximization of a weighted
sum of test sensitivity and specificity (e.g., [30, B7, 61} [62] [74]). This reformulation proves to

be especially useful when accurately estimating the subject misclassification costs, i.e., cpp and

10



crn, is difficult. This is often the case, because cppy, the cost of a false negative, represents
the cost of a missed diagnosis, i.e., the cost of poor health outcomes resulting from a missed or
delayed diagnosis, including fatality; and cgp, the cost of a false positive, depends on the entire
screening process, i.e., the cost and accuracy of further tests conducted if the subject is classified
as a positive by the biomarker test. In particular, this reformulation allows the tester to define

target levels for test sensitivity and specificity, rather than specify misclassification costs.

5 Comparison of RM and EM Solutions, and Risk Estimation

In this section, we derive analytical expressions on the price of robustness and price of
expectation-based optimization, provide some examples of the risk estimation function g(.), and

discuss further properties of EM and RM.

5.1 Price of Robustness and Price of Expectation-based Optimization

The RM solution, by relying solely on an uncertainty set around the disease risk, provides a
robust solution that may be sub-optimal for minimizing the expected misclassification cost. On
the other hand, the EM solution, by relying on a point estimate, ?, of the true risk vector, ?7
may also deviate from the solution that achieves the minimum possible expected misclassification
cost, i.e., 7*(?), with expected cost, E[C’(?*E(?))] Then, an important policy question is
which of these models, RM or EM, would perform better for designing a biomarker screening
policy. In order to answer this question, in what follows, we study two related performance
measures: the price of robustness (HR), and the price of expectation-based optimization (HE),
which respectively correspond to the deviation of the RM and EM optimal solution values from
the minimum expected misclassification cost, when the true disease risk vector, ?, is perfectly
observable, that is,
=
p

%(P) = EIC(Z*)] - B[C(T*F(P))],  and 1TF(F) = E[C(TF(p))] - E[C(TF(P))]

Thus, higher values of II® and II¥ respectively indicate that RM and EM solutions deviate

further from the minimum possible expected misclassification cost.

Theorem 3. For a risk vector realization ?, the price of robustness, HR(?), and the price of

11



expectation-based optimization, HE(?), can be expressed as follows:

HR(?) = Z [pj(CFP +cpN) — CFP] + Z [CFP —pjlerp + CFN)} )

Y s sl _pi<pi
JEQLp 4m; JEQXp APy L
2 Pip, 5 2P

ne(p) = > [pj(CFP +crN) — CFP} + > [CFP —pjlcrp + CFN):| :
p;>piE,
Pi<piy

p;<piE,

JEQ: je:!
iz

Corollary 3. For a risk vector realization ?, we have the following:

%) - n*(7) = > [Pj(CFN +crp) — CFP} + > [CFP —pjlcrn +crp)|.

o P o PERiE

J pitDy J CpitDy

= 7 E =5 7 E
3 Zp:h 7 < :h

p;+p,
Corollary 4. Ifp; = %, Vj € Q, then T*E = 7R and hence, the price of robustness and

the price of expectation-based optimization are equal, i.e., HR(?) = HE(?), VP € S(?)

In Section [0 we show, via a numerical study, that under different conditions, each of RM

or EM could be a better choice for the tester for minimizing the expected misclassification cost.

5.2 Risk Estimation Function

In this section, we study how the risk estimation function ¢(.), which maps each subject’s
biomarker reading to their disease risk, i.e., g(y,y) = D (see Table , impacts the price of
robustness and the price of expectation-based optimization. Recall that in our setting, of noisy
biomarker readings, common and subject-specific perturbations, if present, are removed via the

h(.) function.

Remark 2. Given a processed biomarker level, y, and a biomarker reading, y, one can estimate

the subject disease risk via, for example, a logistic regression model [, (35,153, [75], e.g., 9(4,y) =

1

Tre@r oy where a and b are some constants, and b >0 (see Section @

Remark 3. The g(.) function derived by the logistic regression model in Remark @ 8 non-
decreasing in y, non-increasing in y, and is S-shaped in y — 7, i.e., it is first convex increasing,

then concave increasing, and converging to 1 (see Fz'gure as an example). This follows because

12



letting z =y — Y, where z € (—00,00), we can write

o 1 B 1 dg(z)
9.9) = 7 e @) 1re @ T gs U
2 z . —a
_ “%(2) >0, ifz<F
9%9(2)

W<O, ’ifZ>_Ta

0of
08F /
/

07 /

04r
03 /‘

0.2 /

0 I I I I I I I
-200 -100 0 100 200 300 400 500 600 700 800
y—y

01r

Figure 1: ¢(.) function that corresponds to the logistic regression model in Remark 2} when ¢ = —9 and
b=0.03.

Therefore, in the following we discuss the implications of S-shaped g¢(.) functions on our
results. Specifically, S-shaped risk estimation functions are less sensitive to perturbations in
biomarker readings when the difference, y — 7, is very low (e.g., ( —y) € (—o0, 100] in Fig. [1),
or very high (e.g., (¥ — y) € [500,+00) in Fig. [). This implies that the performance of the
RM solution (i.e., the deviation from the true optimal solution for a given ?) will vary for the
different subjects, depending on their y—7 value. This follows because the uncertainty set around
P is likely to be narrower when the value of § — ¥ is either very low or very high. To illustrate

—

= =
this last point, recall that the uncertainty set of Y, i.e., S(Y) = ([yj.,@]) o A be used to
) ie

construct an uncertainty set around ?, ie., S(?) = ([g(ywﬂj),g@j,ﬂj)m = ([p.,@])
Zj jEQ =J jen

(see Remark , and consider the following example.

Example 1. Consider that three subjects are tested in a given period, with the testing outcomes

reported in Table @ and g(.) function given by Remark@ with a = —9 and b = 0.03:

13



Table 2: Testing outcomes for Example

. ~ ~ ~ o~ _ - P - ~ +p +p
Subject ¥ ¥ y-¥ [v.7] .7l =9y - 9,9 — y)] Br Maz pefp ) { |P - #\}
1 700 800 -100 [750,850] (g(—150),g(—50)) = (1.37 x 1076,2.75 x 107%)  1.44 x 107> 1.31 x 107°
2 700 400 300 [350,450] (g(250),¢(350)) = (1.824 x 1071,8.176 x 1071) 5 x 107! 3.2 x 107!
3 700 100 600  [50,150] (9(550), g(650)) = (9.994 x 1071, 1.00) 9.997 x 107! 3x107%

.
% (Theorem

From Table @ the mazimum deviation of the disease risk used in RM, i.e.,
@), from the true disease risk is at most 3 x 10™* for subjects 1 and 3, which have the same
biomarker reading of 700, but respective biomarker uncertainty sets of [750,850] and [50, 150]
(due to different subject-specific attributes), leading to different values of y1 and ya (see Table
@; and this deviation can be as high as 0.32 for subject 2, with the same biomarker reading of
700, and a biomarker uncertainty set of [350,450], which translates into a wider risk uncertainty

set of (0.1824,0.8176). Hence, the optimal RM classification for subject 2 may not be highly

reliable.

Remark 4| provides another example of the risk estimation function, g(.), using a Bayesian

framework.

Remark 4. Let }/}+ and Y_ respectively denote the processed biomarker level of a random true
positive and a random true negative subject, with respective probability density functions (pdf)
of ffq and fo , and let q denote the disease prevalence rate within the population. Then,

afy, @
Ty @00l @

9@ =P(D=1]Y =7) =

Our analysis of realistic distributions of }AGF, }7_, and values of the prevalence rate g suggest

that the g(.) function in Remark (4] is also an S-shaped function.

Remark 5. The distribution and parameters of random variables ?Jr and Y_ can be estimated
by using, for example, training data and Monte Carlo simulation (e.g., [44]), i.e., by assuming
different parametric models for l/}+ and 17,, generating random samples from these models, and

using, for example, the mazimum likelihood estimator, to estimate the distribution parameters.

6 Case Study: Newborn Screening for Cystic Fibrosis

In this section, we perform a case study of cystic fibrosis (CF) screening for newborns. In the

US, every state has a program that screens newborns for a panel of genetic diseases (using dried
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blood spots routinely obtained from the newborns). With a prevalence rate of approximately
1 in 3,700 newborns in the US [II], 52|, CF is one of the most prevalent genetic diseases, and
is included in every state’s newborn screening panel [I}, [45]. Newborn screening for CF allows
for early diagnosis, and can substantially improve health outcomes [22 B38]. Newborns with
false negative screening results experience a delayed diagnosis, which complicates the treatment
process, and may result in poor health outcomes, including severe malnutrition, lung disease,
and fatality [28] [56]. On the other hand, false positive screening results cause parental distress
and result in further, expensive tests, including genetic tests, and the diagnostic sweat chloride
test, which is too expensive for screening purposes and must be performed at a specialized testing
facility [11 [17, 20} 36} 37, ©66].

Due to the importance of timely results, state laboratories perform IRT tests daily. Newborn
screening for CF is performed via a screening process, which refers to the sequence of tests and
policies for interpreting their results. While CF screening processes vary between states [1], all
states start the CF screening process with a biomarker test that measures the concentration of
immunoreactive trypsinogen (IRT) in the blood, i.e., the IRT test [32]. As discussed earlier,
newborns with CF tend to have elevated IRT levels [18, 27, 41l 59], although the distributions of
IRT concentrations for CF positive and CF negative newborns have a wide variance and overlap.
Consequently, CF classification based on IRT readings is not perfectly reliable, and all states
use further, expensive tests for newborns that are classified as IRT test positive, as discussed
above [37].

The IRT biomarker fits the modeling assumptions discussed in Section [2] Specifically, IRT
readings are affected by external factors that are common for all newborns tested in the same
period, leading to a positive correlation among the test readings, i.e., ? For example, low
temperatures tend to increase the IRT levels of all newborns, with or without CF [38] [65].
IRT levels are also affected by subject-specific attributes (e.g., birth weight, gender, and race),
leading to variations that occur independently for each newborn [17, 38| [49] [65]. In fact, our
analysis of a five-year data set of CF newborn screening results in North Carolina confirms,
and quantifies, the dependence of IRT levels to the newborn’s birth weight, gender, and race,
as well as seasonality. Our analysis also indicates that there is a correlation between race and

birth weight, and between gender and birth weight, and we incorporate all these factors into
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a regression model to estimate the probability that a newborn is CF positive, as detailed in
Section

The remainder of this section is organized as follows. In Section [6.1] we provide an overview
of current IRT screening policies used for CF newborn screening. In Section [6.2] we discuss our
data sources and calibration. In Section [6.3] we model the relationship between IRT readings
and true IRT levels through regression analysis. In Section [6.4] we perform a case study to

compare the proposed optimal policies with current IRT screening policies.

6.1 Current IRT Screening Policies

The IRT screening policies currently used in the US fall into the following two classes:

Concentration-based threshold policy (CB) is characterized by an IRT reading threshold,

Uth, such that the newborn is classified as test positive (i.e., z = 1) if §¥ > yu,, and is classified
as test negative (i.e., z = 0), otherwise. As examples, California uses a CB policy with an IRT
reading threshold of 62 ng/mL [37], while Washington uses a threshold of 100 ng/mL [65].

Proportion-based threshold policy (PB) is characterized by a proportion r, such that the

newborn is classified as test positive (i.e., x = 1) if the reading y is in the top r% of all IRT
readings in a given day, and is classified as test negative (i.e., z = 0), otherwise. That is, letting
Ya) = Y@y = - = Y represent an ordered set of IRT readings in a random day with N
subjects, subjects (1),(2),...,([rN]) in the ordered set will be classified as test positive. As
examples, Wisconsin and North Carolina use a PB policy with a proportion threshold of 4%
[11 [38], while Massachusetts uses a PB policy with a threshold of 5% [19].

Although the IRT threshold has a large impact on the overall sensitivity and specificity of the
CF screening algorithm, there are no nationwide guidelines on how the threshold should be set.
Some studies evaluate the performance of a particular threshold policy for the IRT test, in terms
of the sensitivity and specificity |37, 38, 49, [65]. Therrell et al. [65] state that PB outperforms
CB, especially in regions that experience higher fluctuations in seasonal temperatures, and
Kloosterboer et al. [38] suggest using PB to take into account the impact of common external
factors. Observe that under the PB policy, the corresponding IRT reading threshold varies each
day in a random manner.

Both the CB threshold, ¥, and the PB threshold, r, are determined prior to observing the
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IRT readings of each day, and remain constant for all days. Conversely, EM and RM utilize

the IRT readings in a given period to estimate the CF risk for each newborn.

6.2 Data Sources and Calibration

We perform a case study based on a data set from the North Carolina State Laboratory of
Public Health (NCSLPH), which contains CF newborn screening outcomes for North Carolina
over a five-year period, corresponding to 1,359 testing days; and also provides the IRT test
date, gender, race, and birth weight for each newborn tested in the study period, as well as
the outcome of the diagnostic sweat chloride test, i.e., the true CF status, for those newborns
classified as test positive in screening. The data set contains a small number of newborns with
incomplete information, which are removed from the data set, resulting in 569,601 newborns.
Following the data set, we consider four racial groups, Caucasian, African American, Hispanic,
and Asian, with a total of 107 identified CF positive cases over five years, with IRT readings
of the CF positive cases varying between 43.4 ng/mL and 502 ng/mL. Table 3| summarizes the

demographic characteristics of newborns screened by the NCSLPH during the study period.

Table 3: Demographic characteristics of newborns in the NCSLPH data set (five-year period)

Race Proportion  # Newborns screened — # CF cases Average IRTiS (ng/mL)  Average weight£SD* (gr)
Caucasian 58.3% 332,303 94 22.97 £ 0.03 3,287.92 + 2.76
African American 25.8% 146,646 7 29.26 + 0.04 2,984.67 + 4.03
Hispanic 12.7% 72,244 6 22.41 £+ 0.06 3,260.10 = 4.67
Asian 3.2% 18,408 0 21.91 £ 0.11 3,169.61 + 6.63
Overall 100% 569,601 107 24.48 £ 0.02 3,202.38 £ 0.94

% SD denotes the standard deviation around the mean

Our objective is to study the performance of the proposed optimal data-driven policies (EM
and RM policies) over various current IRT screening policies: (1) CB policy with IRT reading
thresholds of: 55 ng/mL (Georgia), 60 ng/mL (Colorado), 62 ng/mL (California), and 100
ng/mL (Washington) [1, 65]; and (2) PB policy with proportion thresholds of: 4% (Florida,
North Carolina, Wisconsin [38, [65]), and 5% (Texas, New York, Massachusetts [65]), as well as
other possible CB and PB policies.

As discussed in Section [4] it is difficult to estimate the costs of misclassification (cpy and
crp), especially the cost of a false negative, which represents the cost of a missed CF case,

i.e., the cost of poor health outcomes resulting from missed or delayed diagnosis. Hence, in our
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numerical study, we perform a one-way sensitivity analysis on the cost ratio, k = Zf; 1}‘3’ .

We divide the data set into two disjoint sets, walidation data set (40% of the data set,
corresponding to the first two years) and training data set (the remaining 60% of the data set,
corresponding to the last three years). The validation data set in our study is relatively large
(227,840 newborns), to ensure that it contains a sufficient number of CF positive cases (i.e.,
46 identified CF cases) for evaluating the performance of the different IRT policies. However,
we do not have reliable data on false negative (i.e., missed CF) cases. Hence, we calibrate our
validation data set by randomly adding some CF cases, based on CF prevalence rates for the
different races from the literature, so as to match the sensitivity levels reported in the literature;
see Appendix C.1. As a result, the existing 46 CF positive cases in the validation data set are

augmented by 1.73 + 0.16 (average + SD) CF positive cases based on Monte Carlo simulation,

leading to a total of 47.73 £ 0.16 CF cases (Appendix C.1).

6.3 The Regression Model

In this section, we develop a two-step regression approach, through the use of h(.) and g(.)
functions, to predict the CF risk for each newborn based on their attributes and external factors.
The reason for a two-step regression, rather than a single-step binary logistic regression, is that
there are certain subject-specific and external factors (e.g., birth weight, gender, and seasonality)
that affect only the newborn’s IRT concentration level, and not their risk of CF. For example,
cold weather tends to increase the IRT concentration level in all subjects, but does not alter the
CF risk [38]. Thus, while there is no direct correlation between these factors and the CF status,
these factors impact our analysis by altering the newborn’s IRT level. The proposed two-step
regression approach addresses this issue. Specifically, in the first step, it estimates an expected
IRT level for each newborn (), based on a linear regression model that considers both external
factors and newborn-specific attributes (i.e., through the h(.) function); and in the second step,
it estimates the CF risk for each newborn, based on a logistic regression model that considers
the discrepancy between their measured IRT reading (y) and the expected IRT level from Step
1 (y), (i-e., through the g(.) function). Then, the optimal risk-based threshold policy (EM or
RM) is used to classify the newborn either as a test positive or a test negative (see Appendix

C.2 for a comparison of the proposed two-step regression approach with a single-step logistic
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regression approach).

Our analysis of the data set indicates that birth weight, gender, race, and seasonality each
has a significant effect on the IRT level. Moreover, there is correlation between race and birth
weight, and between gender and birth weight. We apply the backward stepwise variable selection
method (e.g., [25]) on the training data set, to select the “best" subset of variables to include
in both the first-step linear regression and the second-step logistic regression. Specifically, in
the first step, we start with a linear regression that includes all the aforementioned variables,
determine its performance (in terms of the root mean squared error (RMSE) [25]), and rank
the variables based on their individual impact on the dependent variable (the IRT level). Then
we iteratively remove the “least useful" variable (i.e., the variable that is the least statistically
significant in each iteration), rank the remaining variables, and repeat this process until all but
one variable remains. Finally, we choose the variable set with the best performance (i.e., the
lowest RMSE) [25]. The stepwise variable selection method indicates that the following subset of
variables should be included in the linear regression: birth weight, gender, race, seasonality, and
race-weight correlations for Caucasians, African Americans, and Hispanics (the weight-gender
correlation, and the race-weight correlation for Asians are eliminated).

Next, to construct our first-step regression model, we perform a linear regression analysis on
the training data set and estimate the dependent variable, i.e., the IRT level for newborn j (}//\3),
based on the selected variables, where W; denotes birth weight, I2; denotes race (R;‘F =1 for
African American, Rf = 1 for Hispanic, Rf = 1 for Asian; and Caucasian is the default value,
ie., Rj =0), G; denotes gender (G; = 1 if female, and 0 otherwise), and ﬂf denotes the rolling
average of IRT readings used in period t to account for seasonality, i.e., the average of all IRT
readings over the most recent five testing days. (Our analysis indicates that using a rolling IRT
average of five days is sufficient to model seasonality.) Moreover, we perform a repeated five-fold
cross validation with stratified sampling, applied to the training data set, to tune the parameters
of the linear regression (e.g., [40]). In particular, we randomly partition the training data set
into five (almost) equal subsets, with approximately equal proportions of CF positive and CF
negative newborns in each subset. Then, we choose one of the subsets to serve as the validation
set, and use the remaining four subsets to train the linear regression model. We repeat this

process five times, i.e., until each subset is used exactly once as the validation set, and repeat

19



the entire process 10 times, with 10 different random seeds to partition the training data set.

The resulting linear regression equation follows:

~R

=R
) =E(Y;|W; =w;, R =rF RE =+H RY =12 G =g;,Y, =7,) (4)
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= 1.233 —8.037 x 10 *w; + 0.8115 g; + 4.525 ' — 1.228 11

— 1.11377" +0.9799 T+ 4.974 x 104w r 42117 x 1074w rf, jeq,
with a p-value less than 2.2 x 10716, Thus, Eq. provides an expected IRT level for each
newborn, given their specific attributes, except for their CF status, and external factors.

We note that in general, the A(.) function does not have to be linear; its functional form
depends on how subject-specific and external factors impact the biomarker level. For example,
a biomarker level may vary over time in a non-linear manner [60]; thus, if the biomarker level is
measured over time (as opposed to a one-time measurement, as is done here), and time is one
of the selected variables, then the h(.) function will also be non-linear.

In the second step, we consider the difference between the expected IRT level calculated by
Eq. and the IRT measurement, i.e., y; — y; (see Remark [2)) as the statistic of interest, and
perform a logistic regression, in which the dependent variable is the CF risk, and the independent
variables, selected by the backward stepwise variable selection method discussed above (with the
Akaike Information Criterion (AIC) used as the performance metric [40]), include y; — ¥j, TJAF ,
r]H and rf. The reason that race remains in the selected variable set is that it has a two-fold
effect on the IRT test: (i) race affects the IRT levels of newborns, i.e., the average IRT level
differs significantly among the different races (e.g., African Americans have significantly higher
IRT levels than other races, see Table |3| and Eq. (4)); and (ii) race affects the CF risk of
newborns, i.e., CF prevalence rate differs significantly among the different races, see Table Al.
In the logistic regression, we consider the n* root of (y; — 4;), i.e., (g; — g/jj)%, because this
functional form provides an S-shaped function with respect to (y; —¥;), which is less sensitive to
very high or very low values of the difference between the measured and the expected IRT. To
find the “best" value of n, we perform a grid search (e.g., [16]) on n € {1,3,5,---,97,99}, i.e.,

only the odd values of n, because the difference can be negative; and find that the best value of

n is 3. Finally, we perform a repeated five-fold cross validation with stratified sampling, applied
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to the training data set, to tune the parameters of the logistic regression. The resulting logistic

regression equation follows:

1
1 9
(13.30609—2.04352 (y;—7;) 3 +2.44 745 1-0.96496 r 1 +-14.55 1)

pj = 9@, u5) = E(Dj|y; — 5;) = je, (5

1+e

with a p-value less than 2.2 x 10716,
We next use this two-step regression model, in conjunction with each optimization model
(EM or RM), on the validation data set, to compare their performance with current IRT
policies. To this end, we use the linear regression and logistic regression in Eq.s and to
derive an estimated CF risk (to be used by the EM policy), as well as an uncertainty set around
it (to be used by the RM policy) for each newborn in the validation data set. Specifically, for the
EM policy, we calculate y; = h(ﬁ_;, Tyj) (via Eq. ) and p; = g(y;,y;) (via Eq. ), while for
the RM policy, we calculate the 95% CI around ¥, given by Y, and g;, leading to p; = g(gj, ;)

~ . . ~ pjt+p. . .
and p; = g(¥;,7;) (via Eq. ) We then respectively compare p; and i 223 with the optimal

risk thresholds for the EM and RM policies (Theorems 1| and , and classify each newborn
as test positive or test negative. Then, we compute the number of false negatives and false
positives, based on the true CF status of each newborn, for all newborns in the validation data
set, for each simulation replication (used solely to generate additional CF cases, as described in
Section 6.2 and Appendix C.1), leading to the total expected misclassification cost, and derive

the sensitivity and specificity of each policy.

6.4 Case Study Results

In this section, we discuss the case study results on the validation data set, which contains
227,840 subjects. We compare the EM and RM policies with various current IRT policies of
CB: 55 ng/mL, 60 ng/mL, 62 ng/mL, and 100 ng/mL; PB: 4% and 5%. Moreover, we consider
additional PB (1%-6%) and CB (45 ng/mL-65 ng/mL) policies, to find the “best" PB and CB
policy.

Our results are based on 400 Monte Carlo simulation replications, which are solely used to
randomly generate additional CF positive cases that are likely missed under the current IRT
policy used in North Carolina, as discussed in Section [6.2] Recall that there are 46 CF positive

cases in the validation data set, and 1.73 £ 0.16 (average £ SD) CF positive cases are added
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based on simulation, leading to 47.73 +0.16 CF cases.

Tables and A3-A6 (Appendix C.1) report the results of our case study for the validation
data set, including the number of false positives, false negatives, and the misclassification cost for
227,840 newborns over the two-year period. Specifically, Table [4] reports the average number of
false negatives and false positives, and the average sensitivity (the ratio of CF positive newborns
who are classified as test positive by the IRT test to all CF positive newborns), and specificity
(the ratio of CF negative newborns who are classified as test negative by the IRT test to all CF
negative newborns) for various EM, RM, and current CB and PB policies, while Tables A3-A6
report these performance measures and the misclassification cost for a larger set of PB (1%,
1.5%, - -+, 5.5%, 6%) and CB (45 ng/mL, 46 n/mL, - - -, 65 ng/mL) policies over 400 simulation
replications. Finally, Table [5] reports the average misclassification cost of all newborns, for each
value of k = 2—]}\3’ and for all policies considered, including the best PB and CB policy from
Tables A3 and A5. We note that all costs are reported in terms of the cost ratio, k, i.e., assuming
unit cost for cpp, and are sufficient for our purposes of comparing the different policies. If one
is interested in the actual misclassification cost, then each cost term needs to be multiplied by
the cost of a false positive, i.e., cpp, which represents the additional expected cost of testing if
the IRT test outcome is positive (e.g., the genetic test, followed by the sweat chloride test if the
genetic test indicates CF). The state’s entire screening policy (i.e., sequence of tests and rules)
affects the value of cpp, and hence, the final misclassification cost value depends on the policy
of each state.

The optimal threshold values, hence the resulting IRT sensitivity and specificity levels, for
both EM and RM are dictated by the value of parameter k, i.e., as k increases, both EM and
RM have higher sensitivity but lower specificity (see Appendix B). To study this aspect, Fig.
plots the sensitivity and specificity of the various IRT screening policies considered, as well as
those of the EM and RM policies for the different values of k reported in Tables [l A3, and A5.
Fig. [2 indicates that for each given sensitivity (specificity) level, both EM and RM provide a
higher specificity (sensitivity) level than PB and CB policies. For example, the PB 4% policy
provides a sensitivity of 94.28% and a specificity of 95.89%, while the EM and RM policies
(for £ = 2,000) provide both higher sensitivity (95.98% and 95.56%, respectively) and higher

specificity (96.58% and 96.79%, respectively).
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Figure 2: Sensitivity versus specificity of various IRT screening policies

Table 4: Performance of various IRT screening policies (Validation data set)

Policy False negatives (95% half width) False positives — Sensitivity — Specificity
CB (55) 3.70 (0.16) 6,996 92.25%  96.93%
CB (60) 4.75 (0.16) 4,858 90.05%  97.87%
CB (62) 5.01 (0.16) 4,213 89.50% 98.15%
CB (100) 13.73 (0.16) 513 71.23%  99.77%
PB (4%) 2.73 (0.16) 9,350 94.28%  95.80%
PB (5%) 1.73 (0.16) 11,636 96.37% 94.89%
k=1,000 EM 5.58 (0.16) 3,248 88.31% 98.57%
RM 5.55 (0.16) 3,294 88.37% 98.55%
k=2,000 EM 2.16 (0.14) 7,168 95.48% 96.85%
RM 2.12 (0.14) 7,303 95.56% 96.79%
k=3,000 EM 0.83 (0.11) 10,864 98.26% 95.23%
RM 0.79 (0.11) 11,133 98.34%  95.11%
k=4,000 EM 0.61 (0.10) 14,189 98.72% 93.77%
RM 0.58 (0.10) 14,548 98.78%  93.61%
k=5,000 EM 0.48 (0.08) 17,197 98.99% 92.45%
RM 0.42 (0.08) 17,674 99.12% 92.24%
k=6,000 EM 0.36 (0.07) 19,817 99.25% 91.30%
RM 0.32 (0.07) 20,091 99.33% 91.18%
k=7,000 EM 0.30 (0.07) 21,459 99.37% 90.58%
RM 0.26 (0.07) 22,172 99.46% 90.27%
k=8,000 EM 0.24 (0.06) 22.811 99.50% 89.99%
RM 0.20 (0.06) 23,606 99.58% 89.64%
k—9,000 EM 0.23 (0.05) 24,913 99.52%  89.06%
RM 0.17 (0.05) 25,781 99.64% 88.68%
k=10,000 EM 0.19 (0.04) 26,875 99.60% 88.20%
RM 0.14 (0.04) 27,448 99.71% 87.95%
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Table 5: Average misclassification cost for various IRT screening policies, in terms of k = 2’; 11‘3’
(Validation data set)

k=1,000  k=2,000  k=4,000 k=6,000 k=8,000 k—10,000
CB (55) 10,696 14,396 21,796 29,196 36,596 43,996
CB (60) 9,608 14,358 23,858 33,358 42,858 52,358
CB (62) 9,223 14,233 24,253 34,273 44,293 54,313
CB (100) 14,243 27,073 55,433 82,803 110,353 137,813
PB (4%) 12,080 14,810 20,270 25,730 31,190 36,650
PB (5%) 13,366 15,096 18,556 22,016 25,476 28,936
Best CB 8,925 14,064 19,965 25,205 30,445 35,685
(from Table A4) (CB64) (CB61) (CB51) (CB51) (CB51) (CB51)
Best PB 9,301 13,387 19,125 22,016 25,476 28,936
(from Table A6) (PB 1.5%) (PB25%) (PB3.5%) (PB5%) (PB5%) (PB5%)
EM 8,828 11,488 16,629 21,077 24,731 28,775
RM 8,844 11,543 16,368 22,011 25,206 27,448

In order to estimate the potential reduction in the misclassification cost as a result of the
proposed EM and RM policies, we next estimate the cost of a false positive per newborn (cpp)
as $68.74 per newborn, based on a newborn screening process consisting of a post-IRT genetic
test (mutation panel test with a panel of 23 CF-related mutations) and the diagnostic sweat
chloride test [72]. Some states, including North Carolina, test for more mutations (e.g., North
Carolina uses a mutation panel of 139 CF-related mutations), and some other states, such as
California, use a two-tier genetic test (mutation panel and sequencing). In these cases, the
expected post-IRT cost is likely higher than $68.74. For the case of k = 4,000, for example, the
EM policy decreases the misclassification cost by at least $68.74 x (20,270—16, 629) = $250, 282,
while the RM policy decreases it by at least $68.74 x (20,270 — 16, 868) = $233, 853 for a two-
year period, in comparison to North Carolina’s current IRT policy of PB with a threshold of
4%, see Table Moreover, in Table |5, we can observe that under different conditions (ie,.
different values of k), each of the EM or RM policies can perform better than the other.

In summary, our case study indicates that the proposed EM and RM policies outperform
the current IRT screening policies, and any PB or CB policy in general. From a practical
perspective, it is also important to note that EM and RM policies are easily implementable
(they are no more difficult to implement than the current policies), and provide a great level of
flexibility by allowing the tester to customize the state’s screening policy considering state-level
inputs (e.g., demographics and climate), along with sensitivity and specificity targets. This is

especially important for CF screening, because environmental and demographic characteristics
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can substantially differ among the states. The proposed methods and policies use these char-
acteristics as inputs (via the g(.) and h(.) functions that can be fit based on a training data
set from the state), allowing the screening policy to be customized for each state in an optimal

manner.

7 Conclusions and Future Research Directions

We analyze the problem of determining an optimal biomarker testing and subject classifica-
tion policy for non-infectious diseases under uncertainty on true biomarker levels, due to random
perturbations caused by external and/or subject-specific factors. We study both expectation-
based and robust formulations to minimize a function of the misclassification cost, derive key
structural properties of optimal policies, and show that they follow risk-based threshold policies.
Our case study on newborn screening for cystic fibrosis in North Carolina indicates that the
proposed policies can substantially decrease the expected misclassification cost for the IRT test
over current IRT screening policies for newborn screening for cystic fibrosis.

An important limitation of this work is the presence of missing data on false negative cases
in the North Carolina data set, which was used in our case study of Section [} We do not
have reliable data on the false negative cases for cystic fibrosis, and therefore, we had to use
simulation and data from the literature to randomly generate additional false negative cases.
We did this because the sensitivity of some current IRT screening policies were higher in the
data set compared to those reported in the literature, and also the prevalence rates of cystic
fibrosis for some races were lower in the data set than those reported in the literature. Adding
the few additional CF positive cases made the results better match the literature.

An important extension of this work is to determine optimal classification policies based on
dynamic progression of biomarker levels over time. Biomarkers have many other uses, such as risk
classification [3], monitoring the progression of a disease [51], or evaluating the effectiveness of a
specific treatment [34]. In many of these cases, the biomarker value, by itself, is not necessarily
the best criterion for decision-making; rather criteria reflecting the dynamic progression of the
biomarker over time may be more accurate. Another important future direction is to determine
optimal biomarker classification policies for infectious diseases where disease transmission is

possible among subjects, i.e., the disease positivity status of subjects may be correlated.
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We hope that this study motivates practitioners to consider using risk-based biomarker
threshold policies, which can take into account biomarker perturbations due to both external
and subject-specific factors, as well as establishing tracking systems to reliably detect false neg-

ative cases over time.
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