
A First Step Toward Incremental Evolution of Convolutional
Neural Networks

Dustin K. Barnes, Sara R. Davis, Emily M. Hand, Sushil J. Louis
University of Nevada, Reno

Reno, Nevada
{dkbarnes,sarad}@nevada.unr.edu,{emhand,sushil}@unr.edu

ABSTRACT
We introduce a novel algorithm – ConvNEAT – that evolves a
convolutional neural network (CNN) from a minimal architecture.
Convolutional and dense nodes are evolved without restriction to
the number of nodes or connections between nodes. The proposed
work advances the fieldwith ConvNEAT’s ability to evolve arbitrary
minimal architectures with multi-dimensional inputs using GPU
processing.

CCS CONCEPTS
• Computing methodologies → Genetic algorithms;

KEYWORDS
Convolutional Neural Networks

ACM Reference Format:
Dustin K. Barnes, Sara R. Davis, Emily M. Hand, Sushil J. Louis. 2020. A
First Step Toward Incremental Evolution of Convolutional Neural Networks.
In Proceedings of The Genetic and Evolutionary Computation Conference
2020 (GECCO ’20 Companion). ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3377929.3389916

1 INTRODUCTION
Convolutional(conv) Neural Networks (CNNs) are widely used in
machine learning, from computer vision to natural language pro-
cessing. Common CNN architectures are modeled after the initial
work in [2], and rely on a series of feature maps leading to fully
connected layers as shown in Figure 1a. Evolutionary methods have
been applied to CNNs, but with significant constraints on the archi-
tectures generated [4, 5]. Multi-dimensional inputs pose challenges
due to shape dependencies between convolutional layers and dense
layers. The intricate relationship between dense and conv layers is
what makes evolving a CNN so challenging.

The EXACT network evolves a CNN architecture, avoiding the
issue of layer incompatibility by not evolving dense layer archi-
tecture, instead using a fully convolutional approach [1]. EXACT
represents the conv layers as edges, rather than nodes, and uses a
fixed number of conv layers, as well as fixed parameters for max
pooling. EvoCNN evolves blocks of convolutions, padding the out-
put to ensure that shapes are compatible [3]. While [3] allows for

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’20 Companion, July 8–12, 2020, Cancun, Mexico
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7127-20/07. . . $15.00
https://doi.org/10.1145/3377929.3389916

(a) (b) (c)

Figure 1: (a) a typical CNN, (b) a genome generated by Con-
vNEAT, (c) all individual paths in the genome generated by
ConvNEAT and the associated outputs.

a broader range of architectures than [1], information is lost each
time a layer is padded. Both methods are computationally expen-
sive, taking months [1] to train on CPU and several days [3] to
train on GPU.

In this work, we introduce ConvNEAT, a method for evolving
CNNs composed of both conv and dense layers removing the afore-
mentioned architecture constraints. ConvNEAT is a dynamic algo-
rithm that evolves a CNN from a minimal architecture allowing
for dense connections, any number of conv layers with variable
shapes, unconstrained connections between layers, and weights
that maximize object classification fitness across ten classes. An
example of the evolved architecture can be seen in Figure 1b & c.

The proposed ConvNEAT algorithm is the only method that
utilizes layer reshaping to allow for the evolution of both conv and
dense layers in a CNN architecture. With this freedom, ConvNEAT
can develop unique architectures that human engineers might not
consider.

2 PROPOSED METHOD
In this section, we outline the ConvNEAT algorithm for architecture
selection. First, an initial population of 100 parents is generated
consisting of a single input node directly connected to a single
output node with random weight initialization. The parents are
copied to create 100 new children, and mutation is performed on
the children. Mutations may add additional conv or dense nodes
to increase the complexity of the network. Backpropagation is per-
formed for 50 epochs to train model weights after mutation. The
100 fittest individuals from the collection of 100 parents and 100
children are carried into the next generation. ConvNEAT uses cat-
egorical cross-entropy as its loss function, which is represented
as

∑𝑐=1
𝑀

𝑦𝑜,𝑐 log(𝑝𝑜,𝑐), where M is the number of classes, 𝑦𝑜,𝑐 is a
1 or a 0 that corresponds to a correct classification of class label
(c) or observation (o), and p is a prediction about which class the

https://doi.org/10.1145/3377929.3389916
https://doi.org/10.1145/3377929.3389916
https://doi.org/10.1145/3377929.3389916

GECCO ’20 Companion, July 8–12, 2020, Cancun, Mexico Dustin K. Barnes, Sara R. Davis, Emily M. Hand, Sushil J. Louis

observation belongs to. As loss in a neural network is a measure-
ment of error, the fitness function for ConvNEAT maximizes the
inverse square of the loss after performing mutation and backprop-
agation on the children. This process is repeated for 15 generations.
The MNIST dataset [2] is used for evaluation for comparison with
previous works [1, 3].

Each genome consists of a set of nodes (input, output, conv
and/or dense) and edges (as seen in Figure 1). Output from one
node is passed as input to the next node. Nodes can either perform
convolutions (conv) or flattening (dense) on their input. Input and
output nodes represent the desired input and output shapes of
the network respectively. The output node stores additional infor-
mation about the viable paths through the network. Conv nodes
take input of a size 𝑐 ×𝑘 (output size of previous node) and perform
a single 𝑛 ×𝑚 conv on it, where n and m are randomly chosen
during evolution. Each conv node stores the weights for its filter,
and the same filter is applied to all inputs that pass through that
node. Typical neural networks use multiple conv filters per conv
layer, whereas our nodes consist of a single filter; this difference can
be seen in Figure 1b & c, where none of the conv layers are stacked.
When backpropagation occurs, the weights for a node are updated
according to the gradients calculated by every path through the
node. Dense nodes with one or more neurons, take either input
shaped by previous conv layers or flattened input from a previous
dense layer, and create connections between the previous layer and
the output layer or another dense layer. Dense connections, as well
as the connections to the output store weights for each path that
travels through. This allows inputs of various dimensions to be
passed through the same dense node. An example of varying paths
passing through a conv layer is shown in Figure 1b & c.

Five primarymethods of mutation are implemented, and outlined
below:

Add Convolutional Node with a randomly shaped and ran-
domly initialized filter to the network. The generated node is limited
such that it may only be added between two shaped nodes (eg, two
conv or an input and a conv). Each time a node is added, a new
path is generated.

Add Dense Node, connecting a shaped (conv) node to another
dense node, or connecting the dense node to an output node.

Add Edge selects a path, and then generates a new path by
inserting an existing node into the selected path.

Delete Node selects a node, and then removes the node from
the network and from every path containing the node.

Delete Edge selects a path, and then removes the a node from
the path. If the node does not exist in any other path, it is removed
from the entire genome.

3 RESULTS AND DISCUSSION
We test our method on the MNIST dataset, using a variety of dif-
ferent mutation rates. Nodes are added at either 20% and 80%, for
both dense and conv, with edges being added at rates of 0%, 30%,
50%, or 80%. Deletion occurs with a 30, 50 and 80% chance. Notably,
despite the variations in mutation rates, the standard deviation in
average accuracy between all 375 runs was only 0.004.

On the MNIST dataset, our evolved networks achieve 94.7% ac-
curacy, which is slightly lower than the work in [1, 3]. Three of
the networks created by ConvNEAT are shown in Figure 2. The

(a) (b) (c)

Figure 2: Neural network architectures generated by Con-
vNEAT and associated accuracies; (a) an eliminated architec-
ture (78.6%), (b) a high fitness individual with simple archi-
tecture (92.9%), (c) a high fitness individual with complex ar-
chitecture (93.8%)

most fit individuals generated by ConvNEAT typically do not have
more than 2 conv layers, and only around 25% of the 375 fittest in-
dividuals generated contain a dense layer. The generated networks
show some of the potential pitfalls of our current implementation
- all contain a direct mapping from inputs to outputs, sometimes
multiple. While this is viable due to the simplicity of MNIST, the
addition of multiple such mappings provides little benefit, and is
the result of paths being added and edges being deleted, but being
unable to remove the paths entirely during mutation. Interestingly,
ConvNEAT does not appear to converge on a single architecture
when training on MNIST. Rather, it generates some architectures,
like the one in Figure 2b, that closely resemble traditional neural
network architectures, like the one in Figure 1a, and others, like
Figure 2c, that human engineers are extremely unlikely to create.

It is worth noting that using TensorFlow 2 on a single GTX
1080TI, our work provides a 3.5x speedup over the 2-3 days re-
ported in other studies [3]. We expect that the addition of crossover
will not significantly increase the run-time of ConvNEAT, as the
computation time is insignificant relative to the time needed to
perform weight updates through backpropagation.

In order to expand on the work established here, we intend to
implement several methods of crossing over, to avoid getting stuck
in local maxima, and approach state of the art accuracy achieved
in [1, 3]. In order to make our work more applicable in computer
vision applications, we plan to evaluate our method using more
complex datasets, such as CIFAR-10, and eventually, CelebA.

ACKNOWLEDGMENT
This material is based upon work supported by the National Sci-
ence Foundation under Grant No. 1909707. This work was also
supported in part by grant N00014-17-1-2558 from ONR and grant
69A3551747126 from DoT. Standard disclaimers apply.

REFERENCES
[1] T. Desell. 2017. Developing a Volunteer Computing Project to Evolve Convolutional

Neural Networks and Their Hyperparameters. In 2017 IEEE 13th International
Conference on e-Science (e-Science). 19–28. https://doi.org/10.1109/eScience.2017.14

[2] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. In Proceedings of the IEEE. 2278–
2324.

[3] Yanan Sun, Bing Xue, and Mengjie Zhang. 2017. Evolving Deep Convolu-
tional Neural Networks for Image Classification. CoRR abs/1710.10741 (2017).
arXiv:1710.10741 http://arxiv.org/abs/1710.10741

[4] Lingxi Xie and Alan L. Yuille. 2017. Genetic CNN. CoRR abs/1703.01513 (2017).
arXiv:1703.01513 http://arxiv.org/abs/1703.01513

[5] Barret Zoph and Quoc V. Le. 2016. Neural Architecture Search with Reinforcement
Learning. CoRR abs/1611.01578 (2016). arXiv:1611.01578 http://arxiv.org/abs/1611.
01578

https://doi.org/10.1109/eScience.2017.14
http://arxiv.org/abs/1710.10741
http://arxiv.org/abs/1710.10741
http://arxiv.org/abs/1703.01513
http://arxiv.org/abs/1703.01513
http://arxiv.org/abs/1611.01578
http://arxiv.org/abs/1611.01578
http://arxiv.org/abs/1611.01578

	Abstract
	1 Introduction
	2 Proposed Method
	3 Results and Discussion
	References

