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Exact isovector pairing in a shell-model framework: Role of proton-neutron correlations
in isobaric analog states
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We utilize a nuclear shell model Hamiltonian with only two adjustable parameters to generate, for the first
time, exact solutions for pairing correlations for light to medium-mass nuclei, including the challenging proton-
neutron pairs, while also identifying the primary physics involved. In addition to single-particle energy and
Coulomb potential terms, the shell model Hamiltonian consists of an isovector T = 1 pairing interaction and
an average proton-neutron isoscalar T = 0 interaction, where the T = 0 term describes the average interaction
between nonpaired protons and neutrons. This Hamiltonian is exactly solvable, where, utilizing three to seven
single-particle energy levels, we reproduce experimental data for 0+ state energies for isotopes with mass A = 10
through A = 62 exceptionally well including isotopes from He to Ge. Additionally, we isolate effects due to
like-particle and proton-neutron pairing, provide estimates for the total and proton-neutron pairing gaps, and
reproduce N (neutron) = Z (proton) irregularity. These results provide a further understanding for the key role
of proton-neutron pairing correlations in nuclei, which is especially important for waiting-point nuclei on the r p
path of nucleosynthesis.
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I. INTRODUCTION

Since the pairing model was first applied to nuclei by
Bohr, Mottelson, and Pines [1], studies have repeatedly found
pairing correlations to have a profound influence on nuclear
structure [2]. A better understanding of pairing features in
nuclei could greatly benefit other areas of research, such as
superfluidity in neutron stars [3,4], pairing correlations in nu-
clear matter [5–7], and nuclei around closed shells [8]. While
pairing correlations among like-particles, e.g., proton-proton
(pp) and neutron-neutron (nn) pairing, have been described
through numerous methods [9–13] and are well understood,
proton-neutron (pn) pairing has been less studied due to
its complexity [14–20]. For example, current approaches for
pairing in the continuum have been addressed [21–23] but
solely for like-particle pairing. An accurate treatment of the
challenging pn pairing interaction has been suggested to be
important for understanding waiting-point nuclei in rapid-
proton capture nucleosynthesis [24–26] and may play a role
in neutrinoless double-beta decay (0νββ) [27,28]. Therefore,
exact analytic solutions for both like-particle and pn pairing
are of great interest.

Albeit restricted to degenerate single-particle energies, ex-
act solutions to like-particle and pn pairing interactions can
be achieved through the T = 1 charge-independent pairing
Hamiltonian constructed using generators of the quasispin
group Sp j(4), where j indicates the orbits utilized in the
model space and T corresponds to the isospin [14,29]. For
nondegenerate single-particle energies, approximate numer-
ical solutions can be attained through the BCS formalism
[30–34]. Some studies utilize the algebraic Bethe ansatz

method with an infinite-dimensional Lie algebra [35–42] and
other methods [43–48] provide exact solutions for systems
with like-particle pairing or for systems with two or fewer
pairs.

In this paper, we present a new shell model Hamiltonian
that yields exact analytic solutions for the lowest isovector-
paired 0+ states for up to six nucleons (three pairs). The
Hamiltonian, adapted from Ref. [17] where degenerate ener-
gies have been considered, consists of a single-particle energy
term, Coulomb potential term, and includes an isovector T =
1 pairing interaction and an isoscalar T = 0 proton-neutron
interaction that accounts for the average interaction between
nonpaired nucleons. The model utilizes the analytic solutions
to isovector pairs in nondegenerate single-particle levels that
are derived in Ref. [16] for up to three pairs, which offers a
complementary procedure to the one in Ref. [49]. The new
method discussed here is efficacious and could be applied
to a very broad range of nuclei. However, when considering
three or more pairs highly nonlinear equations appear and
require sophisticated techniques to achieve solutions [50].
Here, we report applications of such solutions to light through
medium-mass nuclei including the challenging pn pairs. We
also identify the primary physics involved through an analysis
of the staggering behavior of our results and pairing gap
estimates.

II. THEORETICAL FORMALISM

Algebraic solutions to a T = 1 charge-independent pairing
Hamiltonian that utilizes single-particle energies of the jth
orbit, ε j , which can be derived from the spherical shell model,
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are introduced in Ref. [16]. These solutions are for Jπ =
0+ states of 2k nucleons and include both like-particle and
pn pairs, where k is the total number of pairs. To describe
ground states and 0+ isobaric analog states in nuclei it is
important to consider the Coulomb potential and an isoscalar
T = 0 pn interaction [17] in addition to the isovector pairing.
In particular, our model Hamiltonian is expressed as

Ĥ =
∑

j

ε jNj − G
∑
j j′μ

A†
j,μAj′,μ

+α

(
T̂ 2 − N

2

(
N

2
+ 1

))
+ VCoul, (1)

where G > 0 is the pairing strength, and α is the strength
of the additional isoscalar T = 0 interaction, which can be
understood as the average interaction between nonpaired pro-
tons and neutrons in a T = 1 pair as shown in Ref. [29] (also
related to the symmetry term). The nucleon number oper-
ator Nj , pair creation A†

j,μ, and annihilation Aj,μ = (A†
j,μ)†

operators, where μ = +,−, 0 indicates pp, nn, and pn pairs,
respectively, together with the isospin operators T̂j,±1 and T̂j,0

are generators of the Sp j(4) group. The total number operator
is given by N = ∑

j Nj , which is also N = 2k, and VCoul

denotes the Coulomb interaction. The Hamiltonian is initially
solved for the first two terms in Eq. (1), as described in the
next section, resulting in eigenstates that have k, T , and Tz as
good quantum numbers (or, equivalently, proton and neutron
numbers along with T ); in this basis the α term is diagonal,
resulting in additional energy given by α(T (T + 1) − k(k +
1)). The Coulomb term is also diagonal and its contribution is
accounted by an estimate given in Ref. [51], as described in
Sec. II B.

A. Exact isovector pairing solutions for up to six nucleons

Exact solutions for nondegenerate single-particle energies
and isovector T = 1 pairing interaction [first two terms of
Eq. (1)] for k � 3 are derived for selected permutations of the
permutation group Sk in Ref. [16]. As described in Ref. [16],
the method uses elements of the Gaudin algebra G(Sp(4)),

A†
μ(x) = ∑

j
A†

j,μ

1+ε j x
, Aμ(x) = ∑

j
A j,μ

1+ε j x
, Tμ(x) = ∑

j
Tj,μ

1+ε j x
,

and N (x) = ∑
j

Nj,μ

1+ε j x
, where x = {x1, x2, . . . , xk} are

spectral parameters for k pairs. Hence, one can solve
the Hamiltonian, Ĥ = ∂N/∂x|x=0 + GA†(0) · A(0) using
the Bethe ansatz wave function |k; ζ ; [λ]k, T Tz〉 =∑

P∈Sk
Q[λ](xP1 , xP2 , . . . , xPk ) {A†(xP1 ) × A†(xPk ) × · · · × A†

(xPk )}T Tz |0〉, that describes a k-paired state with |0〉 the
seniority-zero state, where [λ]k is an irrep of the permutation
group Sk containing k boxes in the corresponding Young
diagram and P labels all possible permutations. As a result,
the expansion coefficients Q[λ] and the spectral parameters,
x1, . . . , xk , are determined. In Ref. [16] solutions are derived
for the cases k = 1, T = 1 along with k = 2 and 3 for
T = 0, . . . , k.

It is important to note that this method leads to highly
nonlinear equations that become more challenging to solve
as k increases. Therefore, to find solutions and reduce
the number of singularities we have modified the spectral

parameters of Ref. [16], such that in numerical calculations we
use yi ≡ 2/xi, where i = 1, 2, . . . , k. Additionally, we utilize
an average single-particle energy εavg defined as

εavg =
∑

j (� jε j )∑
j � j

, (2)

where � j = j + 1
2 is the j-level degeneracy. Hence, the en-

ergies utilized are taken with respect to this average en-
ergy, ε j = ε j − εavg. In the Appendix we briefly outline the
main equations, which have been derived in Ref. [16], in
terms of the different variables used in the present numerical
calculations.

B. Coulomb potential

We include the Coulomb potential (VCoul) by using es-
timates provided in Ref. [51]. Using N+, N−, and A
as the proton, neutron, and the atomic numbers of nu-
clei, respectively, we first calculate VCoul of isotopes with
N+ = N−:

VCoul(A, N+) = 0.162N2
+ + 0.95N+ − 18.25, N+ � 20,

(3)
VCoul(A, N+) = 0.125N2

+ + 2.35N+ − 31.53, N+ > 20.

Next we calculate VCoul(A, N+) for N+ �= N− using the
recursive relations:

VCoul(A, N+) = VCoul(A, N+ − 1)

+ 1.44
N+ − 1

2

A1/3
− 1.02, N+ > N−,

VCoul(A, N+) = VCoul(A, N+ + 1) − 1.44
N+ + 1

2

A1/3

+ 1.02, N+ < N−. (4)

The relations (3),(4) were used to calculate the Coulomb
potentials for even-A isotopes in the mass ranges A = 10–16,
A = 34–46, and A = 50–56. These energies were accounted
for when reproducing the experimental energy spectra for
these mass ranges.

III. RESULTS AND DISCUSSION

The present model, which accounts for both pn and like-
particle pairing, is applied to even-A nuclei for up to six
particles above and below the 16O, 40Ca, and 56Ni cores. In
particular, using only two adjustable parameters, G and α, and
experimentally deduced single-particle energies we calculate
exact solutions for the Jπ = 0+ binding energies in even-even
(ee) nuclei and the lowest isobaric analog 0+ excited states
in odd-odd (oo) nuclei (which correspond to the ground state
of the even-even neighbor), together with pair-excitation 0+
states. Using these solutions, we show in the next section that
we are able to reproduce the experimental energy spectra as
well as utilize discrete derivatives of the energy function to
describe fine pairing features of these light to medium-mass
nuclei off closed shells, as detailed next.
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TABLE I. Experimentally deduced single-particle energy levels
and model parameters utilized in the Hamiltonian for nuclei up to 6
nucleons above and below the 16O, 40Ca, and 56Ni cores.

Core Particles (MeV) Holes (MeV)

G = 0.55 G = 1.65
α = 2.445

16O ε0d5/2 = −4.14 ε0p1/2 = 15.66
ε1s1/2 = −3.27 ε0p3/2 = 21.84
ε0p3/2 = 0.94 ε0s1/2 = 23.22
ε0 f7/2 = 1.55
ε1d3/2 = 0.41

ε0 f5/2 = −0.29
ε1p1/2 = −1.09

G = 0.45
α = 1.229

40Ca ε0 f7/2 = −8.36 ε1s1/2 = 18.10
ε1p3/2 = −6.42 ε0d3/2 = 15.64
ε0 f5/2 = −5.79 ε0d5/2 = 20.07
ε1p1/2 = −4.75
ε0g9/2 = −3.91

G = 0.33
α = 1.000

56Ni ε1p3/2 = −10.25 ε1s1/2 = 19.83
ε0 f5/2 = −9.48 ε0d3/2 = 20.40
ε1p1/2 = −9.14 ε0 f7/2 = 16.64
ε0g9/2 = −7.24

A. Energy spectra for isotopes around 16O, 40Ca, and 56Ni

In our model we use single-particle energies deduced from
the experimental energy spectrum of Acore ± 1 nuclei for a
core of mass Acore. These single-particle energies are non-
degenerate, as compared to an earlier algebraic model based
on the Sp(4) group [17], or equivalently on the O(5) group,
that utilizes the same Hamiltonian but with degenerate single-
particle energies. Indeed, it is crucial for our model to consider
nondegenerate energies due to the comparatively large energy
gap between levels, which is on the order of approximately
1 MeV. The experimentally deduced single-particle energies
and the model parameters utilized in the Hamiltonian are
listed in Table I for their respective cores. It should be noted
that the 0d5/2 single-particle energy level in the 55Ni energy
spectrum has yet to be experimentally determined and is thus
omitted in our calculations.

The model parameters were chosen such that the differ-
ence between the calculated and measured 0+ energies is
minimized to approximately 1–200 keV. For a set of nuclei
above (or below) each core, we first determined a small
range of values for G for the limiting k = T case where the
α term of the Hamiltonian has zero contribution to the 0+
energy of the isobaric analog states. Next, within the chosen
values for G, the α and G parameters were adjusted to best
reproduce all the available 0+ energies for the nuclei under
consideration. As a comparison to the earlier Sp(4) model
of Ref. [17] that uses degenerate single-particle energies, the
root-mean-square of energy differences decreases from 1.733
[17] to 1.291 for the nuclei considered above the 56Ni core.

This suggests that the use of nondegenerate single-particle
energies is important to provide better descriptions of pairing.
We find that, while typically particles and holes (above and
below a core, respectively) can be described by the same G
and α values, a larger pairing strength, G, is required for the
lightest nuclei below the 16O core in the mass range 10 �
A � 14. This, however, is in agreement with G proportional
to (17 ± 1)/A and α proportional to (36 ± 3)/A, which is
supported by earlier estimates [8].

Our model very closely reproduces the energy of the lowest
0+, T = 0, . . . , 3 states of ee and oo nuclei for up to six
particles above and below the 16O, 40Ca, and 56Ni cores
(Fig. 1). The theoretical and experimental energy spectrum of
individual isotopes are listed for allowed isospin values. For
a model with only two parameters, the overall agreement is
remarkable, with slight deviations around 50 � A � 54. To
improve this, one may need to include 0d5/2 in the model
space, which however is experimentally not available, as men-
tioned above. While only like-particle pairing occurs when
k = |Tz|, our model accounts for pn pairing as well, which
is a significant feature, as it permits the calculation of the
binding energies for isotopes when k �= |Tz| and the especially
interesting N = Z case.

B. Comparison to ab initio results for 12C

A recent paper [52] reported ab initio symmetry-adapted
no-core shell model (SA-NCSM) calculations [53] for the
low-lying spectrum of 12C using the realistic nucleon-nucleon
interaction JISP16 [54] for h̄� = 20 MeV and Nmax = 8 (or,
including ten harmonic oscillator major shells). The third 0+
state in the SA-NCSM calculations has been identified as the
lowest 0+, T = 1 state with excitation energy 21.42 MeV.
This is consistent with the 18.16 MeV value calculated using
our model (Fig. 1). Furthermore, the wave functions for the
lowest isobaric analog 0+ states in 12B, 12C, and 12N are
expected to have very similar spatial parts, or deformation.
Indeed, the SA-NCSM calculations reveal that this 0+ state
in 12C is predominantly oblate with intrinsic spin 1, that
is, the (λ μ) = (1 2) basis state contributes ∼61% to this
state, where (λ μ) are the deformation-related SU(3) quantum
numbers [55]. Exactly the same deformation dominates in the
isobaric analog 0+ state of 12N. The dominant features of
these isobaric analog 0+ states in A = 12 can be explained
by strong pairing correlations (an isovector pair excitation
given by the present model) as well as by strong collective
modes, as suggested by the SA-NCSM. This is an interesting
result pointing to the close interplay and overlap of pairing
and deformation degrees of freedom, which has been also
observed in other studies [56–58].

C. Discrete derivatives and fine structure effects

In this section a noteworthy test for the theory is imple-
mented and applied to the lowest isobaric analog 0+ states of
ee and oo nuclei in the mass ranges 10 � A � 22, 34 � A �
46, and 50 � A � 56. By considering the discrete derivatives
of the energy function with respect to particle number, we
are able to investigate the capability of the present model to
reproduce fine features of nuclear dynamics. We utilize the
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FIG. 1. Theoretical energy spectra (colored shapes) compared to experiment (black crosses) for 0+, T = 0, . . . , 3 binding energies and
lowest isobaric analog 0+, T = 0, . . . , 3 excited states of isotopes above and below the (a) and (d) 16O core; (b) and (e) 40Ca core; (c) and (f)
56Ni core.

formulas of Ref. [59], some of which are provided here for
completeness, and follow the analysis reported in there. The
discrete approximations of the E0 energy are given as

Stg(m)
δ (x) = Stg(m−1)

δ

(
x + δ

2

) − Stg(m−1)
δ

(
x − δ

2

)
δ

, m � 2,

Stg(1)
δ (x) =

⎧⎨
⎩

E0

(
x+ δ

2

)
−E0

(
x− δ

2

)
δ

, m-even
E0(x+δ)−E0(x)

δ
, m-odd,

(5)

where the variable x = {n, Tz, N+, N−} with n, N+, and N−
denoting the valence particles, valence protons, and valence
neutrons, respectively, and where increment δ � 1. These ap-
proximations (5) eliminate the large mean-field contributions
(hence, often referred to as “energy filters”) and reveal the
nuclear fine structure effects of pairing correlations. This is
also true for the mixed derivatives, which are defined as

Stg(2)
δ1,δ2

(x, y) = E0(x + δ1, y + δ2) − E0(x + δ1, y)

δ1δ2

− E0(x, y + δ2) + E0(x, y)

δ1δ2
, (6)

where the variables (x, y) = {n, Tz, N+1, N−1} and increments
δ1,2 � 1. We investigate different types of discrete derivatives
of both the theoretical energies E0 with their experimental
counterparts, and analyze their staggering patterns. In our
studies, E0 is the energy plotted in Fig. 1 with the Coulomb
interaction removed. By removing the Coulomb interaction,
we isolate and study phenomena governed solely by the
nuclear interaction.

As suggested in Refs. [29,59–61], the significance of vari-
ous energy filters can be understood using phenomenological
arguments that can be given a simple and useful graphical
representation. Specifically, in the following subsections, each
nucleus is represented by an inactive part, or a general ee or
oo nucleus, schematically illustrated by a box, �, in which the
interaction between the constituent particles does not change
for a given energy filter. Active particles are represented by
solid or empty dots for protons or neutrons, respectively,
above the box.

1. Discrete derivatives with respect to the number of pairs and
isospin projection: Staggering behavior and pairing gaps

The description of pn pairing correlations is crucial for re-
producing staggering behavior and pairing gaps. The Stgm

1 (Tz )
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FIG. 2. Theoretical staggering amplitudes for the total energy (filled colored shapes) and the pn and like-particle pairing energies (empty
colored shapes) compared to experiment (black crosses) for (a)16O; (b) 40Ca; (c) 56Ni core, as a function of the isospin projection Tz.

and Stgm
2 (2k) energy differences, m = 1, 2, . . . , isolate effects

related to the various types of pairing in addition to changes
in energy due to the different isospin values (symmetry term).
We investigate these effects and provide insight into pairing
correlations for ee and oo nuclei through analysis of the
Stg2

1(Tz = 0), k-odd and Stg2
2(2k), T = 1 discrete derivatives

in terms of the pairing gap relation

̃ ≡ pp + nn − 2pn ≈ 1
2 (

••
� + ◦◦

� −2
•◦
�). (7)

The result (7) is a measure of the difference in the isovector
pairing energy between ee and oo nuclei and follows from the
well-known definition of the empirical like-particle pairing
gap [8]

pp(nn) ≡ 1
2 (BE (N+1 ± 1, N−1 ∓ 1)

− BE (N+1 − 1, N−1 − 1)

− 2[BE (N±1, N∓1 − 1)

− BE (N+1 − 1, N−1 − 1)])

= 1
2 (

••
� −� − 2[

•
� −�]), (8)

which isolates the isovector pairing interaction of the (N±1)th
and (N±1 + 1)th protons (neutrons) for an even-even (N+1 −
1, N−1 − 1) nucleus (denoted by a square) [61]. As defined in
[29], the pn isovector pairing gap,

pn ≡ 1
2 (BE (N+1, N−1) − BE (N+1, N−1 − 1)

− [BE (N+1 − 1, N−1)

− BE (N+1 − 1, N−1 − 1)])

= 1
2 (

•◦
� − •

� −[
◦
� −�]), (9)

is the pairing interaction of the (N+1)th proton and the (N−1)th
neutron. To correctly account for the T = 1 mode of pn
pairing one should consider in Eq. (10) the E0 energy of
the oo (N+1, N−1) nucleus (that is, the energy of the isobaric
analog state rather than its ground state energy, BE ). For the
remaining ee nuclei in Eq. (10) replacing the symbol E0 with
BE is justified.

For [(k + Tz )-even] and [(k + Tz )-odd] nuclei centered at
N = Z (Tz = 0) and N �= Z (Tz �= 0), the second-order dis-
crete derivative,

Stg(2)
1 (Tz ) = E0(Tz + 1) − 2E0(Tz ) + E0(Tz − 1),

2k = const, (10)

can be written in terms of the pairing gap ̃,

Stg(2)
1 (Tz ) ≈

{
2̃, Tz = 0, k = odd
(−)(k+Tz ) 4

3(1+δTz ,0 ) + Vr, otherwise, (11)

where in some cases the contribution from an additional
residual nonpairing interaction Vr cannot be fully removed.
For ee N = Z nuclei, the additional Vr term is a two-body
interaction related to the nonpairing interaction of the three
protons and three neutrons in oo nuclei. However, for the
Tz �= 0 case of ee and oo nuclei the primary contribution of
the residual interaction is from the symmetry energy. We also
note that since pp, nn, and pn T = 1 pairs coexist [59,62,63],
Stg(2)

1 (Tz = 0) does not simply account for the energy gained
when two pn pairs are created (in the first two oo nuclei) and
energy lost to destroy a pp pair and a nn pair in an ee N = Z
nucleus. The relations (9)–(12) are based on the assumptions
that the interaction of a particle within the box is independent
of the type of added/removed particles and is the same for all
protons (neutrons) above the box [29].

We utilize Stg2
1(Tz = 0) to isolate the effects related to

like-particle and pn pairing, which is described primarily
by the symmetry term of our Hamiltonian. For example, in
Fig. 2(a) the total energy and pairing energy contributions
for A = 12 are compared to experiment. Here, the symmetry
energy contributes approximately 9 MeV to the total energy
for Tz = 0 and approximately 6 MeV for Tz = ±1, which
highlights how crucial the isoscalar T = 0 interaction is for
reproducing the experimental energy in both Figs. 2(b) and
2(c). It is important to note the considerable differences in the
energy ranges from Figs. 2(a)–2(c). The large, yet gradually
decreasing, energy differences from 16O to 56Ni may be
attributed to the single-particle energy levels considered in
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FIG. 3. Estimate for the total isovector pairing gap ̃, 2pn,
and the empirical like-particle pairing gap pp + nn = 24/

√
A for

A = 60.

56Ni calculations, which are much closer in energy compared
to those utilized for 16O and 40Ca.

The second-order discrete derivative with respect to 2k (for
a constant Tz),

Stg(2)
2 (2k) = E0(2k + 2) − 2E0(2k) + E0(2k − 2)

4
,

= 1
4 (

••◦◦
� −2

••
� −�),

is related to the isovector pairing gap ̃ [59],

Stg(2)
2 (2k) ≈ (−)(k+Tz ) ̃

3
+ Vr, (12)

where in the oo case Vr is the nonpairing interaction of the
last two protons with the last two neutrons in the (2k + 2)
nucleus. The additional nonzero contribution of the symmetry
energy prevents the isolation of the pairing gap relation ̃

through Eq. (12). However, by using only the first two terms
of the Hamiltonian (1) in the calculations for E0, we can
eliminate the contribution of the symmetry energy. Hence, the
staggering amplitude of the theoretical total pairing energy,
which includes like-particle and pn pairing energies, can
provide an estimate of the ̃ pairing gap using Eq. (12). As
an example, Fig. 3 shows the total pairing gap for A = 60
isotopes, which is estimated to be between 1.5–2.4 MeV.
Since the approximation (13) does not considerably fluctuate
compared to the pn pairing gaps with respect to Tz [59],
we utilize the experimentally deduced like-particle pairing
approximation,

pp + nn ≈ 24√
A

. (13)

Using the total pairing gap (12) and its relation to the
pn and like-particle gap (7), we provide an estimate for the
pn pairing gap 2pn that is between 0.5–1.5 MeV for A =
60. The like-particle pairing gap estimate, compared to the
pn gap, primarily contributes to the total gap for A = 60.
We note that in this staggering filter the single-particle term
discontinuity may have an effect, and for lighter isotopes,

FIG. 4. The second-order discrete mixed derivative with respect
to Z and N , shown for (a) 4 � Z � 10, (b) 16 � Z � 22, and
(c) 24 � Z � 30, where the filled colored shapes correspond to the
theoretical calculations and the empty shapes correspond to their ex-
perimental counterparts. The energy filter eliminates the mean-field
contribution from the energy and isolates the residual interaction
between the last proton and last neutron in even-even nuclei; the
N = Z value is a probe for the pn isoscalar interaction, shown here
for (a) 12C and 16O, (b) 36Ar and 40Ca, (c) 52Fe and 56Ni.

where the energy difference between single-particle energies
is larger, the effect is also larger.

2. Discrete derivatives with respect to proton and neutron
numbers: N = Z irregularities

As discussed in Ref. [59], the second-order discrete mixed
derivative δVpn(Z, N ),

δVpn(Z, N ) = E0(Z + 2, N + 2) − E0(Z + 2, N )

4

− E0(Z, N + 2) + E0(Z, N )

4
, (14)

represents, for even-even nuclei, the residual interaction be-
tween the last proton and the last neutron [60,64]. It is well
known that the attractive dip in the N = Z nuclei cannot
be described by a model with an isovector interaction only.
Hence, this filter is an important probe of the α term in
the model Hamiltonian (1) that is related to pn isoscalar
interactions.

Following the convention from the previous subsections,
Eq. (14) can be graphically represented as

δVpn(Z, N ) = 1
4 (

••◦◦
� −

••
� −

◦◦
� +�).
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In contrast to the previous filters, the relation (14) does
not display a consistent staggering pattern (Fig. 4), but we
expect that for fixed Z there is a significant change in energy
when N = Z . In this study, this filter can be applied to only
selected nuclei, since the calculations are carried for up to
three pairs. The model reproduces experimentally deduced
N = Z values for the C, O, Ar, Ca, Fe, and Ni isotopes. With
the exception of Fe (Z = 26) the results agree remarkably
well with the experimental data. The deviation may be as a
result of the absence of the 0d 5

2 + single-particle energy level
in our calculations, as described above. The good agreement
points to the significance of the symmetry term in the model
Hamiltonian (1) and the physically relevant choice for the
value of its strength α (Table I).

IV. CONCLUSIONS

We have presented a new shell-model Hamiltonian that
yields exact solutions for the lowest isobaric analog Jπ = 0+,
T = 0, . . . , 3 states that includes both like-particle and pn
pairing, as well as a symmetry term that is related to pn
isoscalar interactions. Adapted from Ref. [17], the model
Hamiltonian utilizes experimentally deduced nondegenerate
single-particles energies and includes an isoscalar T = 0 in-
teraction, which describes the interaction of nonpaired nucle-
ons. The present results are based on the exact solutions for
isovector pairing in non-degenerate single-particle energies
derived in Ref. [16]. The model utilizes only two adjustable
parameters: the pairing strength, G > 0, and α, which is the
strength of the isoscalar interaction. We applied our model to
even-A nuclei for up to six particles above and below the 16O,
40Ca, and 56Ni cores and reported exact solutions for shell
model pp, nn, and pn pairing correlations for ee and oo nuclei
in the mass ranges 10 � A � 22, 34 � A � 46, and 50 � A �
62. When comparing our results to a recent ab initio study
[52] we found the same deformation dominates the isobaric
analog 0+ states in 12N, where the dominant features of these
isobaric analog states in A = 12 can be explained by both
strong pairing correlations and strong collective modes. In
addition to remarkably reproducing the energy spectra, we
investigated how well the model captures fine features of
nuclear dynamics by analyzing our results through discrete
derivatives of the calculated energies. We isolated the effects
related to like-particle and pn pairing through theoretical
staggering amplitudes for the total, pn, and like-particles
energies. Estimates for the total isovector pairing gap and pn
contribution were provided for A = 60, where the total gap
is between 1.5–2.5 MeV and the pn contribution is between
0.5–1.5 MeV. Additionally, the model correctly reproduces
the N = Z irregularity, which is a signature of non negligible
isoscalar pn interaction, and we showed that the attractive dip
expected for N = Z nuclei was, indeed, well reproduced by
the present results.
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APPENDIX

The following equations are derived in Ref. [16] and are
presented here for completeness, since different variables have
been employed in the present numerical calculations.

The k = 1 case. As defined in Ref. [16], there is only
one irreducible representation (irrep) [1,0,0] of the permuta-
tion group S1. The eigenvalue for the k = 1, T = 1 case is
given as

E [1]T =1
ζ = y(ζ ) + 2kεavg, (A1)

where the inverse spectral parameter y(ζ ) must satisfy

1 + G
∑

j

� j

y(ζ ) − 2ε j
= 0. (A2)

The k=2 case. This case is solved for T = 0, 2 of the irrep
[2,0,0] and T = 1 of the irrep [1,1,0] of the permutation group
S2, where the eigenvalues for the k = 2, T = 0, 1, 2 cases are
given as

E

c[2]T = 2, 0
[1, 1, 0]T = 1
ζ = y(ζ )

1 + y(ζ )
2 + 2kεavg. (A3)

The inverse spectral parameters y(ζ )
1 and y(ζ )

2 for T = 2, 0 of
[2,0,0] must simultaneously satisfy

1 + G
∑

j

� j

y(ζ )
i − 2ε j

± 2G

y(ζ )
m − y(ζ )

i

= 0, (A4)

where i = 1, 2, m = 2, 1, and y(ζ )
1 �= y(ζ )

2 .
The inverse spectral parameters y(ζ )

1 and y(ζ )
2 of the T = 1

case of the irrep [1,1,0] must simultaneously satisfy

1 + G
∑

j

� j

y(ζ )
i − 2ε j

= 0, (A5)

for i = 1, 2, where y(ζ )
1 �= y(ζ )

2 .
The k=3 case. The irreps [3], [2,1,0], and [13] of the

permutation group S3 are solved for T = 3, 1, T = 2, and
T = 0, respectively, where the eigenvalue equation for all
k = 3 cases is

E

[3]T = 3, 1
[2, 1, 0]T = 2

[13]T = 0
ζ = 2kεavg +

3∑
i=1

y(ζ )
i . (A6)
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The inverse spectral parameters y(ζ )
i for i = 1, 2, 3 for the T =

3 and T = 0 cases of Eq. (A6) must satisfy

1 + G
∑

j

� j

y(ζ )
i − 2ε j

− 2G
3∑
m

i �= m

1

y(ζ )
i − y(ζ )

m

= 0 (A7)

and

1 + G
∑

j

� j

y(ζ )
i − 2ε j

= 0, (A8)

respectively. The three resulting equations for both T = 3 and
T = 0 when i = 1, 2, 3 must be solved simultaneously, where
the solutions are only valid when y(ζ )

1 �= y(ζ )
2 �= y(ζ )

3 , which is
due to the antisymmetric nature of the wave function [16].

For T = 2, 1 the inverse spectral parameters y(ζ )
i for i =

1, 2, 3 must satisfy

1 + G
∑

j

� j

y(ζ )
i − 2ε j

− GF

[2, 1, 0]
[3, 0, 0]

i (y1, y2, y3) = 0, (A9)

where, for simplicity, we introduce the relations a = y(ζ )
1 , b =

y(ζ )
2 , and c = y(ζ )

3 . For T = 2 there are two sets of equations

for F [2,1,0]
i (a, b, c) provided in [16] that yield solutions for y(ζ )

i
where i = 1, 2, 3. The first set of equations,

R =
√

a2 + b2 − bc + c2 − a(b + c),

F [21]
1 = −b + c − 2a − R

(a − b)(a − c)
, (A10a)

F [21]
2 = a − 2b + c − R

(a − b)(b − c)
, (A10b)

F [21]
3 = a + b − 2c − R

(a − c)(c − b)
, (A10c)

and the second set,

F [2,1,0]
1 = b + c − 2a − R

(a − b)(a − c)
, (A11a)

F [2,1,0]
2 = a − 2b + c + R

(a − b)(b − c)
, (A11b)

F [2,1,0]
3 = a + b − 2c + R

(a − c)(c − b)
, (A11c)

both produce solutions for Eq. (A9). The solutions provided
by Eq. (A10) are only valid when y(ζ )

1 = y(ζ )
2 < y(ζ )

3 , y(ζ )
1 =

y(ζ )
3 < y(ζ )

2 , and y(ζ )
2 = y(ζ )

3 < y(ζ )
1 , and solutions provided by

Eq. (A11) are only valid when y(ζ )
2 = y(ζ )

1 > y(ζ )
3 , y(ζ )

3 =
y(ζ )

1 > y(ζ )
2 , and y(ζ )

3 = y(ζ )
2 > y(ζ )

1 .
The most complicated case for k = 3 is T = 1. The equa-

tions utilized for F [3,0,0]
i (a, b, c) are

F [3,0,0]
1 = bβ − 2c(1 + β ) + a(2 + β )

(a − b)(a − c)(1 + β )
, (A12a)

F [3,0,0]
2 = −a + b + 2bβ − 2c(1 + β )

(a − b)(b − c)(1 + β )
, (A12b)

F [3,0,0]
3 = −a + c − bβ + cβ

(a − c)(c − b)(1 + β )
, (A12c)

where the β relations that produce solutions are

β1 = 1

9(a − c)(−b + c)

(
2a2 − 3b2 + 4a(b − 2c) + 2bc + 3c2 −

(
h3

(h1 + h2)1/3
+ (h1 + h2)1/3

))
, (A13)

β2 = − 1

36(a − c)(c − b)

(
h4 − 2(

√
3i + 1)h5

(h1 + h2)1/3
+ 2(−1 +

√
3i)(h1 + h2)1/3

)
, (A14)

β3 = − 1

36(a − c)(c − b)

(
h4 − 2(

√
3i − 1)h5

(h1 + h2)1/3
− 2(1 +

√
3i)(h1 + h2)1/3

)
. (A15)

The arguments h1,..,5 in Eqs. (A13)–(A15) are

h1 = −9(a − b)(a − c)(b − c)
√

3D,

D = −9a6 + 27a5b − 79a4b2 + 113a3b3 − 79a2b4 + 27ab5 − 9b6 + 27a5c + 23a4bc − 23a3b2c − 23a2b3c

+ 23ab4c + 27b5c − 79a4c2 − 23a3bc2 + 69a2b2c2 − 23ab3c2 − 79b4c2 + 113a3c3 − 23a2bc3 − 23ab2c3

+ 113b3c3 − 79a2c4 + 23abc4 − 79b2c4 + 27ac5 + 27bc5 − 9c6,

h2 = −8a6 + 33a5b − 6a4b2 + 53a3b3 + 144a2b4 − 27ab5 + 27b6 + 15a5c − 153a4bc − 135a3b2c

− 735a2b3c − 153ab4c − 135b5c + 39a4c2 + 441a3bc2 + 1305a2b2c2 + 1041ab3c2 + 414b4c2 − 199a3c3

− 1311a2bc3 − 1911ab2c3 − 899b3c3 + 477a2c4 + 1611abc4 + 1152b2c4 − 513ac5 − 783bc5 + 216c6,
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h3 = 4a4 − 11a3b + 40a2b2 − 6ab3 + 9b4 − 5a3c − 47a2bc − 62ab2c − 30b3c + 31a2c2

+ 109abc2 + 76b2c2 − 57ac3 − 87bc3 + 36c4,

h4 = −4(2a2 − 3b2 + 4a(b − 2c) + 2bc + 3c2),

h5 = 4a4 − 11a3b + 40a2b2 − 6ab3 + 9b4 − 5a3c − 47a2bc − 62ab2c − 30b3c + 31a2c2

+ 109abc2 + 76b2c2 − 57ac3 − 87bc3 + 36c4.
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