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Abstract

Sample efficiency is critical in solving real-
world reinforcement learning problems where
agent-environment interactions can be costly.
Imitation learning from expert advice has
proved to be an effective strategy for reducing
the number of interactions required to train
a policy. Online imitation learning, which
interleaves policy evaluation and policy opti-
mization, is a particularly effective technique
with provable performance guarantees. In
this work, we seek to further accelerate the
convergence rate of online imitation learn-
ing, thereby making it more sample efficient.
We propose two model-based algorithms in-
spired by Follow-the-Leader (FTL) with pre-
diction: MoBIL-VI based on solving varia-
tional inequalities and MoBIL-Prox based
on stochastic first-order updates. These two
methods leverage a model to predict future
gradients to speed up policy learning. When
the model oracle is learned online, these algo-
rithms can provably accelerate the best known
convergence rate up to an order. Our al-
gorithms can be viewed as a generalization
of stochastic Mirror-Prox (Juditsky et al.,
2011), and admit a simple constructive FTL-
style analysis of performance.

1 INTRODUCTION

Imitation learning (IL) has recently received attention
for its ability to speed up policy learning when solving
reinforcement learning problems (RL) [1, 2, 3, 4, 5, 6].
Unlike pure RL techniques, which rely on uniformed
random exploration to locally improve a policy, IL
leverages prior knowledge about a problem in terms of
expert demonstrations. At a high level, this additional
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information provides policy learning with an informed
search direction toward the expert policy.

The goal of IL is to quickly learn a policy that can
perform at least as well as the expert policy. Because
the expert policy may be suboptimal with respect to the
RL problem of interest, performing IL is often used to
provide a good warm start to the RL problem, so that
the number of interactions with the environment can
be minimized [7]. Sample efficiency is especially critical
when learning is deployed in applications like robotics,
where every interaction incurs real-world costs.

By reducing IL to an online learning problem, online
IL [2] provides a framework for convergence analysis
and mitigates the covariate shift problem encountered
in batch IL [8, 9]. In particular, under proper assump-
tions, the performance of a policy sequence updated by
Follow-the-Leader (FTL) can converge on average to
the performance of the expert policy [2]. Recently, it
was shown that this rate is sufficient to make IL more
efficient than solving an RL problem from scratch [7].

In this work, we further accelerate the convergence rate
of online IL. Inspired by the observation of Cheng and
Boots [10] that the online learning problem of IL is
not truly adversarial, we propose two MOdel-Based IL
(MoBIL) algorithms, MoBIL-VI and MoBIL-Prox,
that can achieve a fast rate of convergence. Under the
same assumptions of Ross et al. [2], these algorithms
improve on-average convergence from O(logN/N) to
O(1/N2), e.g., when a dynamics model is learned online,
where N is the number of iterations of policy update.

The improved speed of our algorithms is attributed to
using a model oracle to predict the gradient of the next
per-round cost in online learning. This model can be
realized, e.g., using a simulator based on a (learned)
dynamics model, or using past demonstrations. We
first conceptually show that this idea can be realized as
a variational inequality problem in MoBIL-VI. Next,
we propose a practical first-order stochastic algorithm
MoBIL-Prox, which alternates between the steps of
taking the true gradient and of taking the model gra-
dient. MoBIL-Prox is a generalization of stochastic
Mirror-Prox proposed by Juditsky et al. [11] to the
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case where the problem is weighted and the vector field
is unknown but learned online. In theory, we show that
having a weighting scheme is pivotal to speeding up
the order of convergence rate, and this generalization is
made possible by a new constructive FTL-style regret
analysis, which greatly simplifies the original algebraic
proof [11]. The performance of MoBIL-Prox is also
empirically validated in simulation.

2 PRELIMINARIES

2.1 Problem Setup: RL and IL

Let S and A be the state and the action spaces, respec-
tively. The objective of RL is to search for a stationary
policy π inside a policy class Π with good performance.
This can be characterized by the stochastic optimiza-
tion problem with expected cost1 J(π) defined below:

min
π∈Π

J(π), J(π) := E(s,t)∼dπEa∼πs [ct(s, a)] , (1)

in which s ∈ S, a ∈ A, ct is the instantaneous cost
at time t, dπ is a generalized stationary distribution
induced by executing policy π, and πs is the distribu-
tion of action a given state s of π. The policies here
are assumed to be parametric. To make the writing
compact, we will abuse the notation π to also denote its
parameter, and assume Π is a compact convex subset
of parameters in some normed space with norm ‖ · ‖.
Based on the abstracted distribution dπ, the formula-
tion in (1) subsumes multiple discrete-time RL prob-
lems. For example, a γ-discounted infinite-horizon
problem can be considered by setting ct = c as a
time-invariant cost and defining the joint distribution
dπ(s, t) = (1 − γ)γtdπ,t(s), in which dπ,t(s) denotes
the probability (density) of state s at time t under
policy π. Similarly, a T -horizon RL problem can be
considered by setting dπ(s, t) = 1

T dπ,t(s). Note that
while we use the notation Ea∼πs , the policy is allowed
to be deterministic; in this case, the notation means
evaluation. For notational compactness, we will often
omit the random variable inside the expectation (e.g.
we shorten (1) to EdπEπ [c]). In addition, we denote
Qπ,t as the Q-function2 at time t with respect to π.

In this paper, we consider IL, which is an indirect ap-
proach to solving the RL problem. We assume there
is a black-box oracle π∗, called the expert policy, from
which demonstration a∗ ∼ π∗s can be queried for any
state s ∈ S. To satisfy the querying requirement, usu-
ally the expert policy is an algorithm; for example, it

1Our definition of J(π) corresponds to the average accu-
mulated cost in the RL literature.

2For example, in a T -horizon problem, Qπ,t(s, a) =
ct(s, a) +Eρπ,t [

∑T−1
τ=t cτ (sτ , aτ )], where ρπ,t denotes the dis-

tribution of future trajectory (st, at, st+1, . . . sT−1, aT−1)
conditioned on st = s, at = a.

can represent a planning algorithm which solves a sim-
plified version of (1), or some engineered, hard-coded
policy (see e.g. [12]).

The purpose of incorporating the expert policy into
solving (1) is to quickly obtain a policy π that has
reasonable performance. Toward this end, we consider
solving a surrogate problem of (1),

min
π∈Π

E(s,t)∼dπ [D(π∗s ||πs)], (2)

where D is a function that measures the difference
between two distributions over actions (e.g. KL di-
vergence; see Appendix B). Importantly, the objective
in (2) has the property that D(π∗||π∗) = 0 and there
is constant Cπ∗ ≥ 0 such that ∀t ∈ N, s ∈ S, π ∈ Π,
it satisfies Ea∼πs [Qπ∗,t(s, a)] − Ea∗∼π∗s [Qπ∗,t(s, a

∗)] ≤
Cπ∗D(π∗s ||πs), in which N denotes the set of natural
numbers. By the Performance Difference Lemma [13],
it can be shown that the inequality above implies [10],

J(π)− J(π∗) ≤ Cπ∗Edπ [D(π∗||π)]. (3)

Therefore, solving (2) can lead to a policy that performs
similarly to the expert policy π∗.

2.2 Imitation Learning as Online Learning

The surrogate problem in (2) is more structured than
the original RL problem in (1). In particular, when the
distance-like function D is given, and we know that
D(π∗||π) is close to zero when π is close to π∗. On the
contrary, Ea∼πs [ct(s, a)] in (1) generally can still be
large, even if π is a good policy (since it also depends
on the state). This normalization property is crucial
for the reduction from IL to online learning [10].

The reduction is based on observing that, with the
normalization property, the expressiveness of the policy
class Π can be described with a constant εΠ defined as,

εΠ ≥ max{πn∈Π}minπ∈Π
1
N

∑N
n=1 Edπn [D(π∗||π)], (4)

for all N ∈ N, which measures the average difference
between Π and π∗ with respect to D and the state
distributions visited by a worst possible policy sequence.
Ross et al. [2] make use of this property and reduce (2)
into an online learning problem by distinguishing the
influence of π on dπ and on D(π∗||π) in (2). To make
this transparent, we define a bivariate function

F (π′, π) := Edπ′ [D(π∗||π)]. (5)

Using this bivariate function F , the online learning
setup can be described as follows: in round n, the
learner applies a policy πn ∈ Π and then the environ-
ment reveals a per-round cost

fn(π) := F (πn, π) = Edπn [D(π∗||π)]. (6)
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Ross et al. [2] show that if the sequence {πn} is se-
lected by a no-regret algorithm, then it will have good
performance in terms of (2). For example, DAgger
updates the policy by FTL, πn+1 = arg minπ∈Π f1:n(π)
and has the following guarantee (cf. [10]), where we
define the shorthand f1:n =

∑n
m=1 fm.

Theorem 2.1. Let µf > 0. If each fn is µf -strongly
convex and ‖∇fn(π)‖∗ ≤ G, ∀π ∈ Π, then DAgger
has performance on average satisfying

1
N

∑N
n=1 J(πn) ≤ J(π∗) + Cπ∗

(
G2

2µf
lnN+1
N + εΠ

)
. (7)

First-order variants of DAgger based on Follow-the-
Regularized-Leader (FTRL) have also been proposed
by Sun et al. [5] and Cheng et al. [7], which have the
same performance but only require taking a stochastic
gradient step in each iteration without keeping all the
previous cost functions (i.e. data) as in the original FTL
formulation. The bound in Theorem 2.1 also applies to
the expected performance of a policy randomly picked
out of the sequence {πn}Nn=1, although it does not
necessarily translate into the performance of the last
policy πN+1 [10].

3 ACCELERATING IL WITH
PREDICTIVE MODELS

The reduction-based approach to solving IL has demon-
strated sucess in speeding up policy learning. However,
because interactions with the environment are neces-
sary to approximately evaluate the per-round cost, it
is interesting to determine if the convergence rate of
IL can be further improved. A faster convergence rate
will be valuable in real-world applications where data
collection is expensive.

We answer this question affirmatively. We show that,
by modeling3 ∇2F the convergence rate of IL can po-
tentially be improved by up to an order, where ∇2

denotes the derivative to the second argument. The
improvement comes through leveraging the fact that
the per-round cost fn defined in (6) is not completely
unknown or adversarial as it is assumed in the most
general online learning setting. Because the same func-
tion F is used in (6) over different rounds, the online
component actually comes from the reduction made
by Ross et al. [2], which ignores information about how
F changes with the left argument; in other words, it
omits the variations of dπ when π changes [10]. There-
fore, we argue that the original reduction proposed
by Ross et al. [2], while allowing the use of (4) to
characterize the performance, loses one critical piece of
information present in the original RL problem: both
the system dynamics and the expert are the same across
different rounds of online learning.

3We define ∇2F as a vector field ∇2F : π 7→ ∇2F (π, π)

We propose two model-based algorithms (MoBIL-VI
and MoBIL-Prox) to accelerate IL. The first algo-
rithm, MoBIL-VI, is conceptual in nature and up-
dates policies by solving variational inequality (VI)
problems [14]. This algorithm is used to illustrate
how modeling ∇2F through a predictive model ∇2F̂
can help to speed up IL, where F̂ is a model bivari-
ate function.4 The second algorithm, MoBIL-Prox
is a first-order method. It alternates between taking
stochastic gradients by interacting with the environ-
ment and querying the model ∇2F̂ . We will prove that
this simple and practical approach has the same per-
formance as the conceptual one: when ∇2F̂ is learned
online and ∇2F is realizable, e.g. both algorithms can
converge in O

(
1
N2

)
, in contrast to DAgger’s O

(
lnN
N

)
convergence. In addition, we show the convergence
results of MoBIL under relaxed assumptions, e.g. al-
lowing stochasticity, and provide several examples of
constructing predictive models. (See Appendix A for a
summary of notation.)

3.1 Performance and Average Regret

Before presenting the two algorithms, we first summa-
rize the core idea of the reduction from IL to online
learning in a simple lemma, which builds the foundation
of our algorithms (proved in Appendix C.1).
Lemma 3.1. For arbitrary sequences {πn ∈ Π}Nn=1

and {wn > 0}Nn=1, it holds that

E
[∑N

n=1
wnJ(πn)
w1:N

]
≤ J(π∗) + Cπ∗

(
εwΠ + E

[
regretw(Π)
w1:N

])
where f̃n is an unbiased estimate of fn, regretw(Π) :=

maxπ∈Π

∑N
n=1 wnf̃n(πn)−wnf̃n(π), εwΠ is given in Def-

inition 4.1, and the expectation is due to sampling f̃n.

In other words, the on-average performance conver-
gence of an online IL algorithm is determined by
the rate of the expected weighted average regret
E [regretw(Π)/w1:N ]. For example, in DAgger, the
weighting is uniform and E [regretw(Π)] is in O(logN);
by Lemma 3.1 this rate directly proves Theorem 2.1.

3.2 Algorithms

From Lemma 3.1, we know that improving the regret
bound implies a faster convergence of IL. This leads to
the main idea of MoBIL-VI and MoBIL-Prox: to use
model information to approximately play Be-the-Leader
(BTL) [15], i.e. πn+1 ≈ arg minπ∈Π f1:n+1(π). To un-
derstand why playing BTL can minimize the regret,
we recall a classical regret bound of online learning.5

4While we only concern predicting the vector field ∇2F ,
we adopt the notation F̂ to better build up the intuition, es-
pecially of MoBIL-VI; we will discuss other approximations
that are not based on bivariate functions in Section 3.3.

5We use notation xn and ln to distinguish general online
learning problems from online IL problems.
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Lemma 3.2 (Strong FTL Lemma [16]). For any
sequence of decisions {xn ∈ X} and loss functions
{ln}, regret(X ) ≤ ∑N

n=1 l1:n(xn) − l1:n(x?n), where
x?n ∈ arg minx∈X l1:n(x), where X is the decision set.

Namely, if the decision πn+1 made in round n in IL
is close to the best decision in round n + 1 after the
new per-round cost fn+1 is revealed (which depends
on πn+1), then the regret will be small.

The two algorithms are summarized in Algorithm 1,
which mainly differ in the policy update rule (line 5).
Like DAgger, they both learn the policy in an inter-
active manner. In round n, both algorithms execute
the current policy πn in the real environment to collect
data to define the per-round cost functions (line 3): f̃n
is an unbiased estimate of fn in (6) for policy learning,
and h̃n is an unbiased estimate of the per-round cost
hn for model learning. Given the current per-round
costs, the two algorithms then update the model (line
4) and the policy (line 5) using the respective rules.
Here we use the set F̂ , abstractly, to denote the family
of predictive models to estimate ∇2F , and hn is de-
fined as an upper bound of the prediction error. For
example, F̂ can be a family of dynamics models that
are used to simulate the predicted gradients, and h̃n is
the empirical loss function used to train the dynamics
models (e.g. the KL divergence of prediction).

3.2.1 A Conceptual Algorithm: MoBIL-VI
We first present our conceptual algorithm MoBIL-VI,
which is simpler to explain. We assume that fn and
hn are given, as in Theorem 2.1. This assumption will
be removed in MoBIL-Prox later. To realize the idea
of BTL, in round n, MoBIL-VI uses a newly learned
predictive model ∇2F̂n+1 to estimate ∇2F in (5) and
then updates the policy by solving the VI problem
below: finding πn+1 ∈ Π such that ∀π′ ∈ Π,

〈Φn(πn+1), π′ − πn+1〉 ≥ 0, (8)

where the vector field Φn is defined as

Φn(π) = wn+1∇2F̂n+1(π, π) +
∑n
m=1 wm∇fm(π)

Suppose ∇2F̂n+1 is the partial derivative of some
bivariate function F̂n+1. If wn = 1, then the VI
problem6 in (8) finds a fixed point πn+1 satisfying
πn+1 = arg minπ∈Π f1:n(π) + F̂n+1(πn+1, π). That is,
if F̂n+1 = F exactly, then πn+1 plays exactly BTL and
by Lemma 3.2 the regret is non-positive. In general, we

6 Because Π is compact, the VI problem in (8) has at
least one solution [14]. If fn is strongly convex, the VI
problem in line 6 of Algorithm 1 is strongly monotone for
large enough n and can be solved e.g. by basic projection
method [14]. Therefore, for demonstration purpose, we
assume the VI problem of MoBIL-VI can be exactly solved.

Algorithm 1 MoBIL
Input: π1, N , p
Output: π̄N
1: Set weights wn = np for n = 1, . . . , N and sample

integer K with P (K = n) ∝ wn
2: for n = 1 . . .K − 1 do
3: Run πn in the real environment to collect data to

define f̃n and h̃n7

4: Update the predictive model to ∇2F̂n+1; e.g., using
FTL F̂n+1 = arg minF̂∈F̂

∑n
m=1

wm
m
h̃m(F̂ )

5: Update policy to πn+1 by (8) (MoBIL-VI) or by (9)
(MoBIL-Prox)

6: end for
7: Set π̄N = πK

can show that, even with modeling errors, MoBIL-VI
can still reach a faster convergence rate such as O

(
1
N2

)
,

if a non-uniform weighting scheme is used, the model is
updated online, and ∇2F is realizable within F̂ . The
details will be presented in Section 4.2.

3.2.2 A Practical Algorithm: MoBIL-Prox

While the previous conceptual algorithm achieves a
faster convergence, it requires solving a nontrivial VI
problem in each iteration. In addition, it assumes fn
is given as a function and requires keeping all the past
data to define f1:n. Here we relax these unrealistic
assumptions and propose MoBIL-Prox. In round n
of MoBIL-Prox, the policy is updated from πn to
πn+1 by taking two gradient steps :

π̂n+1 = arg minπ∈Π

∑n
m=1 wm

(
〈gm, π〉+ rm(π)

)
,

πn+1 = arg minπ∈Π wn+1 〈ĝn+1, π〉+∑n
m=1 wm

(
〈gm, π〉+ rm(π)

) (9)

We define rn as an αnµf -strongly convex function (with
αn ∈ (0, 1]; we recall µf is the strongly convexity
modulus of fn) such that πn is its global minimum and
rn(πn) = 0 (e.g. a Bregman divergence). And we define
gn and ĝn+1 as estimates of ∇fn(πn) = ∇2F (πn, πn)
and ∇2F̂n+1(π̂n+1, π̂n+1), respectively. Here we only
require gn = ∇f̃n(πn) to be unbiased, whereas ĝn could
be a biased estimate of ∇2F̂n+1(π̂n+1, π̂n+1).

MoBIL-Prox treats π̂n+1, which plays FTL with gn
from the real environment, as a rough estimate of
the next policy πn+1 and uses it to query an gradi-
ent estimate ĝn+1 from the model ∇2F̂n+1. Therefore,
the learner’s decision πn+1 can approximately play
BTL. If we compare the update rule of πn+1 and the
VI problem in (8), we can see that MoBIL-Prox
linearizes the problem and attempts to approximate
∇2F̂n+1(πn+1, πn+1) by ĝn+1. While the above approx-
imation is crude, interestingly it is sufficient to speed
up the convergence rate to be as fast as MoBIL-VI
under mild assumptions, as shown later in Section 4.3.

7MoBIL-VI assumes f̃n = fn and h̃n = hn
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3.3 Predictive Models

MoBIL uses ∇2F̂n+1 in the update rules (8) and (9)
at round n to predict the unseen gradient at round
n + 1 for speeding up policy learning. Ideally F̂n+1

should approximate the unknown bivariate function
F so that ∇2F and ∇2F̂n+1 are close. This condition
can be seen from (8) and (9), in which MoBIL con-
cerns only ∇2F̂n+1 instead of F̂n+1 directly. In other
words, ∇2F̂n+1 is used in MoBIL as a first-order ora-
cle, which leverages all the past information (up to the
learner playing πn in the environment at round n) to
predict the future gradient ∇2Fn+1(πn+1, πn+1), which
depends on the decision πn+1 the learner is about to
make. Hence, we call it a predictive model.

To make the idea concrete, we provide a few examples
of these models. By definition of F in (5), one way to
construct the predictive model ∇2F̂n+1 is through a
simulator with an (online learned) dynamics model, and
define ∇2F̂n+1 as the simulated gradient (computed by
querying the expert along the simulated trajectories
visited by the learner). If the dynamics model is exact,
then ∇2F̂n+1 = ∇2F . Note that a stochastic/biased
estimate of ∇2F̂n+1 suffices to update the policies in
MoBIL-Prox.

Another idea is to construct the predictive model
through f̃n (the stochastic estimate of fn) and indi-
rectly define F̂n+1 such that ∇2F̂n+1 = ∇f̃n. This
choice is possible, because the learner in IL collects
samples from the environment, as opposed to, literally,
gradients. Specifically, we can define gn = ∇f̃n(πn)
and ĝn+1 = ∇f̃n(π̂n+1) in (9). The approximation er-
ror of setting ĝn+1 = ∇f̃n(π̂n+1) is determined by the
convergence and the stability of the learner’s policy. If
πn visits similar states as π̂n+1, then ∇f̃n can approxi-
mate ∇2F well at π̂n+1. Note that this choice is differ-
ent from using the previous gradient (i.e. ĝn+1 = gn)
in optimistic mirror descent/FTL [17], which would
have a larger approximation error due to additional
linearization.

Finally, we note that while the concept of predictive
models originates from estimating the partial deriva-
tives ∇2F , a predictive model does not necessarily have
to be in the same form. A parameterized vector-valued
function can also be directly learned to approximate
∇2F , e.g., using a neural network and the sampled
gradients {gn} in a supervised learning fashion.

4 THEORETICAL ANALYSIS

Now we prove that using predictive models in MoBIL
can accelerate convergence, when proper conditions
are met. Intuitively, MoBIL converges faster than the
usual adversarial approach to IL (like DAgger), when
the predictive models have smaller errors than not pre-

dicting anything at all (i.e. setting ĝn+1 = 0). In the
following analyses, we will focus on bounding the ex-
pected weighted average regret, as it directly translates
into the average performance bound by Lemma 3.1.
We define, for wn = np,

R(p) := E [regretw(Π)/w1:N ] (10)

Note that the results below assume that the predic-
tive models are updated using FTL as outlined in
Algorithm 1. This assumption applies, e.g., when a dy-
namics model is learned online in a simulator-oracle as
discussed above. We provide full proofs in Appendix C
and provide a summary of notation in Appendix A.

4.1 Assumptions

We first introduce several assumptions to more precisely
characterize the online IL problem.

Predictive models Let F̂ be the class of predic-
tive models. We assume these models are Lipschitz
continuous in the following sense.

Assumption 4.1. There is L ∈ [0,∞) such that
‖∇2F̂ (π, π) − ∇2F̂ (π′, π′)‖∗ ≤ L‖π − π′‖, ∀F̂ ∈ F̂
and ∀π, π′ ∈ Π.

Per-round costs The per-round cost fn for policy
learning is given in (6), and we define hn(F̂ ) as an
upper bound of ‖∇2F (πn, πn) − ∇2F̂ (πn, πn)‖2∗ (see
e.g. Appendix D). We make structural assumptions on
f̃n and h̃n, similar to the ones made by Ross et al. [2]
(cf. Theorem 2.1).

Assumption 4.2. Let µf , µh > 0. With probability 1,
f̃n is µf -strongly convex, and ‖∇f̃n(π)‖∗ ≤ Gf , ∀π ∈
Π; h̃n is µh-strongly convex, and ‖∇h̃n(F̂ )‖∗ ≤ Gh,
∀F̂ ∈ F̂ .
By definition, these properties extend to fn and hn.
We note they can be relaxed to solely convexity and our
algorithms still improve the best known convergence
rate (see Table 1 and Appendix E).

Expressiveness of hypothesis classes We intro-
duce two constants, εwΠ and εwF̂ , to characterize the
policy class Π and model class F̂ , which generalize the
idea of (4) to stochastic and general weighting settings.
When f̃n = fn and θn is constant, Definition 4.1 agrees
with (4). Similarly, we see that if π∗ ∈ Π and F ∈ F̂ ,
then εwΠ and εwF̂ are zero.

8The rates here assume σĝ, σg, εwF̂ = 0. In general, the
rate of MoBIL-Prox becomes the improved rate in the
table plus the ordinary rate multiplied by C = σ2

g +σ2
ĝ + εwF̂ .

For example, when f̃ is convex and h̃ is strongly convex,
MoBIL-Prox converges in O(1/N + C/

√
N), whereas

DAgger converges in O(G2
f/
√
N).
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Table 1: Convergence Rate Comparison8

h̃n convex h̃n strongly convex Without model

f̃n convex O(N−3/4) O(N−1) O(N−1/2)

f̃n strongly convex O(N−3/2) O(N−2) O(N−1)

Definition 4.1. A policy class Π is εwΠ-close to π∗, if
for all N ∈ N and weight sequence {θn > 0}Nn=1 with
θ1:N = 1, E

[
max{πn∈Π}minπ∈Π

∑N
n=1 θnf̃n(π)

]
≤

εwΠ. Similarly, a model class F̂ is εwF̂ -close to F , if
E
[

max{πn∈Π}minF̂∈F̂
∑N
n=1 θnh̃n(F̂ )

]
≤ εwF̂ . The ex-

pectations above are due to sampling f̃n and h̃n.

4.2 Performance of MoBIL-VI

Here we show the performance for MoBIL-VI when
there is prediction error in ∇2F̂n. The main idea is to
treat MoBIL-VI as online learning with prediction [17]
and take F̂n+1(πn+1, ·) obtained after solving the VI
problem (8) as an estimate of fn+1.

Proposition 4.1. For MoBIL-VI with p = 0, R(0) ≤
G2
f

2µfµh
1
N +

εwF̂
2µf

lnN+1
N .

By Lemma 3.1, this means that if the model class is
expressive enough (i.e εwF̂ = 0), then by adapting the
model online with FTL, we can improve the original
convergence rate in O(lnN/N) of Ross et al. [2] to
O(1/N). While removing the lnN factor does not
seem like much, we will show that running MoBIL-VI
can improve the convergence rate to O(1/N2), when a
non-uniform weighting is adopted.

Theorem 4.1. For MoBIL-VI with p > 1, R(p) ≤
Cp

(
pG2

h

2(p−1)µh
1
N2 +

εwF̂
pN

)
, where Cp = (p+1)2ep/N

2µf
.

The key is that regretw(Π) can be upper bounded by
the regret of the online learning for models, which has
per-round cost wn

n hn. Therefore, if ε
w
F̂ ≈ 0, randomly

picking a policy out of {πn}Nn=1 proportional to weights
{wn}Nn=1 has expected convergence in O

(
1
N2

)
if p > 1.9

4.3 Performance of MoBIL-Prox

As MoBIL-Prox uses gradient estimates, we addition-
ally define two constants σg and σĝ to characterize the
estimation error, where σĝ also entails potential bias.

Assumption 4.3. E[‖gn −∇2F (πn, πn)‖2∗] ≤ σ2
g and

E[‖ĝn −∇2F̂n(π̂n, π̂n)‖2∗] ≤ σ2
ĝ

We show this simple first-order algorithm achieves sim-
ilar performance to MoBIL-VI. Toward this end, we
introduce a stronger lemma than Lemma 3.2.

9If p = 1, it converges in O
(
lnN
N2

)
; if p ∈ [0, 1), it

converges in O
(

1
N1+p

)
. See Appendix C.2.

Lemma 4.1 (Stronger FTL Lemma). Let x?n ∈
arg minx∈X l1:n(x). For any sequence of decisions {xn}
and losses {ln}, regret(X ) =

∑N
n=1 l1:n(xn)−l1:n(x?n)−

∆n, where ∆n+1 := l1:n(xn+1)− l1:n(x?n) ≥ 0.

The additional −∆n term in Lemma 4.1 is pivotal to
prove the performance of MoBIL-Prox.

Theorem 4.2. For MoBIL-Prox with p > 1 and
αn = α ∈ (0, 1], it satisfies

R(p) ≤ (p+1)2e
p
N

αµf

(
G2
h

µh

p
p−1

1
N2 + 2

p

σ2
g+σ2

ĝ+εwF̂
N

)
+

(p+1)νp
Np+1 ,

where νp = O(1) and nceil = d 2e
1
2 (p+1)LGf
αµf

e.

Proof sketch. Here we give a proof sketch in big-O
notation (see Appendix C.3 for the details). To
bound R(p), recall the definition regretw(Π) =∑N
n=1 wnf̃n(πn) − minπ∈Π

∑N
n=1 wnf̃n(π). Now de-

fine f̄n(π) := 〈gn, π〉 + rn(π). Since f̃n is µf -
strongly convex, rn is αµf -strongly convex, and
r(πn) = 0, we know that f̄n satisfies that f̃n(πn) −
f̃n(π) ≤ f̄n(πn) − f̄n(π), ∀π ∈ Π. This implies
R(p) ≤ E[regretwpath(Π)/w1:N ], where regretwpath(Π) :=∑N
n=1 wnf̄n(πn)−minπ∈Π

∑N
n=1 wnf̄n(π).

The following lemma upper bounds regretwpath(Π) by
using Stronger FTL lemma (Lemma 4.1).

Lemma 4.2. regretwpath(Π) ≤ p+1
2αµf

∑N
n=1 n

p−1‖gn −
ĝn‖2∗ − αµf

2(p+1)

∑N
n=1(n− 1)p+1‖πn − π̂n‖2.

Since the second term in Lemma 4.2 is negative, we just
need to upper bound the expectation of the first item.
Using the triangle inequality, we bound the model’s
prediction error of the next per-round cost.

Lemma 4.3. E[‖gn − ĝn‖2∗] ≤ 4(σ2
g + σ2

ĝ +L2E[‖πn −
π̂n‖2] + E[h̃n(F̂n)]).

With Lemma 4.3 and Lemma 4.2, it is now clear
that E[regretwpath(Π)] ≤ E[

∑N
n=1 ρn‖πn − π̂n‖2] +

O(Np)(σ2
g + σ2

ĝ) + O(E[
∑N
n=1 n

p−1h̃n(F̂n)]), where
ρn = O(np−1 − np+1). When n is large enough,
ρn ≤ 0, and hence the first term is O(1). For
the third term, because the model is learned online
using, e.g., FTL with strongly convex cost np−1h̃n
we can show that E[

∑N
n=1 n

p−1h̃n(F̂n)] = O(Np−1 +
NpεwF̂ ). Thus, E[regretwpath(Π)] ≤ O(1 + Np−1 +
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(εwF̂ + σ2
g + σ2

ĝ)N
p). Substituting this bound into

R(p) ≤ E[regretwpath(Π)/w1:N ] and using that the fact
w1:N = Ω(Np+1) proves the theorem. �

The main assumption in Theorem 4.2 is that ∇2F̂ is
L-Lipschitz continuous (Assumption 4.1). It does not
depend on the continuity of ∇2F . Therefore, this condi-
tion is practical as we are free to choose F̂ . Compared
with Theorem 4.1, Theorem 4.2 considers the inex-
actness of f̃n and h̃n explicitly; hence the additional
term due to σ2

g and σ2
ĝ . Under the same assumption

of MoBIL-VI that fn and hn are directly available,
we can actually show that the simple MoBIL-Prox
has the same performance as MoBIL-VI, which is a
corollary of Theorem 4.2.
Corollary 4.1. If f̃n = fn and h̃n = hn, for MoBIL-
Prox with p > 1, R(p) ≤ O( 1

N2 +
εwF̂
N ).

The proof of Theorem 4.1 and 4.2 are based on assum-
ing the predictive models are updated by FTL (see
Appendix D for a specific bound when online learned
dynamics models are used as a simulator). However,
we note that these results are essentially based on the
property that model learning also has no regret; there-
fore, the FTL update rule (line 4) can be replaced by
a no-regret first-order method without changing the
result. This would make the algorithm even simpler
to implement. The convergence of other types of pre-
dictive models (like using the previous cost function
discussed in Section 3.3) can also be analyzed following
the major steps in the proof of Theorem 4.2, leading
to a performance bound in terms of prediction errors.
Finally, it is interesting to note that the accelerated
convergence is made possible when model learning puts
more weight on costs in later rounds (because p > 1).

4.4 Comparison

We compare the performance of MoBIL in Theorem 4.2
with that of DAgger in Theorem 2.1 in terms of the
constant on the 1

N factor. MoBIL has a constant in
O(σ2

g + σ2
ĝ + εwF̂ ), whereas DAgger has a constant in

G2
f = O(G2 +σ2

g), where we recall Gf and G are upper
bounds of ‖∇f̃n(π)‖∗ and ‖∇fn(π)‖∗, respectively.10
Therefore, in general, MoBIL-Prox has a better upper
bound than DAgger when the model class is expressive
(i.e. εF̂ ≈ 0), because σ2

ĝ (the variance of the sampled
gradients) can be made small as we are free to design
the model. Note that, however, the improvement of
MoBIL may be smaller when the problem is noisy,
such that the large σ2

g becomes the dominant term.

An interesting property that arises from Theorems 4.1
and 4.2 is that the convergence of MoBIL is not biased

10Theorem 2.1 was stated by assuming fn = f̃n. In the
stochastic setup here, DAgger has a similar convergence
rate in expectation but with G replaced by Gf .

by using an imperfect model (i.e. εwF̂ > 0). This is
shown in the term εwF̂/N . In other words, in the worst
case of using an extremely wrong predictive model,
MoBIL would just converge more slowly but still to
the performance of the expert policy.

MoBIL-Prox is closely related to stochastic Mirror-
Prox [18, 11]. In particular, when the exact model
is known (i.e. ∇2F̂n = ∇2F ) and MoBIL-Prox is
set to convex-mode (i.e. rn = 0 for n > 1, and
wn = 1/

√
n; see Appendix E), then MoBIL-Prox

gives the same update rule as stochastic Mirror-Prox
with step size O(1/

√
n) (See Appendix F for a thorough

discussion). Therefore, MoBIL-Prox can be viewed
as a generalization of Mirror-Prox: 1) it allows non-
uniform weights; and 2) it allows the vector field ∇2F
to be estimated online by alternately taking stochas-
tic gradients and predicted gradients. The design of
MoBIL-Prox is made possible by our Stronger FTL
lemma (Lemma 4.1), which greatly simplifies the origi-
nal algebraic proof in [18, 11]. Using Lemma 4.1 reveals
more closely the interactions between model updates
and policy updates. In addition, it more clearly shows
the effect of non-uniform weighting, which is essential
to achieving O( 1

N2 ) convergence. To the best of our
knowledge, even the analysis of the original (stochastic)
Mirror-Prox from the FTL perspective is new.

5 EXPERIMENTS

We experimented with MoBIL-Prox in simulation to
study how weights wn = np and the choice of model or-
acles affect the learning. We used two weight schedules:
p = 0 as baseline, and p = 2 suggested by Theorem 4.2.
And we considered several predictive models: (a) a
simulator with the true dynamics (b) a simulator with
online-learned dynamics (c) the last cost function (i.e.
ĝn+1 = ∇f̃n(π̂n+1) (d) no model (i.e. ĝn+1 = 0; in this
case MoBIL-Prox reduces to the first-order version of
DAgger [7], which is considered as a baseline here).

5.1 Setup and Results

Two robot control tasks (CartPole and Reacher3D)
powered by the DART physics engine [19] were used as
the task environments. The learner was either a linear
policy or a small neural network. For each IL problem,
an expert policy that shares the same architecture as
the learner was used, which was trained using policy
gradients. While sharing the same architecture is not
required in IL, here we adopted this constraint to re-
move the bias due to the mismatch between policy class
and the expert policy to clarify the experimental results.
For MoBIL-Prox, we set rn(π) =

µfαn
2 ‖π−πn‖2 and

set αn such that
∑
wnαnµf = (1+cnp+1/2)/ηn, where

c = 0.1 and ηn was adaptive to the norm of the pre-
diction error. This leads to an effective learning rate
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Figure 1: Experimental results of MoBIL-Prox with neural network (1st row) and linear policies (2nd row).
The shaded regions represent 0.5 standard deviation over 24 seeds.

ηnw
p/(1 + cnp+1/2) which is optimal in the convex set-

ting (cf. Table 1). For the dynamics model, we used a
neural network and trained it using FTL. The results
reported are averaged over 24 seeds. Figure 1 shows
the results of MoBIL-Prox. While the use of neural
network policies violates the convexity assumptions in
the analysis, it is interesting to see how MoBIL-Prox
performs in this more practical setting. We include the
experiment details in Appendix G for completeness.

5.2 Discussions

We observe that, when p = 0, having model infor-
mation does not improve the performance much over
standard online IL (i.e. no model), as suggested in
Proposition 4.1. By contrast, when p = 2 (as suggested
by Theorem 4.2), MoBIL-Prox improves the conver-
gence and performs better than not using models.11
It is interesting to see that this trend also applies to
neural network policies.

From Figure 1, we can also study how the choice of pre-
dictive models affects the convergence. As suggested in
Theorem 4.2, MoBIL-Prox improves the convergence
only when the model makes non-trivial predictions. If
the model is very incorrect, then MoBIL-Prox can
be slower. This can be seen from the performance of
MoBIL-Prox with online learned dynamics models.
In the low-dimensional case of CartPole, the simple neu-
ral network predicts the dynamics well, and MoBIL-
Prox with the learned dynamics performs similarly as

11We note that the curves between p = 0 and p = 2 are
not directly comparable; we should only compare methods
within the same p setting as the optimal step size varies
with p. The multiplier on the step size was chosen such
that MoBIL-Prox performs similarly in both settings.

MoBIL-Prox with the true dynamics. However, in
the high-dimensional Reacher3D problem, the learned
dynamics model generalizes less well, creating a per-
formance gap between MoBIL-Prox using the true
dynamics and that using the learned dynamics. We
note that MoBIL-Prox would still converge at the
end despite the model error. Finally, we find that the
performance of MoBIL with the last-cost predictive
model is often similar to MoBIL-Prox with the simu-
lated gradients computed through the true dynamics.

6 CONCLUSION

We propose two novel model-based IL algorithms
MoBIL-Prox and MoBIL-VI with strong theoretical
properties: they are provably up-to-and-order faster
than the state-of-the-art IL algorithms and have un-
biased performance even when using imperfect pre-
dictive models. Although we prove the performance
under convexity assumptions, we empirically find that
MoBIL-Prox improves the performance even when
using neural networks. In general, MoBIL accelerates
policy learning when having access to an predictive
model that can predict future gradients non-trivially.
While the focus of the current paper is theoretical in na-
ture, the design of MoBIL leads to several interesting
questions that are important to reliable application of
MoBIL-Prox in practice, such as end-to-end learning
of predictive models and designing adaptive regulariza-
tions for MoBIL-Prox.
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