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Abstract—Model predictive control (MPC) is a powerful tech-
nique for solving dynamic control tasks. In this paper, we
show that there exists a close connection between MPC and
online learning, an abstract theoretical framework for analyzing
online decision making in the optimization literature. This new
perspective provides a foundation for leveraging powerful online
learning algorithms to design MPC algorithms. Specifically, we
propose a new algorithm based on dynamic mirror descent
(DMD), an online learning algorithm that is designed for non-
stationary setups. Our algorithm, Dynamic Mirror Descent
Model Predictive Control (DMD-MPC), represents a general
family of MPC algorithms that includes many existing techniques
as special instances. DMD-MPC also provides a fresh perspective
on previous heuristics used in MPC and suggests a principled
way to design new MPC algorithms. In the experimental section
of this paper, we demonstrate the flexibility of DMD-MPC,
presenting a set of new MPC algorithms on a simple simulated
cartpole and a simulated and real-world aggressive driving
task. A video of the real-world experiment can be found at
https://youtu.be/vZST3v0_S9w.

I. INTRODUCTION

Model predictive control (MPC) [20] is an effective tool
for control tasks involving dynamic environments, such as
helicopter aerobatics [1] and aggressive driving [30]. One
reason for its success is the pragmatic principle it adopts in
choosing controls: rather than wasting computational power to
optimize a complicated controller for the full-scale problem
(which may be difficult to accurately model), MPC instead
optimizes a simple controller (e.g., an open-loop control se-
quence) over a shorter planning horizon that is just sufficient to
make a sensible decision at the current moment. By alternating
between optimizing the simple controller and applying its
corresponding control on the real system, MPC results in
a closed-loop policy that can handle modeling errors and
dynamic changes in the environment.

Various MPC algorithms have been proposed, using tools
ranging from constrained optimization techniques [7, 20, 27]
to sampling-based techniques [30]. In this paper, we show that,
while these algorithms were originally designed differently, if
we view them through the lens of online learning [16], many
of them actually follow the same general update rule. Online
learning is an abstract theoretical framework for analyzing
online decision making. Formally, it concerns iterative interac-
tions between a learner and an environment over T rounds. At
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round t, the learner makes a decision θ̃t from some decision
set Θ. The environment then chooses a loss function `t based
on the learner’s decision, and the learner suffers a cost `t(θ̃t).
In addition to seeing the decision’s cost, the learner may be
given additional information about the loss function (e.g., its
gradient evaluated at θ̃t) to aid in choosing the next decision
θ̃t+1. The learner’s goal is to minimize the accumulated costs∑T
t=1 `t(θ̃t), e.g., by minimizing regret [16].
We find that the MPC process bears a strong similarity with

online learning. At time t (i.e., round t), an MPC algorithm
optimizes a controller (i.e., the decision) over some cost
function (i.e., the per-round loss). To do so, it observes the cost
of the initial controller (i.e., `t(θ̃t)), improves the controller,
and executes a control based on the improved controller in the
environment to get to the next state (which in turn defines the
next per-round loss) with a new controller θ̃t+1.

In view of this connection, we propose a generic frame-
work, DMD-MPC (Dynamic Mirror Descent Model Predictive
Control), for synthesizing MPC algorithms. DMD-MPC is
based on a first-order online learning algorithm called dy-
namic mirror descent (DMD) [14], a generalization of mirror
descent [4] for dynamic comparators. We show that several
existing MPC algorithms [31, 32] are special cases of DMD-
MPC, given specific choices of step sizes, loss functions, and
regularization. Furthermore, we demonstrate how new MPC
algorithms can be derived systematically from DMD-MPC
with only mild assumptions on the regularity of the cost
function. This allows us to even work with discontinuous cost
functions (like indicators) and discrete controls. Thus, DMD-
MPC offers a spectrum from which practitioners can easily
customize new algorithms for their applications.

In the experiments, we apply DMD-MPC to design a range
of MPC algorithms and study their empirical performance.
Our results indicate the extra design flexibility offered by
DMD-MPC does make a difference in practice; by properly
selecting hyperparameters which are obscured in the previous
approaches, we are able to improve the performance of exist-
ing algorithms. Finally, we apply DMD-MPC on a real-world
AutoRally car platform [13] for autonomous driving tasks and
show it can achieve competent performance.

Notation: As our discussions will involve planning horizons,
for clarity, we use lightface to denote variables that are meant
for a single time step, and boldface to denote the variables
congregated across the MPC planning horizon. For example,



we use ût to denote the planned control at time t and
ût , (ût, . . . , ût+H−1) to denote an H-step planned control
sequence starting from time t. We use a subscript to extract
elements from a congregated variable; e.g., we use ût,h to the
denote the hth element in ût (the subscript index starts from
zero). All the variables in this paper are finite-dimensional.

II. AN ONLINE LEARNING PERSPECTIVE ON MPC

A. The MPC Problem Setup

Let n, m ∈ N+ be finite. We consider the problem of
controlling a discrete-time stochastic dynamical system

xt+1 ∼ f(xt, ut) (1)

for some stochastic transition map f : Rn × Rm → Rn. At
time t, the system is in state xt ∈ Rn. Upon the execution of
control ut ∈ Rm, the system randomly transitions to the next
state xt+1, and an instantaneous cost c(xt, ut) is incurred. Our
goal is to design a state-feedback control law (i.e., a rule of
choosing ut based on xt) such that the system exhibits good
performance (e.g., accumulating low costs over T time steps).

In this paper, we adopt the MPC approach to choosing
ut: at state xt, we imagine controlling a stochastic dynamics
model f̂ (which approximates our system f ) for H time steps
into the future. Our planned controls come from a control
distribution πθ that is parameterized by some vector θ ∈ Θ,
where Θ is the feasible parameter set. In each simulation
(i.e., rollout), we sample1 a control sequence ût from the
control distribution πθ and recursively apply it to f̂ to generate
a predicted state trajectory x̂t , (x̂t, x̂t+1, . . . , x̂t+H): let
x̂t = xt; for τ = t, . . . , t+H − 1, we set x̂τ+1 ∼ f̂(x̂τ , ûτ ).
More compactly, we can write the simulation process as

x̂t ∼ f̂(xt, ût) (2)

in terms of some f̂ that is defined naturally according to
the above recursion. Through these simulations, we desire to
select a parameter θt ∈ Θ that minimizes an MPC objective
Ĵ(πθ;xt), which aims to predict the performance of the
system if we were to apply the control distribution πθ starting
from xt.2 In other words, we wish to find the θt that solves

min
θ∈Θ

Ĵ(πθ;xt). (3)

Once θt is decided, we then sample3 ût from πθt , extract the
first control ût, and apply it on the real dynamical system f
in (1) (i.e., set ut = ût) to go to the next state xt+1. Because θt
is determined based on xt, MPC is effectively state-feedback.

The motivation behind MPC is to use the MPC objective
Ĵ to reason about the controls required to achieve desirable
long-term behaviors. Consider the statistic

C(x̂t, ût) ,
∑H−1
h=0 c(x̂t+h, ût+h) + cend(x̂t+H), (4)

1This can be sampled in either an open-loop or closed-loop fashion.
2Ĵ can be seen as a surrogate for the long-term performance of our

controller. Typically, we set the planning horizon H to be much smaller than
T to reduce the optimization difficulty and to mitigate modeling errors.

3This setup can also optimize deterministic policies, e.g., by defining πθ
to be a Gaussian policy with the mean being the deterministic policy.
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Fig. 1: Diagram of the online learning perspective, where blue
and red denote the learner and the environment, respectively.

where cend is a terminal cost function. A popular MPC objec-
tive is Ĵ(πθ;xt) = E[C(x̂t, ût) | xt,πθ, f̂ ], which estimates
the expected H-step future costs. Later in Section III-A, we
will discuss several MPC objectives and their properties.

Although the idea of MPC sounds intuitively promising,
the optimization can only be approximated in practice (e.g.,
using an iterative algorithm like gradient descent), because (3)
is often a stochastic program (like the example above) and
the control command ut needs to be computed at a high
frequency. In consideration of this imperfection, it is common
to heuristically bootstrap the previous approximate solution
as the initialization to the current problem. Specifically, let
θt−1 be the approximate solution to the previous problem
and θ̃t denote the initial condition of θ in solving (3). The
bootstrapping step can then written as

θ̃t = Φ(θt−1) (5)

by effectively defining a shift operator Φ (see Section A for
details). Because the subproblems in (3) of two consecutive
time steps share all control variables except for the first and
the last ones, shifting the previous solution provides a warm
start to (3) to amortize the computational complexity.

B. The Online Learning Perspective

As discussed, the iterative update process of MPC resembles
the setup of online learning [16]. Here we provide the details to
convert an MPC setup into an online learning problem. Recall
from the introduction that online learning mainly consists of
three components: the decision set, the learner’s strategy for
updating decisions, and the environment’s strategy for updat-
ing per-round losses. We show the counterparts in MPC that
correspond to each component below. Note that in this section
we will overload the notation Ĵ(θ;xt) to mean Ĵ(πθ;xt).

We use the concept of per-round loss in online learning as a
mechanism to measure the decision uncertainty in MPC, and
propose the following identification (shown in Fig. 1) for the
MPC setup described in the previous section: we set the rounds
in online learning to synchronize with the time steps of our
control system, set the decision set Θ as the space of feasible
parameters of the control distribution πθ , set the learner as the
MPC algorithm which in round t outputs the decision θ̃t ∈ Θ
and side information ut−1, and set the per-round loss as

`t(·) = Ĵ(· ;xt). (6)

In other words, in round t of this online learning setup, the
learner plays a decision θ̃t along with a side information



ut−1 (based on the optimized solution θt−1 and the shift
operator in (5)), the environment selects the per-round loss
`t(·) = Ĵ(·;xt) (by applying ut−1 to the real dynamical sys-
tem in (1) to transit the state to xt), and finally the learner
receives `t and incurs cost `t(θ̃t) (which measures the sub-
optimality of the future plan made by the MPC algorithm).

This online learning setup differs slightly from the standard
setup in its separation of the decision θ̃t and the side infor-
mation ut−1; while our setup can be converted into a standard
one that treats θt−1 as the sole decision played in round t,
we adopt this explicit separation in order to emphasize that
the variable part of the incurred cost `t(θ̃t) pertains to only
θ̃t. That is, the learner cannot go back and revert the previous
control ut−1 already applied on the system, but only uses `t
to update the current and future controls ût, . . . , ût+H−1.

The performance of the learner in online learning (which
by our identification is the MPC algorithm) is measured in
terms of the accumulated costs

∑T
t=1 `t(θ̃t). For problems

in non-stationary setups, a normalized way to describe the
accumulated costs in the online learning literature is through
the concept of dynamic regret [14, 34], which is defined as

D-Regret =
∑T
t=1 `t(θ̃t)−

∑T
t=1 `t(θ

?
t ), (7)

where θ?t ∈ arg minθ∈Θ `t(θ). Dynamic regret quantifies
how suboptimal the played decisions θ̃1, . . . , θ̃T are on the
corresponding loss functions. In our proposed problem setup,
the optimality concept associated with dynamic regret conveys
a consistency criterion desirable for MPC: we would like to
make a decision θt−1 at state xt−1 such that, after applying
control ut−1 and entering the new state xt, its shifted plan θ̃t
remains close to optimal with respect to the new loss function
`t. If the dynamics model f̂ is accurate and the MPC algorithm
is ideally solving (3), we can expect that bootstrapping the
previous solution θt−1 through (5) into θ̃t would result in a
small instantaneous gap `t(θ̃t) − `t(θ?t ) which is solely due
to unpredictable future information (such as the stochasticity
in the dynamical system). In other words, an online learning
algorithm with small dynamic regret, if applied to our online
learning setup, would produce a consistently optimal MPC
algorithm with regard to the solution concept discussed above.
However, we note that having small dynamic regret here does
not directly imply good absolute performance on the control
system, because the overall performance of the MPC algorithm
is largely dependent on the form of the MPC objective Ĵ (e.g.,
through choice of H and accuracy of f̂ ). Small dynamic regret
more precisely means whether the plan produced by an MPC
algorithm is consistent with the given MPC objective.

III. A FAMILY OF MPC ALGORITHMS BASED ON
DYNAMIC MIRROR DESCENT

The online learning perspective on MPC suggests that good
MPC algorithms can be designed from online learning algo-
rithms that achieve small dynamic regret. This is indeed the
case. We will show that a range of existing MPC algorithms
are in essence applications of a classical online learning
algorithm called dynamic mirror descent (DMD) [14]. DMD

is a generalization of mirror descent [4] to problems involving
dynamic comparators (in this case, the {θ?t } in dynamic regret
in (7)). In round t, DMD applies the following update rule:

θt = arg min
θ∈Θ
〈γtgt,θ〉+Dψ(θ‖θ̃t), θ̃t+1 = Φ(θt) (8)

where gt = ∇`t(θ̃t) (which can be replaced by unbiased
sampling if ∇`t(θ̃t) is an expectation), Φ is called the shift
model,4 γt > 0 is the step size, and for some θ,θ′ ∈ Θ,
Dψ(θ‖θ′) , ψ(θ)−ψ(θ′)−〈∇ψ(θ′),θ−θ′〉 is the Bregman
divergence generated by a strictly convex function ψ on Θ.

The first step of DMD in (8) is reminiscent of the proximal
update in the usual mirror descent algorithm. It can be thought
of as an optimization step where the Bregman divergence acts
as a regularization to keep θ close to θ̃t. Although Dψ(θ‖θ′)
is not necessarily a metric (since it may not be symmetric),
it is still useful to view it as a distance between θ and θ′.
Indeed, familiar examples of the Bregman divergence include
the squared Euclidean distance and KL divergence5 [3].

The second step of DMD in (8) uses the shift model Φ
to anticipate the optimal decision for the next round. In the
context of MPC, a natural choice for the shift model is
the shift operator in (5) defined previously in Section II-A
(hence the same notation), because the per-round losses in two
consecutive rounds here concern problems with shifted time
indices. Hall and Willett [14] show that the dynamic regret of
DMD scales with how much the optimal decision sequence
{θ?t } deviates from Φ (i.e.,

∑
t ‖θ?t+1 − Φ(θ?t )‖), which is

proportional to the unpredictable elements of the problem.

Algorithm 1: Dynamic Mirror Descent MPC (DMD-MPC)

for t = 1, 2, . . . , T do
`t(·) = Ĵ(· ;xt)
θt = arg min

θ∈Θ
〈γt∇`t(θ̃t),θ〉+Dψ(θ‖θ̃t)

Sample ût ∼ πθt and set ut = ût
Sample xt+1 ∼ f(xt, ut)
θ̃t+1 = Φ(θt)

end

Applying DMD in (8) to the online learning problem de-
scribed in Section II-B leads to an MPC algorithm shown
in Algorithm 1, which we call DMD-MPC. More precisely,
DMD-MPC represents a family of MPC algorithms in which
a specific instance is defined by a choice of:

1) the MPC objective Ĵ in (6),
2) the form of the control distribution πθ , and
3) the Bregman divergence Dψ in (8).

Thus, we can use DMD-MPC as a generic strategy for synthe-
sizing MPC algorithms. In the following, we use this recipe
to recreate several existing MPC algorithms and demonstrate
new MPC algorithms that naturally arise from this framework.

4In [14], Φ is called a dynamical model, but it is not the same as the
dynamics of our control system. We therefore rename it to avoid confusion.

5For probability distributions p and q over a random variable x, the KL
divergence is defined as KL(p ‖ q) , Ex∼p[log(p(x)/q(x))].



A. Loss Functions
We discuss several definitions of the per-round loss `t,

which all result from the formulation in (6) but with different
Ĵ . These loss functions are based on the statistic C(x̂t, ût)
defined in (4) which measures the H-step accumulated cost
of a given trajectory. For transparency of exposition, we
will suppose henceforth that the control distribution πθ is
open-loop6; similar derivations follow naturally for closed-
loop control distributions. For convenience of practitioners,
we also provide expressions of their gradients in terms of the
likelihood-ratio derivative7 [12]. For some function Lt(x̂t, ût),
all these gradients shall have the form

∇`t(θ) = Eût∼πθEx̂t∼f̂(xt,ût)[Lt(x̂t, ût)∇θ logπθ(ût)]. (9)

In short, we will denote Eût∼πθEx̂t∼f̂(xt,ût) as Eπθ,f̂ . These
gradients in practice are approximated by finite samples.

1) Expected Cost: The most commonly used MPC objec-
tive is the H-step expected accumulated cost function under
model dynamics, because it directly estimates the expected
long-term behavior when the dynamics model f̂ is accurate
and H is large enough. Its per-round loss function is8

`t(θ) = Eπθ,f̂ [C(x̂t, ût)] (10)

∇`t(θ) = Eπθ,f̂ [C(x̂t, ût)∇θ logπθ(ût)]. (11)

2) Expected Utility: Instead of optimizing for average cost,
we may care to optimize for some preference related to the
trajectory cost C, such as having the cost be below some
threshold. This idea can be formulated as a utility that returns
a normalized score related to the preference for a given
trajectory cost C(x̂t, ût). Specifically, suppose that C is lower
bounded by zero9 and at some round t define the utility
Ut : R+ → [0, 1] (i.e., Ut : C(x̂t, ût) 7→ Ut(C(x̂t, ût)))
to be a function with the following properties: Ut(0) = 1,
Ut is monotonically decreasing, and limz→+∞ Ut(z) = 0.
These are sensible properties since we attain maximum utility
when we have zero cost, the utility never increases with the
cost, and the utility approaches zero as the cost increases
without bound. We then define the per-round loss as

`t(θ) = − logEπθ,f̂ [Ut(C(x̂t, ût))] (12)

∇`t(θ) = −Eπθ ,f̂ [Ut(C(x̂t,ût))∇θ logπθ(ût)]

Eπθ ,f̂ [Ut(C(x̂t,ût))]
. (13)

The gradient in (13) is particularly appealing when esti-
mated with samples. Suppose we sample N control sequences
û1
t , . . . , û

N
t from πθ and (for the sake of compactness) sample

one state trajectory from f̂ for each corresponding control
sequence, resulting in x̂1

t , . . . , x̂
N
t . Then the estimate of (13)

is a convex combination of gradients:

∇`t(θ) ≈ −∑N
i=1 wi∇θ logπθ(ûit),

6Note again that even while using open-loop control distributions, the
overall control law of MPC is state-feedback.

7We assume the control distribution is sufficiently regular with respect to
its parameter so that the likelihood-ratio derivative rule holds.

8In experiments, we subtract the empirical average of the sampled costs
from C in (11) to reduce the variance, at the cost of a small amount of bias.

9If this is not the case, let cmin , infx̂t,ût C(x̂t, ût), which we assume
is finite. We can then replace C with C̃(x̂t, ût) , C(x̂t, ût)− cmin.

where wi = Ut(Ci)∑N
j=1 Ut(Cj)

and Ci = C(x̂it, û
i
t), for

i = 1, . . . , N . We see that each weight wi is computed by
considering the relative utility of its corresponding trajectory.
A cost Ci with high relative utility will push its correspond-
ing weight wi closer to one, whereas a low relative utility
will cause wi to be close to zero, effectively rejecting the
corresponding sample.

We give two examples of utilities and their related losses.
a) Probability of Low Cost: For example, we may care

about the system being below some cost threshold as often as
possible. To encode this preference, we can use the threshold
utility Ut(C) , 1{C ≤ Ct,max}, where 1{·} is the indicator
function and Ct,max is a threshold parameter. Under this
choice, the loss and its gradient become

`t(θ) = − logEπθ ,f̂ [1{C(x̂t, ût) ≤ Ct,max}] (14)

= − log Pπθ ,f̂ (C(x̂t, ût) ≤ Ct,max)

∇`t(θ) = −
E
πθ ,f̂

[1{C(x̂t,ût)≤Ct,max}∇θ logπθ(ût)]
E
πθ ,f̂

[1{C(x̂t,ût)≤Ct,max}] . (15)

As we can see, this loss function also gives the probability
of achieving cost below some threshold. As a result (Fig. 2a),
costs below Ct,max are treated the same in terms of the utility.
This can potentially make optimization easier since we are
trying to make good trajectories as likely as possible instead
of finding the best trajectories as in (10).

However, if the threshold Ct,max is set too low and the
gradient is estimated with samples, the gradient estimate
may have high variance due to the large number of rejected
samples. Because of this, in practice, the threshold is set
adaptively, e.g., as the largest cost of the top elite fraction of
the sampled trajectories with smallest costs [6]. This allows
the controller to make the best sampled trajectories more likely
and therefore improve the controller.

b) Exponential Utility: We can also opt for a continuous
surrogate of the indicator function, in this case the exponential
utility Ut(C) , exp(− 1

λC), where λ > 0 is a scaling
parameter. Unlike the indicator function, the exponential utility
provides nonzero feedback for any given cost and allows
us to discriminate between costs (i.e., if C1 > C2, then
Ut(C1) < Ut(C2)), as shown in Fig. 2b. Furthermore, λ acts
as a continuous alternative to Ct,max and dictates how quickly
or slowly Ut decays to zero, which in a soft way determines
the cutoff point for rejecting given costs.

Under this choice, the loss and its gradient become

`t(θ) = − logEπθ ,f̂

[
exp

(
− 1

λ
C(x̂t, ût)

)]
(16)

∇`t(θ) = −
Eπθ ,f̂

[
exp

(
− 1
λ
C(x̂t, ût)

)
∇θ logπθ(ût)

]
Eπθ ,f̂

[
exp

(
− 1
λ
C(x̂t, ût)

)] . (17)

The loss function in (16) is also known as the risk-seeking
objective in optimal control [28]; this classical interpretation
is based on a Taylor expansion of (16) showing

λ`t(θ) ≈ Eπθ,f̂ [C(x̂t, ût)]− 1
λVπθ,f̂ [C(x̂t, ût)]

when λ is large, where Vπθ,f̂ [C(x̂t, ût)] is the variance of
C(x̂t, ût). Here we derive (16) from a different perspective
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Fig. 2: Visualization of different utilities.

that treats it as a continuous approximation of (14). The use
of exponential transformations to approximate indicators is a
common machine-learning trick (like the Chernoff bound [8]).

B. Algorithms

We instantiate DMD-MPC with different choices of loss
function, control distribution, and Bregman divergence as con-
crete examples to showcase the flexibility of our framework. In
particular, we are able to recover well-known MPC algorithms
as special cases of Algorithm 1.

Our discussions below are organized based on the class of
Bregman divergences used in (8), and the following algorithms
are derived assuming that the control distribution is a sequence
of independent distributions. That is, we suppose πθ is a
probability density/mass function that factorizes as

πθ(ût) =
∏H−1
h=0 πθh(ût,h), (18)

and θ = (θ0, θ1, . . . , θH−1) for some basic control distribution
πθ parameterized by θ ∈ Θ, where Θ denotes the feasible set
for the basic control distribution. For control distributions in
the form of (18), the shift operator Φ in (5) would set θ̃t
by identifying θ̃t,h = θt−1,h+1 for h = 0, . . . ,H − 2, and
initializing the final parameter as either θ̃t,H−1 = θ̃t,H−2 or
θ̃t,H−1 = θ̄ for some default parameter θ̄.

1) Quadratic Divergence: We start with perhaps the most
common Bregman divergence: the quadratic divergence. That
is, we suppose the Bregman divergence in (8) has a quadratic
form 10 Dψ(θ‖θ′) , 1

2 (θ−θ′)TA(θ−θ′) for some positive-
definite matrix A. Below we discuss different choices of A
and their corresponding update rules.

a) Projected Gradient Descent: This basic update rule is
a special case when A is the identity matrix. Equivalently, the
update can be written as θt = arg minθ∈Θ ‖θ−(θ̃t−γtgt)‖2.

b) Natural Gradient Descent: We can recover the natural
gradient descent algorithm [2] by defining A = F(θ̃t) where

F(θ̃t) = Eπθ̃t
[
∇θ̃t logπθ̃t(ût)∇θ̃t logπθ̃t(ût)

T
]

is the Fisher information matrix. This rule uses the natural
Riemannian metric of distributions to normalize the effects of
different parameterizations of the same distribution [25].

c) Quadratic Problems: While the above two update
rules are quite general, we can further specialize the Bregman
divergence to achieve faster learning when the per-round loss
function can be shown to be quadratic. This happens, for

10This is generated by defining ψ(θ) , θTAθ/2.

instance, when the MPC problem in (3) is an LQR or LEQR
problem11 [11]. That is, if

`t(θ) = 1
2θ

TRtθ + rTt θ + const.

for some constant vector rt and positive definite matrix Rt,
we can set A = Rt and γt = 1, making θt given by the first
step of (8) correspond to the optimal solution to `t (i.e., the
solution of LQR/LEQR). The particular values of Rt and rt
for each of LQR and LEQR are derived in Section D.

2) KL Divergence and the Exponential Family: We show
that for control distributions in the exponential family [23],
the Bregman divergence in (8) can be set to the KL di-
vergence, which is a natural way to measure distances be-
tween distributions. Toward this end, we review the basics
of the exponential family. We say a distribution pη with
natural parameter η of random variable u belongs to the
exponential family if its probability density/mass function
satisfies pη(u) = ρ(u) exp(〈η, φ(u)〉 −A(η)), where φ(u) is
the sufficient statistics, ρ(u) is the carrier measure, and A(η) =
log
∫
ρ(u) exp(〈η, φ(u)〉) du is the log-partition function. The

distribution pη can also be described by its expectation pa-
rameter µ , Epη [φ(u)], and there is a duality between the
two parameterizations: µ = ∇A(η) and η = ∇A∗(µ), where
A∗(µ) = supη∈H 〈η, µ〉−A(η) is the Legendre transformation
of A and H = {η : A(η) < +∞}. That is, ∇A = (∇A∗)−1.
The duality results in the property below.

Fact 1. [23] KL(pη ‖ pη′) = DA(η′‖η) = DA∗(µ‖µ′).

We can use Fact 1 to define the Bregman divergence in (8)
to optimize a control distribution πθ in the exponential family:
• if θ is an expectation parameter, we can set
Dψ(θ‖θ̃t) , KL(πθ ‖πθ̃t), or

• if θ is a natural parameter, we can set
Dψ(θ‖θ̃t) , KL(πθ̃t ‖πθ).

We demonstrate some examples using this idea below.
a) Expectation Parameters and Categorical Distribu-

tions: We first discuss the case where θ is an expectation
parameter and the first step in (8) is

θt = arg min
θ∈Θ
〈γtgt,θ〉+ KL(πθ ‖πθ̃t). (19)

To illustrate, we consider an MPC problem with a discrete
control space {1, 2, . . . ,m} and use the categorical distri-
bution as the basic control distribution in (18), i.e., we set
πθh = Cat(θh), where θh ∈ ∆m is the probability of choosing
each control among {1, 2, . . . ,m} at the hth predicted time
step and ∆m denotes the probability simplex in Rm. This
parameterization choice makes θ an expectation parameter of
πθ that corresponds to sufficient statistics given by indicator
functions. With the structure of (9), the update direction is

gt,h = Eπθ̃t ,f̂
[
Lt(x̂t, ût)eût,h � θ̃t,h

]
(h = 0, 1, . . . ,H−1)

where θ̃t,h and gt,h are the hth elements of θ̃t and gt, respec-
tively, eût,h ∈ Rm has 0 for each element except at index ût,h

11The dynamics model f̂ is linear, the step cost c is quadratic, the per-round
loss `t is (10), and the basic control distribution is a Dirac-delta distribution.



where it is 1, and � denotes elementwise division. Update (19)
then becomes the exponentiated gradient algorithm [16]:

θt,h =
1

Zt,h
θ̃t,h � exp(−γtgt,h) (h = 0, 1, . . . , H − 1) (20)

where θt,h is the hth element of θt, Zt,h is the normalizer
for θt,h, and � denotes elementwise multiplication. That is,
instead of applying an additive gradient step to the parameters,
the update in (19) exponentiates the gradient and performs
elementwise multiplication. This does a better job of account-
ing for the geometry of the problem, and makes projection a
simple operation of normalizing a distribution.

b) Natural Parameters and Gaussian Distributions:
Alternatively, we can set θ as a natural parameter and use

θt = arg min
θ∈Θ
〈γtgt,θ〉+ KL(πθ̃t ‖πθ) (21)

as the first step in (8). In particular, we show that, with (21),
the structure of the likelihood-ratio derivative in (9) can be
leveraged to design an efficient update. The main idea follows
from the observation that when the gradient is computed
through (9) and θ̃t is the natural parameter, we can write

gt = ∇`t(θ̃t) = Eπθ̃t ,f̂
[Lt(x̂t, ût)(φ(ût)− µ̃t)] (22)

where µ̃t is the expectation parameter of θ̃t and φ is the
sufficient statistics of the control distribution. We combine the
factorization in (22) with a property of the proximal update
below (proven in Section C) to derive our algorithm.

Proposition 1. Let gt be an update direction. Let M be
the image of H under ∇A. If µt − γtgt ∈ M and ηt+1 =
arg minη∈H 〈γtgt, η〉+DA(η‖ηt), then µt+1 = µt − γtgt.12

We find that, under the assumption13 in Proposition 1, the
update rule in (21) becomes

µt+1 = (1− γt)µ̃t + γtEπθ̃t ,f̂
[Lt(x̂t, ût)φ(ût)]. (23)

In other words, when γt ∈ [0, 1], the update to the expectation
parameter µt in (8) is simply a convex combination of the
sufficient statistics and the previous expectation parameter µ̃t.

We provide a concrete example of an MPC algorithm
that follows from (23). Let us consider a continuous control
space and use the Gaussian distribution as the basic control
distribution in (18), i.e., we set πθh(ût,h) = N (ût,h;mh,Σh)
for some mean vector mh and covariance matrix Σh. For πθh ,
we can choose sufficient statistics φ(ût,h) = (ût,h, ût,hû

T
t,h),

which results in the expectation parameter µh = (mh, Sh)
and the natural parameter ηh = (Σ−1h mh,− 1

2Σ−1h ), where
Sh , Σh + mhm

T
h. Let us set θh as the natural parameter.

Then (21) is equivalent to the update rule for h = 0, . . . ,H−1:

mt,h = (1− γt)m̃t,h + γtEπθ̃t ,f̂
[Lt(x̂t, ût)ût,h]

St,h = (1− γt)S̃t,h + γtEπθ̃t ,f̂
[
Lt(x̂t, ût)ût,hû

T
t,h

]
.

(24)

12A similar proposition can be found for (19).
13If µt−γtgt is not inM, the update in (21) needs to perform a projection,

the form of which is algorithm dependent.

Several existing algorithms are special cases of (24).
• Cross-entropy method (CEM) [6]:

If `t is set to (14) and γt = 1, then (24) becomes

mt,h =
Eπ
θ̃t
,f̂ [1{C(x̂t,ût)≤Ct,max}ût,h]

Eπ
θ̃t
,f̂ [1{C(x̂t,ût)≤Ct,max}]

St,h =
Eπ
θ̃t
,f̂ [1{C(x̂t,ût)≤Ct,max}ût,hûTt,h]

Eπ
θ̃t
,f̂ [1{C(x̂t,ût)≤Ct,max}] ,

which resembles the update rule of the cross-entropy
method for Gaussian distributions [6]. The only differ-
ence is that the second-order moment matrix St,h is
updated instead of the covariance matrix Σt,h.

• Model-predictive path integral (MPPI) [31]:
If we choose `t as the exponential utility, as in (16), and
do not update the covariance, the update rule becomes

mt,h = (1− γt)m̃t,h + γt
Eπ
θ̃t
,f̂

[
e−

1
λ
C(x̂t,ût)ût,h

]
Eπ
θ̃t
,f̂

[
e−

1
λ
C(x̂t,ût)

] , (25)

which reduces to the MPPI update rule [31] for γt = 1.
This connection is also noted in [24].

C. Extensions
In the previous sections, we discussed multiple instantia-

tions of DMD-MPC, showing the flexibility of our framework.
But they are by no means exhaustive. In Section B, we
discuss variations of DMD-MPC, e.g., imposing constraints
and different ways to approximate the expectation in (9).

IV. RELATED WORK

Recent work on MPC has studied sampling-based ap-
proaches, which are flexible in that they do not require
differentiability of a cost function. One such algorithm which
can be used with general cost functions and dynamics is MPPI,
which was proposed by Williams et al. [31] as a generalization
of the control affine case [30]. The algorithm is derived by
considering an optimal control distribution defined by the
control problem. This optimal distribution is intractable to
sample from, so the algorithm instead tries to bring a tractable
distribution (in this case, Gaussian with fixed covariance) as
close as possible in the sense of KL divergence. This ends
up being the same as finding the mean of the optimal control
distribution. The mean is then approximated as a weighted sum
of sampled control trajectories, where the weight is determined
by the exponentiated costs. Although this algorithm works well
in practice (including a robust variant [33] achieving state-of-
the-art performance in aggressive driving [10]), it is not clear
that matching the mean of the distribution should guarantee
good performance, such as in the case of a multimodal optimal
distribution. By contrast, our update rule in (25) results from
optimizing an exponential utility.

A closely related approach is the cross-entropy method
(CEM) [6], which also assumes a Gaussian sampling distribu-
tion but minimizes the KL divergence between the Gaussian
distribution and a uniform distribution over low cost sam-
ples. CEM has found applicability in reinforcement learning
[19, 21, 26], motion planning [17, 18], and MPC [9, 32].



These sampling-based control algorithms can be considered
special cases of general derivative-free optimization algo-
rithms, such as covariance matrix adaptation evolutionary
strategies (CMA-ES) [15] and natural evolutionary strategies
(NES) [29]. CMA-ES samples points from a multivariate
Gaussian, evaluates their fitness, and adapts the mean and
covariance of the sampling distribution accordingly. On the
other hand, NES optimizes the parameters of the sampling dis-
tribution to maximize some expected fitness through steepest
ascent, where the direction is provided by the natural gradient.
Akimoto et al. [2] showed that CMA-ES can also be inter-
preted as taking a natural gradient step on the parameters of the
sampling distribution. As we showed in Section III-B, natural
gradient descent is a special case of DMD-MPC framework.
A similar observation that connects between MPPI and mirror
descent was made by Okada and Taniguchi [24], but their
derivation is limited to the KL divergence and Gaussian case.

V. EXPERIMENTS

We use experiments to the validate the flexibility of DMD-
MPC. We show that this framework can handle both contin-
uous (Gaussian distribution) and discrete (categorial distribu-
tion) variations of control problems, and that MPC algorithms
like MPPI and CEM can be generalized using different step
sizes and control distributions to improve performance. Extra
details and results are included in Sections E and F.

A. Cartpole

We first consider the classic cartpole problem where we
seek to swing a pole upright and keep it balanced only using
actuation on the attached cart. We consider both the continuous
and discrete control variants. For the continuous case, we
choose the Gaussian distribution as the control distribution and
keep the covariance fixed. For the discrete case, we choose the
categorical distribution and use update (20). In either case, we
have access to a biased stochastic model (uses a different pole
length compared to the real cart).

We consider the interaction between the choice of loss, step
size, and number of samples used to estimate (9),14 shown
in Figs. 3 and 4. For this environment, we can achieve low cost
when optimizing the expected cost in (10) with a proper step
size (10−2 for both continuous and discrete problems) while
being fairly robust to the number of samples. When using
either of the utilities, the number of samples is more crucial in
the continuous domain, with more samples allowing for larger
step sizes. In the discrete domain (Fig. 3b), performance is
largely unaffected by the number of samples when the step
size is below 10, excluding the threshold utility with 1000
samples. In Fig. 4a, for a large range of utility parameters, we
see that using step sizes above 1 (the step size set in MPPI and
CEM) give significant performance gains. In Fig. 4b, there’s
a more complicated interaction between the utility parameter

14For our experiments, we vary the number of samples from πθ and fix
the number of samples from f̂ to ten. Furthermore, we use common random
numbers when sampling from f̂ to reduce estimation variance.
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Fig. 3: Varying step size and number of samples (same legends
for (a) and (b)). EC = expected cost (10). PLC = probability
of low cost (14) with elite fraction = 10−3. EU = exponential
utility (16) with λ = 1.
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Fig. 4: Varying loss parameter and step size (1000 samples).

and step size, with huge changes in cost when altering the
utility parameter and keeping the step size fixed.

B. AutoRally

1) Platform Description: We use the autonomous Au-
toRally platform [13] to run a high-speed driving task on a
dirt track, with the goal of the task to achieve as low a lap
time as possible. The robot (Fig. 5) is a 1:5 scale RC chassis
capable of driving over 20 m/s (45 mph) and has a desktop-
class Intel Core i7 CPU and Nvidia GTX 1050 Ti GPU. For
real-world experiments, we estimate the car’s pose using a



Fig. 5: Rally car driving during an experiment.
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Fig. 6: Simulated AutoRally performance with different step
sizes and number of samples. Though many samples coupled
with large steps yield the smallest lap times, the performance
gains are small past 1920 samples. With fewer samples, a
lower step size helps recover some lost performance.

particle filter from [10] which relies on a monocular camera,
IMU, and GPS. In both simulated and real-world experiments,
the dynamics model is a neural network which has been fitted
to data collected from human demonstrations. We note that the
dynamics model is deterministic, so we don’t need to estimate
any expectations with respect to the dynamics.

2) Simulated Experiments: We first use the Gazebo simu-
lator (Fig. 9 in Section E-B) to perform a sweep of algorithm
parameters, particularly the step size and number of samples,
to evaluate how changing these parameters can affect the
performance of DMD-MPC. For all of the experiments, the
control distribution is a Gaussian with fixed covariance, and
we use update (25) (i.e., the loss is the exponential utility (16))
with λ = 6.67. The resulting lap times are shown in Fig. 6.15

We see that although using more samples does result in smaller
lap times, there are diminishing returns past 1920 samples per
gradient. Indeed, with a proper step size, even as few as 192
samples can yield lap times within a couple seconds of 3840
samples and a step size of 1. We also observe that the curves
converge as the step size decreases further, implying that only
a certain number of samples are needed for a given step size.
This is a particularly important advantage of DMD-MPC over
methods like MPPI: by changing the step size, DMD-MPC can
perform much more effectively with fewer samples, making
it a good choice for embedded systems which can’t produce
many samples due to computational constraints.

3) Real-World Experiments: In the real-world
setting (Fig. 7), the control distribution is a Gaussian
with fixed covariance, and we use update (25) with λ = 8.
We used the following experimental configurations: each of
1920 and 64 samples, and each of step sizes 1 (corresponding

15The large error bar for 64 samples and step size of 0.8 is due to one
particular lap where the car stalled at a turn for about 60 seconds.

Fig. 7: Real-world AutoRally task.

TABLE I: Avg. lap times (in sec.) for real-world experiments.

Step size γt 1920 samples 64 samples
1 31.76± 0.55 33.74± 0.78

0.8 31.81± 0.21 33.84± 0.80
0.6 32.83± 0.31 33.64± 0.74

to MPPI), 0.8, and 0.6. Overall (Table I), there’s a mild
degradation in performance when decreasing the step size
at 1920 samples, due to the car taking a longer path on
the track (Fig. 12a vs. Fig. 12c in Section F-B). Using just
64 samples surprisingly only increases the lap times by 2
seconds and seems unaffected by the step size. This could be
because, despite the noisiness of the DMD-MPC update, the
setpoint controller in the car’s steering servo acts as a filter,
smoothing out the control signal and allowing the car to drive
on a consistent path (Fig. 13 in Section F-B).

VI. CONCLUSION

We presented a connection between model predictive con-
trol and online learning. From this connection, we proposed an
algorithm based on dynamic mirror descent that can work for a
wide variety of settings and cost functions. We also discussed
the choice of loss function within this online learning frame-
work and the sort of preference each loss function imposes.
From this general algorithm and assortment of loss functions,
we show several well known algorithms are special cases and
presented a general update for members of the exponential
family.

We empirically validated our algorithm on continuous and
discrete simulated problems and on a real-world aggressive
driving task. In the process, we also studied the parameter
choices within the framework, finding, for example, that in
our framework a smaller number of rollout samples can be
compensated for by varying other parameters like the step size.

We hope that the online learning and stochastic optimization
viewpoints of MPC presented in this paper opens up new
possibilities for using tools from these domains, such as
alternative efficient sampling techniques [5] and accelerated
optimization methods [22, 24], to derive new MPC algorithms
that perform well in practice.
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