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1.  Introduction

Quantum memories are of crucial importance for developing 
quantum information technologies and form a platform for 
building scalable linear optical quantum computers, realiz-
ing long-distance quantum communications, etc (see [1, 2]  
for a recent review). At present, main attention is paid to 
quantum memory schemes utilizing the interaction of 
weak light pulses with ensembles of optical centers. These 
schemes are based on photon echo, electromagnetically 
induced transparency and off-resonant Raman absorption 
and emission of light pulses, making it possible to imple-
ment multimode quantum memory necessary for practical 
applications. As for the quantum information carriers, one 
of the promising materials for storage is diamond with color 
centers (see, e.g. [3, 4]). In particular, the negatively-charged 
silicon-vacancy centers (SiV−) have recently attracted great 
attention [5–11] since they demonstrate large Debye–Waller 

factor, spectral stability, and a narrow inhomogeneous broad-
ening of optical transitions. The latter makes these crystals 
promising candidates for implementing various memory 
protocols based on off-resonant Raman interaction [12–20]. 
Recently, an ensemble of nitrogen-vacancy centers has been 
considered in this context [21]. In particular, it was shown 
that a Λ-scheme with orthogonal linearly polarised optical 
transitions can be implemented in this system by application 
of external electric and magnetic fields, thereby minimiz-
ing four-wave mixing noise. However, large inhomogeneous 
broadening of optical transitions (typically tens of GHz), 
in addition to strong spectral diffusion (∼100 MHz), is a 
significant problem. In the present work, we analyze the 
possibility of implementing optical quantum memory via 
off-resonant Raman absorption and emission of single-pho-
ton pulses in an ensemble of silicon-vacancy centers placed 
in a cavity and achieving large signal-to-noise ratio at the 
output of the memory device.
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2. The model

The general scheme of quantum memory based on the Raman 
interaction of two fields with an ensemble of N � 1 color cen-
ters placed in a resonator is shown in figure 1(a). In the absence 
of an external magnetic field and strain, the SiV centers dem-
onstrate an electronic level structure consisting of the ground-
state and excited-state manifolds, each containing two branches 
with the frequency splitting of ∆GS = 48 GHz in the ground 
and ∆ES = 259 GHz in the excited state (see figure 1(b)). We 
assume that [1 1 1] axis of the color centers is oriented along the 
axis z perpendicular to the cavity axis. A weak signal field to be 
stored is supposed to act on the transition |1〉 − |3〉 and polar-
ized along the axis z, while the control field acts on the trans
ition |2〉 − |3〉 and polarized perpendicular to the [1 1 1] axis 
(y -polarized). In general case, the dipole moments of the opti-
cal transitions forming the Λ-scheme are not orthogonal so that 
the control field with frequency ωc acts on both optical trans
itions, producing a Raman combination not only with the signal 
field (frequency ωs) but also with an idler field (frequency ωi).  
This results in an unwanted four-wave mixing process and 
corresponding noise that can prevent the implementation of 
Raman quantum memories (see [22] and references therein). 
It should be noted that without an external magnetic field each 
of the energy levels is doubly degenerate so that each of the 
Λ-schemes actually consists of two equivalent spin-preserving 
ones [23, 24]. In addition, similar Λ-schemes are formed with 
the upper state |4〉, which should be also taken into account in 
the numerical simulations.

The energy levels can be widely tuned in frequency by strain, 
which proves to be useful for several reasons. First, coherence 
time for the storage transition |1〉 − |2〉 is increased up to 250 
ns at liquid Helium temperature [25]. Second, increasing fre-
quency splitting between the levels |1〉 and |2〉 makes it pos-
sible to store shorter single-photon pulses. Third, it allows one 
to use a frequency selective mirror in the resonator, thereby 
making linewidth for the control field broader than that for the 
signal field, which is necessary for optimal coupling by control 
field pulse shaping. In addition, as will be shown below, the 
larger the strain, the smaller the coupling of the control field to 
the unwanted transition in the Λ-scheme, which allows one to 
reduce noise at the output of the memory device.

3.  Basic equations

To consider the cavity-assisted quantum memory, we take 
advantage of a theoretical model developed in [26], which is 
based on the Heisenberg–Langevin equations  of motion for 
the atomic and field operators. The Hamiltonian of the system 
in the rotating wave approximation can be written in the form:

H = −�[Ω32σ32 e−iωt +Ω41σ41 e−iωt

+Ω31σ31 e−iωt +Ω42σ42 e−iωt

+ g31σ31a + g42σ42a + g31σ31b + g42σ42b

+ g32σ32a + g41σ41a + g32σ32b + g41σ41b]

+ H.c.,

�

(1)

where a = A exp(−iωst) and b = B exp(−iωit) are the annihi-
lation operators for the photons of the signal and idler fields, 
respectively, in the resonator modes; σmn = Pmn exp(iωmnt) 
are the atomic transition operators (σmn = |m〉〈n|, 
m, n = {1, 2, 3, 4}); and A, B and Pmn are slowly varying field 
and coherence amplitudes, respectively. The frequencies 
ωmn are taken as follows: ω31 = ω41 = ωs, ω32 = ω42 = ω, 
ω21 = ωs − ω (other frequencies are not relevant in the present 
model). For an ensemble of N � 1 optical centers, taking into 
account that in the process of interaction with a weak signal 
field almost all centers remain in the ground state (〈σ11〉 ≈ N , 
〈σ22〉 ≈ 〈σ33〉 ≈ 〈σ44〉 ≈ 0), from the Heisenberg–Langevin 
equations we obtain:

Ṗ12 =− γ12P12 − i∆12P12 + iΩ∗
32P13 + iΩ∗

42P14

− iΩ41P42 e−iδt − iΩ31P32 e−iδt

− ig31P32A ei2δt − ig31P32B ei(δ′+δ)t

+ ig∗
42P14A† e−iδt + ig∗

42P14B† e−iδ′t

− ig41P42A − ig41P42B ei(δ′−δ)t

+ ig∗
32P13A† e−iδt + ig∗

32P13B† e−iδ′t,

�

(2)

Ṗ13 =− γ13P13 − i∆13P13 + iΩ32P12 + iΩ31
√

N e−iδt

+ ig31
√

NA + ig31
√

NB ei(δ′−δ)t

+ ig32P12A eiδt + ig32P12B eiδ′t,

�

(3)

Ṗ23 =− γ23P23 − i(∆13 −∆12)P23 + iΩ31P21 e−iδt

+ ig31P21A + ig31P21B ei(δ′−δ)t,
�

(4)

Figure 1.  Schematic diagram of the cavity-based Raman quantum 
memory (a) and energy level diagram (b).
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Ṗ14 =− γ14P14 − i∆14P14 + iΩ42P12 + iΩ41
√

N e−iδt

+ ig41
√

NA + ig41
√

NB ei(δ′−δ)t

+ ig42P12A eiδt + ig42P12B eiδ′t,

�

(5)

Ṗ24 =− γ24P24 − i(∆14 −∆12)P24 + iΩ41P21 e−iδt

− ig41P21A − ig41P21B ei(δ′−δ)t,
�

(6)

Ȧ =− κA +
√

2κAin

+ ig∗31P13 + ig∗
41P14

+ ig∗32P23 e−iδt + ig∗42P24 e−iδt,

�

(7)

Ḃ =− κB +
√

2κBin

+ ig∗31P13 ei(δ−δ′)t + ig∗41P14 ei(δ−δ′)t

+ ig∗32P23 e−iδ′t + ig∗
42P24 e−iδ′t,

�

(8)

where δ = ω − ωs, δ′ = ω − ωi, ∆13 = ω33 − ωs is the one-
photon detuning (∆14 = ∆13 +∆ES), ∆12 = ω22 + ω − ωs is 
the two-photon detuning (�ωnn corresponds to the energy of the 
nth level relative to the ground one), gmn = dmn

√
ω/(2�ε0V) 

is the coupling constant between the field and optical cen-
ters at the |m〉 − |n〉 transition, which is characterised by the 
dipole moment dmn; γmn are the decay rates of coherences; 2κ 
is the decay rate of the resonator field, and V  is the volume 
of the resonator field mode. The collective atomic operators 

are normalized as follows: Pmn =
∑N

j=1 Pj/
√

N . In the case 

of an exact two-photon resonance, when ∆12 = 0, we have 
δ = −δ′, so that |δ| is equal to the frequency separation ∆GS 
between the states |1〉 and |2〉. In doing so, the two-photon 
detuning ∆12 is modulated in time to take into account the 
two-photon frequency shift induced by the time-dependent 
control field, which is equal to −|Ω32|2/∆13 in a simple three-
level case, but corrected numerically in the present model (by 
a multiplier) to maximize the quantum memory efficiency.

In possession of a solution for the resonator field ampl
itude A(t) we can find the amplitude of the signal field at the 
output of the resonator Aout(t) from the boundary condition 
Aout(t) =

√
2κA(t)− Ain(t). For the system of equations (2)–

(8) to be solved numerically, the operators are replaced by 
complex numbers corresponding to the amplitudes of the 
transition probability between the vacuum and single-photon 
states for the field and between the ground and excited states 
for optical centers. In doing so, the input idler field Bin is 
assumed to be zero. Since almost all optical centers are in the 
ground state, the contribution of atomic noise operators in the 
Heisenberg–Langevin equations can be neglected so that they 
are not included in the system of equations.

The relative dipole moments of the optical transitions for 
the SiV centers are calculated using eigenstates of the total 
Hamiltonian [23] with strain susceptibility parameters from 
[27]. To be more specific, we consider so-called Eg-strain 
that leads to a larger frequency splitting between the sublev-
els of the ground state. It turns out that the larger the strain, 
the weaker the coupling of the y -polarized control field to the 
unwanted transition |1〉 − |3〉, i.e. the weaker the noise. Table 1 

illustrates the relative probabilities of the optical transitions 
calculated for the case of high Eg-strain (1.7 · 10−4), when 
∆GS = 463 GHz and ∆ES = 698 GHz. This case is taken for 
quantum memory simulation below. The dipole moment for 
the transition |1〉 − |3〉 and z-polarized light (signal field) is 
estimated as 14.3 D [5].

4.  Simulation results

The quantum memory is basically characterized by the total 
efficiency, which is defined as

η =

∫
|Aout(t)|2 dt∫
|Ain(t)|2 dt

,� (9)

where Ain(t) and Aout(t) are the amplitudes of the input and out-
put pulses, respectively, well separated in time. For the high 
efficiency to be achieved, the time dependence of the con-
trol field during storage (via off-resonant Raman absorption) 
and retrieval (via off-resonant Raman scattering) should be 
optimized for given input and output pulse shapes [28]. In this 
case, the efficiency is limited basically by coherence decay 
during storage time. Another important parameter describing 
the quantum memory scheme is the noise that appears dur-
ing retrieval, which is defined as radiation at the signal field 
frequency that arises when the control field is applied to the 
atomic ensemble (during both storage and retrieval slots) in 
the absence of an input pulse. In general, at the output of the 
device one observes the sum of the useful signal and the noise, 
which is characterised by the signal-to-noise ratio

SNR =

(∫
|Anoise|2 dt∫
|Aout|2 dt

)−1

.� (10)

In what follows, we consider storage and retrieval of 
Gaussian single-photon pulses with the amplitude

Ain = A0
in exp[−R(t − T)2],� (11)

where 
∫
|Ain|2 dt = 1 is the normalisation corresponding the 

the single-photon state and the parameter R is related to the 
pulse duration (FWHM) τ =

√
2 ln 2/R. The optimal time 

dependence of the Rabi frequency Ω32(t) during storage and 
retrieval, which results in the emission of a Gaussian pulse, 
can be described analytically [26].

To be more specific, we consider a semiconfocal micro-
resonator of  ∼50 µm  in length with the input/output mirror 

Table 1.  Relative transition intensities |gmn/g13|2 for coupling to 
an z-polarized (y -polarized) light under conditions of zero strain 
(above) and Eg-strain of 1.7 · 10−4 (below).

|3〉 |4〉

|1〉 1 (0.0251) 0.0378 (0.2343)

|2〉 0.0378 (0.2343) 1 (0.0251)

|3〉 |4〉

|1〉 1 (0.0057) 0.0206 (0.2494)

|2〉 0.0206 (0.2494) 1 (0.0057)

Laser Phys. 29 (2019) 104001
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reflectivity of 0.97. The latter corresponds to the cavity finesse 
of about 200, which provides the cavity linewidth of 18 GHz 
allowing storage of pulses as short as 50 ps. A thin (1 µm) 
diamond plate is located at the focal plane where the beam 
spot is of  ∼4 µm  in diameter. An example of such a resonator 
system has been recently demonstrated in [7]. Then, accord-
ing to the numerical simulation, we can obtain SNR ≈ 50 at 
the output of the memory for Gaussian single-photon pulses 
of 50 ps duration, which strongly depends on the number of 
color centers, control field intensity and one-photon detun-
ing. This can be understood by considering far-off-resonant 
interaction, when the optical coherences can be adiabati-
cally eliminated from the equations  of motion, which gives 
dP12/dt = . . .+Ω∗

32Ω31
√

N exp(−iδt)/∆13 +Ω∗
42Ω41

√
N exp(−iδt)/∆14 . 

It is these terms on the right side of the equation that are respon-
sible for noise in the present model. They appear only due to 
coupling of the control field to the unwanted optical trans
itions |1〉 − |3〉 and |1〉 − |4〉, which is reduced with strain. 
Figure 2 displays the result of simulation for such pulses inter-
acting with 2600 SiV centers in the sample subjected by high 
Eg-strain mentioned above. The total efficiency is about 90% 
(for the time-bandwidth product of 6 and coherence time of 
35 ns) provided that inhomogeneous broadening of the low 
frequency transition |1〉 − |2〉 is reversed at the moment of 
time t  =  0. Otherwise, the total efficiency drops to 29% for 
the inhomogeneous broadening of 350 MHz. The latter can 
be expected taking into account the minimum values observed 
for the optical transitions [29]. Similar results of simulation 
are obtained for longer pulses. In this case, noise is smaller 
because longer pulses require smaller intensity of the control 
field and smaller number of color centers. In particular, for 100 
ps pulses we obtain SNR ≈ 230 taking one-photon detuning 
of 100 GHz, peak value of the Rabi frequency Ω13/2π = 40 
GHz and the number of color centers of about 1500.

5.  Conclusion

In summary, we have developed a theoretical model describing 
the storage and retrieval of weak light pulses via off-resonant 
Raman absorption and emission of photons in an ensemble of 
four-level optical centers that have nonorthogonally polarized 
optical transitions. Using this model, we have analyzed the 
signal-to-noise ratio at the output of an optical quantum mem-
ory device based on an ensemble of SiV centers in diamond. 
The numerical results show that the signal-to-noise ratio can 
significantly exceed unity for short single-photon input pulses 
if the number of optical centers is small enough, and level 
splitting in their ground state is significantly enhanced by 
strain.
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