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LARGE DEVIATIONS FOR FAST TRANSPORT STOCHASTIC RDES
WITH APPLICATIONS TO THE EXIT PROBLEM

BY SANDRA CERRAI' AND NICHOLAS PASKAL

University of Maryland

We study reaction diffusion equations with a deterministic reaction term
as well as two random reaction terms, one that acts on the interior of the
domain, and another that acts only on the boundary of the domain. We are
interested in the regime where the relative sizes of the diffusion and reaction
terms are different. Specifically, we consider the case where the diffusion rate
is much larger than the rate of reaction, and the deterministic rate of reaction
is much larger than either of the random rate of reactions.

1. Introduction. In this paper, we are dealing with equations that describe
the evolution of concentrations of various components in a chemical reaction,
subject to random influences. We consider the case where the concentration is
not constant in space in the volume where the reaction takes place, so that the
change of concentration due to the spacial transport has to be taken into consider-
ation. Moreover, we assume that random changes in time and space of the rates
of reaction occur. All of this leads us to consider stochastic reaction-diffusion
equations in multidimensional spatial domains. As a matter of fact, we are con-
sidering here the case where the noise has an impact not only on the domain
of the system, but also on its boundary. As mentioned in [14], classical impor-
tant examples are heat transfer in a solid in contact with a fluid, chemical re-
actor theory, colloid and interface chemistry and analysis of the interactions be-
tween air and water on the surfaces of oceans. In applications, it is also impor-
tant to deal with systems where the rates of chemical reactions and the diffusion
coefficients have different orders. Here, we are dealing with the regime where
the relative size of the diffusion is much larger than the rates of reaction and
the deterministic rate of reaction is much larger than the stochastic rate of reac-
tion.
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More precisely, we are considering the following class of stochastic reaction-
diffusion equations:

due(t, &) =& " Aup(t, &) + f(t, 6, us(t,))
+a(e)g(t &, us(t,))hw(,8), £e€0,
(1.1) Oug

5, 8 =B, £)dwh(, &),
£€d0,u(0,6)=x(),6 €0,

for 0 < ¢ « 1 and for some positive functions «(¢) and B(e), both converging
to zero, as ¢ — 0. Here, O is a bounded domain in R?, with d > 1, having a
smooth boundary, A is a uniformly elliptic second order differential operator, and
d/dv is the associated co-normal derivative acting at (. The coefficients f, g :
[0, 00) x O x R satisfy a Lipschitz condition with respect to the third variable.
The noises w€ and w? are cylindrical Wiener processes valued in H = L?(0)
and Z = L%(30), respectively, with covariances Q € LT (H) and B € L1 (Z). If
d =1, we can handle space—time white noise, while for d > 2 we must suppose
the noise to be colored in space, but we never need to assume Q and B to be
trace-class.

We assume here that the diffusion X; associated with the operator .4, endowed
with the co-normal boundary condition, admits a unique invariant measure x and
a spectral gap occurs. Namely, there exists some y > 0 such that for any % €
L*(O, p),

/|Egh<xt>—<h,u>|2du<s>5ce*2”/ h@E)Pds,  1=0
O (@)

(see Remark 2.1 for an example).

When the deterministic and stochastic rates of reaction are of order one, the fast
diffusion disappears and, in the limit as ¢ — 0, the effective dynamic is described
by a ordinary stochastic differential equation. In fact, in [4] (see also [14]) it was
shown that, forevery 0 < § < T and p > 1, the solutions u} to (1.1), corresponding
to a(e) = B(e) = 1, converge in L?(2; C([8, T1; L*(O, w))) to the solution of the
averaged one-dimensional stochastic differential equation

du(t) = F(t,u(t))dt + G(t,u(t)) dw? (1)

(1.2) B
+ =) dwB @), u(0) = (x, ).

Here, F, G and % are all obtained by taking suitable spatial averages of their
counterparts, f, g and o, with respect to the invariant measure p. Since the aver-
aging still takes time, convergence in C ([0, T']; L%(0, w)) only occurs if the initial
condition x is already constant in space.

In this paper, we are interested in studying the fast transport approximation de-
scribed above in the small noise regime (i.e., @(¢) — 0 and B(¢) — 0). In this case,
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the noisy terms vanish entirely from the limit and the solution to (1.1) converges
in LP(2; C([8, T1; L*(O, ))) to the solution of the ODE

du -
(1.3) E:F(t’u(t))’ u(0) = (x, u).

Thus, we believe it is of interest to study the validity of a large deviation principle
for the family {u} };~¢ in the space C([5, T']; L?(O, w)), and, in particular, to un-
derstand its interplay with the fast transport limit. It turns out that, depending on
the following different scalings between «(¢) and B(e),

B(e)

E_I;I‘IOWS):[)E[O,-FOO],

the action functional and the speed governing the large deviation principle for
equation (1.1) are precisely the same as those governing the large deviation prin-
ciple for the SDE,

du(t) = F(u())dt + (a(e) + B©))Hp(t.u®)dpr,  u(0) = (x, ),

where

A4 Hltw) = 57 )2 [V O[G(t, wym], + 5280V B[ ()N;,m]%],
(here m is the density of the invariant measure p). This means in particular that
the fast transport asymptotics for equation (1.1) is consistent with the small noise
limit.

In the second part of the paper, we study the problem of the exit of the solutions
uy to (1.1) from a domain D in the functional space L0, ). We consider the
case where the limiting equation (1.3) has an attractive equilibrium at 0, and we
prove Freidlin—Wentzell-type exit time estimates. More precisely, if we define

~:=inf{r > 0:u;(t) € 0D},
then we show that for any initial condition x € D C L2(O, ),
(1.5) lim (a(e) + B(e))* log Bt} = inf V(y),
e—0 yedD

where V : L?>(O, 1) — R is the quasi-potential corresponding to the action func-
tional governing the large deviation principle. If the interior noise is additive, that
is, g = 1in (1.1), then the quasi-potential can be written explicitly. Namely,

V(y)=-2H1;" foy F(r)dr,

where Hj is obtained from (1.4) by setting G(¢,u) = Id and by assuming ¥
constant in time. For example, when A is a divergence type operator, we have
m =|0|~!, and hence

_ (+p)?
Vo= / /f(é o) dt do,
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for some nonnegative constants ¢ and ¢, depending on Q and B, and not simul-
taneously zero. In the general case of multiplicative noise, we do not have such an
explicit representation of the quasi-potential; however, the result (1.5) still holds.
Notice that, as far as we know, this is the first time a result as (1.5) is obtained
for an SPDE with multiple scales, where not only the small noise, but also other
asymptotics (in this case the fast transport) have to be taken into consideration.

As known, in order to obtain results like (1.5), a large deviation principle that is
uniform with respect to initial conditions in a bounded set of L?*(O, W) is needed.
Here, we prove the large deviation principle for the family {u}};~¢ in the space
C([8, T]; L>(O, u)) by using the weak convergence approach, as developed for
SPDEs in [2]. This method allows to prove a Laplace principle, which is uniform
with respect to initial conditions in a compact set of H and which, as well known,
is equivalent to the large deviation principle with the same speed and action func-
tional. Thus, in order to prove (1.5), we have first to prove that the Laplace prin-
ciple is uniform with respect to initial conditions on a bounded set of L?(O, )
and then we have to show that a Laplace principle, that is uniform with respect
to initial conditions on a bounded set, implies a large deviation principle that is
uniform with respect to initial conditions on the same bounded set.

In our case, the solutions of equation (1.1) are converging to a one-dimensional
equation, and the problem of proving a uniform Laplace principle for initial data
on a bounded set is circumvented by considering the space L?(O) endowed with
its weak topology. More delicate is the problem of understanding how the uni-
form Laplace principle may imply the uniform large deviation principle. To this
purpose, recently, in [16], some conditions have been introduced in order to guar-
antee, among other things, the equivalence between the uniform Laplace principle
and the uniform large deviation principle, with respect to initial conditions in a
compact set. These arguments can be extended in our setting to give uniformity
with respect to initial conditions in bounded sets. Thus, our job here is proving
that the conditions introduced in [16] are satisfied.

Once we have a large deviation principle that is uniform with respect to initial
conditions in a bounded set, we prove (1.5) by adapting the method used in finite
dimension (see Chapter 4, Section 2 of [9] and Chapter 5.7 of [8]) to our infinite
dimensional setting (see [1, 3] and [5] for some previous results in this direction).
In our model, several complications arise in obtaining the lower bound of Ez; .
Actually, when ¢ is small, equation (1.1) behaves like the linear heat equation for
t on the order of ¢. However, for times on the order of 1, the averaging has already
taken place so that the solution is essentially constant in space and evolves accord-
ing to (1.3). So to establish any kind of lower bound on the exit time, we require a
domain that is both invariant with respect to the semigroup ¢4 and invariant with
respect to trajectories of equation (1.3).

Finally, we would like to mention that in [11], by using the weak convergence
approach to large deviations, in the same spirit of what has been done here, the
interplay between large deviation and averaging principle has been investigated
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under suitable scaling condition between the intensity of the noise in the slow
equation and the fast parameter.

2. Notations and preliminaries.

2.1. Assumptions on the semigroup. We assume that O is a bounded domain
in RY, d > 1, with a smooth boundary, satisfying the extension and exterior cone
properties. We denote H := L*(®) and Z := L*(30), and, for any « > 0, we
denote H* := H*(O) and Z* := H*(00).

We assume that A is a second-order differential operator of the form

S o <s>a)+ib@)a £cO

= —\aij(E)— i (£)—, .
i21 96 Vg P o

The matrix a(§) = [a;;(§)];,; is symmetric and all entries g;; are differentiable,
with continuous derivatives in 0. Moreover, there exists some ag > 0 such that
.1 inf(a(§)n,n) = aoln?,  neR
EeO
Finally, the coefficients b; are continuous on O.

In what follows, we shall denote by A the realization in H of the differential
operator A, endowed with the conormal boundary condition

oh
a—v(é)1=<a(%‘)v(§),Vh(S)>=0, £€90.

The operator A generates a strongly continuous analytic semigroup in H, which
we will denote by e’ A Moreover (see [12] for a proof),

D(A*)C H*,  fora >0,
2.2) ) 3
D(A%) = H“, forO§a<Z.

In general, the realization of 4 in L? spaces, under the same boundary condi-
tions, will also generate a strongly continuous, analytic semigroup, for p > 1. Itis
proved in [7] that under the above conditions on .4 and O, the semigroup admits
an integral kernel k; (£, n) that satisfies

(2.3) O<k@Em<c(?+1), >0

In what follows, we shall assume that ¢’4 satisfies the following condition.

HYPOTHESIS 1. The semigroup ¢’ admits a unique invariant measure /t, and
there exist ¥ > 0 and ¢ > 0 such that, for any & € Lz((’), u) and t > 0,

2.4)

tAy
ey /@h(é)du(é)

—yt
<ce Y |h|L2(O,/L)'
L2(O,p)
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In what follows, we shall denote

Hy, = L2(O. ), (h,u>:=f0h($)du(€), heH,.

REMARK 2.1. Hypothesis 1 is satisfied for example if A is a divergence-
type operator. Actually, in this case the Lebesgue measure is invariant under the
semigroup ¢’4, so that we can define

w=10""x4,

where A; is the Lebesgue measure on R4, Since A is self-adjoint, we can find
a complete orthonormal system {ex},>0 in H, and an increasing nonnegative se-
quence {a }x>0 such that Aey = —ayei. Clearly, op =0 and e = |O|71/2, so that
(x, u) = (x, eq)eo, for any x € H. This implies that

o0
2 - —2ta; -
e x — (e [y, = 10171 e x, ey < e xly,
i=1
so that (2.4) holds for y = «;.
REMARK 2.2.  We have the continuous embedding H < H,,. This follows

from the invariance of y with respect to e'4, and from the boundedness of the
integral kernel (2.3). Actually, for 7 € H, we have

I, =f e nPE)du(s) =f f ki m)hn)[Pdndp @) < clhl.
O 0JO
We also note that, due to the invariance of u, e’ A acts as a contraction in H,,

el = [ AP duce) = 1hi,.

REMARK 2.3. In fact, one can show that the invariant measure u is absolutely
continuous with respect to the Lebesgue measure on O and has a nonnegative
density m € L°°(O) (for a proof, see [4]).

2.2. Assumptions on the coefficients and noise. Concerning the coefficients
f, g and o, we make the following assumptions.

HYPOTHESIS 2.

(i) The mappings f, g : [0,00) x O x R — R are measurable and Lipschitz
continuous in the third variable, uniformly with respect to (¢, ) € [0, T] x O, for
any fixed 7' > 0. In addition, for any T > 0, f and g satisfy

sup |f(t7 ) 0)|L°°((9) < 400, sup |g(t, "0)|L°C(O) < 400.
O<t=<T 0<t<T
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(i) The mapping o : [0, 00) x dO — R is measurable and satisfies for any
T=>0

sup |o(, ’)|L°°(a(9) < 4o00.
0<t<T

In what follows, for any A1, hy € H and £ € O, we define
F(t,h) (&) := f(t.&, h1(&)),

and

[G(t, h)h2] () = g(t, &, h1(8))ha(8).
The uniform Lipschitz assumptions on f and g in Hypothesis 2 imply that the
mappings F(¢t,-): H — H, G(t,) : H — L(H,L'(0)), and G(t,-) : H —
L(L*®(0), H) are all well-defined and Lipschitz continuous, uniformly with re-
specttot €0, T], for any T > 0.
Next, forz € Z and £ € 00, we set

[Z(1)z]¢) =0, §)z(5).

Hypothesis 2 implies that X () € £(Z) and supy, <7 1 Z ()l z(z) < 0.

Concerning the noisy terms, we assume that w2(t) and wB(r) are cylindrical
Wiener processes in H and Z, with covariances Q € LY (H) and B € LT (Z),
respectively. That is,

wl(®) =Y V0eap),  wEt)=> VBfif®),
k=0 k=0

where {ey}x>0 is an orthonormal basis of H, { fx},>0 is an orthonormal basis of Z
and {Bk(¢)}k>0 and {Bk () }r>0 are sequences of independent real-valued Brownian
motions defined on a common stochastic basis (2, F, {F:}s>0, P).

We assume for simplicity that {ex}r>0 diagonalizes /Q with eigenvalues
{Ak}k>0, and { fr}k>0 diagonalizes VB with eigenvalues {6 }r>0. We do not as-
sume that the operators Q and B are trace class, so the sums above do not nec-
essarily converge in H and Z, respectively. However, both of the sums converge
in larger Hilbert spaces containing H and Z, respectively, with Hilbert—Schmidt
embeddings.

We make the following assumption regarding the eigenvalues of Q and B. These
are necessary to obtain the required regularity of the stochastic convolution terms
in the mild formulation of the equation, as described below.

HYPOTHESIS 3. Ifd > 2, then there exist p <2d/(d —2) and 8 <2d/(d —1)
such that

2.5) Yol =ikg <00, Y 6f =kp <0
keN keN
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2.3. Mild solutions. In the present paper, we are dealing with the following
class of equations:

Oue (1, ) =&~  Auc(t, ) + f(1,&,uet,8))

) +a(e)g(t & ust,8)we(, &), £€O,

%(r, £) =ef(e)o(t, £)aws(t, ),
£§€d0,u.(0,8)=x(&),£ 0.

(2.6)

Under the above assumptions on the differential operator .4 and the domain O,
it can be shown (see [13]), that there exists g € R such that for any § > §p and
h € Z, the elliptic boundary value problem

u
(6 —Au) =0, £€0, 5=h(é‘), §£€90,
admits a unique solution u € H. We define the Neumann map, N5 : Z — H, to be
the solution map of this equation, that is, Nsh := u. One can show that for every

heZ,
(2.7 |Nsh| ga+32 < cslh|z,

so that Nj is a bounded linear operator from Z into H**3/2. Next, we consider the
deterministic parabolic problem

{8ry(t,§)=«4y(t,-§), £€0,

%:m,g), £€d0,y(0,6) =0, €.

One can show that for smooth v and large enough 8, the solution to this equation
is given explicitly by

y(t) = (8 — A) /Ot e"IANsv(s)ds.

This formula motivates a notion of mild solution for less regular v. In our case, we
are interested in the boundary value problem

1
dqy(t, &) =—-Ay(t,&), £Ee0,
(2.8) dy €
o= =eBe)o(r, w1, &), £€d0,y(0,6)=0,€0.

So, upon taking § = §p/¢, we say that the process

t A
Bleyw', (1) = Ble) (6 — A) /0 e E Ny [Z(s) dw ()]

is a mild solution to problem (2.8) (see [6] for details, and see [10, 17] and [18] for
other papers where the same type of equations has been studied). This motivates
the following.
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DEFINITION 2.4. Let p>1 and T > 0. An adapted process u. € LP(2;
C ([0, T]; H)) is called a mild solution to problem (2.6) if, for any ¢ € [0, T],

ue(t) = 't x + /0 IR P (s, up()) ds + (®Yw'y o)1) + BEWS (),

where, for any u € L?(2; C([0, T]; H)), we define

wi o) (1) 1= /Ot eIEG (s, u(s)) dw(s).

2.4. Well-posedness and averaging results. In this section, we recall some im-
portant preliminary results from [4].

LEMMA (3.1 of [4]). Assume Hypotheses 2 and 3 hold. Then, for any ¢ > 0,
p>1land T > 0, the process wi’B belongs to LP(2; C(]0, T]; H)) and satisfies

P
(2.9) sup E|lwi gleo.rym < 00
£€(0,1]

LEMMA (3.3 of [4]). Assume Hypotheses 2 and 3 hold. Then for any & > 0,
p>1and T > 0, the mapping wivg(-) maps LP(2; C([0, T]; H) into itself and
satisfies

T
(2.10) esz)p”E}wZ’Q(u)Vé([O?T];H) < cT,p(l —}—IE/(; lu(s)|% ds).
e€(0,

Moreover, it is Lipschitz continuous and

(2.11) S%P1]|wix,g(“) - weA,Q(U)‘Lp(Q;C([o,T];H)) < Lrlu—vlLr@;cqo.11:H))>
£€(0,

for some constant Lt > 0, independent of ¢ € (0, 1], such that Lt — 0,as T — 0.

THEOREM (3.4 of [4]). Assume Hypotheses 2 and 3 hold. Then for any ¢ > 0,
p > 1and T > 0 and for any initial condition x € H, equation (2.6) has a unique
adapted mild solution u}; € L?(Q2; C([0, T]; H)), which satisfies

(2.12) sup Eluf|¢ 0.7y 1) < cr.p(1 +1x15)-
ee(0,1]

Next, for any > 0 and h € H,,, we define

Fit.h) :=<F<r,h>,u)=/of(r,s,h(s>)du<s>.

Moreover, for any t > 0 and hy, hy € H,, we define

(2.13) G(t, h)hy ¢=(G(t,h1)h2,u)=/Og(f,é,hd&))hz(&)du(é),
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and for any r > 0 and z € Z, we define
2(1)z = 80(Nsy Z(1)z, p) = 50/@ Nsy[o (2, )z] (&) du(§).

Hypothesis 2 implies that F(z, -) : H, — R is Lipschitz continuous, uniformly
with respect to t € [0, T']. Concerning G, we observe that for any 4 € H,, and
T=>0

|G (t,h1)h — G(t, ha)h|?
(2.14) <1l [ J(r.6.1®) — g0 £.h2) du(@)

<clhlg, b —haly,,  hi ha€ Hy,t €[0,T].

Therefore, G(t, -)h : H,, — R is Lipschitz continuous, uniformly with respect to
t €[0,T] and A in a bounded set of H,, (and hence H). Finally, the linear func-
tional £(7) : Z — R is bounded due to (2.7).

With these notation, we introduce the equation

dv*(t) = F(t, v (1)) dt + G(t,v* (1)) dw?(t) + (1) dw® (1),

(2.15)
v*(0) = (x, p).

THEOREM (4.1 of [4]). Assume that Hypotheses 1, 2 and 3 hold, and let
a(e)=pBe)=1.Then,foranyx e H,p>1,and0<§ < T, we have
(2.16) limE sup [v}(t) —v* (1)}, =0,
e—>0 §<t<T H
where vy is the mild solution to (2.6) corresponding to a(e) = B(¢) = 1 and v* is
the solution of equation (2.15).

2.5. Uniform large deviation principle and Laplace principle. In what fol-
lows, let £ and & be Polish spaces. We recall that a function / : £ — [0, 4-00] is
called a good rate function if the level sets {y € £ : I (y) < M} are compact in &,
for all M > 0.

DEFINITION 2.5. Let {I*},cg, be a family of good rate functions on £ and
let {YS;e > 0,x € &} be a family of £-valued random variables Moreover, let
y : (0, +00) — (0, 1), with y(¢) — 0, as ¢ — 0. The family of £-valued random
variables {Y}},~¢ satisfies the large deviation principle (LDP) on £ with speed
y (¢) and action functional I*, uniformly for x in the set B C &, if the following
two conditions hold:

(i) for any open set E C &,
(2.17)  liminfy(¢)log inf P(Y} € E) > —sup I (E) := — sup inf I*(y);
e—0 xXeB ek

X€EB xeBY
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(ii) for any closed set F' C &,
(2.18)  limsupy(e)logsupP(YS € F) < — inf I"(F) := — inf inf I*(y).
xeB xeB yeF

=0 xXeB

DEFINITION 2.6. Let {I*}cg, be a family of good rate functions on £ and
let B C &. The family of £-valued random variables {Y} },~¢ satisfies the Laplace
principle on £ with speed y (&) and action functional /¥, uniformly for x in the set
B, if for any continuous and bounded / : £ — R

X
(2.19) lim sup|y (¢) logEexp<—w
=0 v (e)

xXeB

> + inf (I*(y) + h(y))| = 0.
ye€

The equivalence between the nonuniform versions of the large deviation princi-
ple and the Laplace principle is a well-known fact. Recently, in [16] general results
on the equivalence between the uniform versions of the large deviation principle
and the Laplace principle have been investigated.

In order to study the problem of the exit of the solution of equation (2.6) from a
domain in H,,, we need a large deviation principle that is uniform with respect to x
on any bounded set of &y = H. In fact, since H is a Hilbert space, and in particular
reflexive, the weak convergence approach for SPDEs, as described in [2], allows
us to prove a Laplace principle that is uniform on bounded sets.

The following proposition of [16] then shows that the uniform Laplace principle
implies the uniform large deviation principle.

PROPOSITION 2.7. Suppose that & is a reflexive Banach space and let B C
&o be a closed, bounded set. Moreover, assume the following conditions hold:
(i) Forany s >0, the set Ag g :=J cp P*(s) is compact in £, where
D% (s):={ye&: I"(y) <s}.

(ii) The mapping x — ®*(s) is weakly continuous in the Hausdor{f metric, for
any s > 0. Namely,

(2.20) Xp — X, asn— oo = nli)rr()lok(cbx” (s), @ (s)) =0,
where, for A(, Ay € E,

A(A1, Ad) 1= max{ sup distg (v, A2), sup diste(y, Al)].
YEA] YEA

Then, any family of £-valued random variables {Y} }¢~ 0 that satisfies the Laplace
principle on € with speed y (¢) and action functional 1*, uniformly for x € B, also

satisfies the large deviation principle with the same speed and action functional,
uniformly for x € B.
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3. Main results and description of the methods. We are here interested in
the validity of a large deviation principle for the family {£(u})}cc(0,17, as € = O,
where u; is the solution to the equation (2.6) with initial condition x € H.

In [4], equation (2.6) was studied with «(e) = B(¢) = 1, and it was shown that
for every § > 0, the solutions converge in L”(€2; C([8, T']; H,)) to the solution of
the one-dimensional stochastic differential equation (2.15). Therefore, if

li = li =0
g})a(e) Sg%ﬁ(s) ,

thanks to the bounds (2.9), (2.10) and (2.12), the solution u} will converge in the
space L?($2; C([8, T1; Hy,)) to the solution of the deterministic one-dimensional
differential equation,
du _
(3.1) T =Fu®). w0 = p).
In what follows, we shall assume that the following conditions are satisfied.

HYPOTHESIS 4.

(i) We have
(3.2) Eli_r)%oz(e) = Sli_IR),B(s) =0, Eh_r)% % =:p € [0, +o0].

(i1) For every t >0, w € R and p € [0, +00], we define

(3.3) M, w)= [[VO[G(t, wym][3; + oS0V B[S ()N m]|3].

(14 p)?
where m is the density of the invariant measure . Then, if p is the constant intro-
duced in (3.2), for every T > 0 we have

(3.4) nf Hp(t, w) > 0.

i
(t,w)€[0,T1xR

Now, for every 0 <§ < T, we denote by Ws 7 the subset of C([§, T']; H,,) con-
taining all functions u € C([8, T']; H,,) that are absolutely continuous in ¢ and are
constant in the spatial variable &. Then, if u € W5 7, we define

3.5 I (u) = inf
(3-5) 5,7 weC([0.T]:R)
w(0)=(x,u), w5, 71=u

lfT w'() = F, w)P
2 Jo Hs(t, w(t))

For any other u € C([§, T1; Hy,), we set Ig‘,T(u) = +o00.

We will show that, in fact, the laws of the family {u} (f)}s¢(0,1) satisfy a large
deviation principle in the space C([8, T']; H,,), with respect to the action functional
If .
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THEOREM 3.1. Assume that all Hypotheses 1 to 4 are satisfied. Fix any T >
0 and 0 <8 < T and let u} denote the solution to equation (2.6), with initial
condition x € H. Moreover, let us define

(3.6) y(e) == (a(e) + B(e))*,  £>0.
Then the following facts hold:

(i) The family {L(u})}se(0,1] satisfies a large deviation principle in C([8, T1;
H, ) with speed y (¢) and action functional I 1, uniformly for x in any closed,
bounded subset of H.

(ii) If in addition x is constant, then {L(u})}cc(0.1] satisfy a large deviation
principle in C([0, T]; Hy) with speed y (¢) and action functional 1y 7, uniformly
for x in any closed, bounded subset of H.

To prove Theorem 3.1, we follow the weak convergence approach, and instead
prove the validity of a uniform Laplace principle, as described in Theorem 3.2.
This, combined with Proposition 2.7 yields a uniform large deviation principle,
with same rate and same action functional.

First, we introduce some notation. We denote by V' the product Hilbert space
H x Z, endowed with the inner product,

(vi,v2)v = (h1, ha)m + (21, 22) 2,
for every vy = (h1, z1), v2 = (h, 22) € V. Next, we define the linear operator,
Sv=(Qh, Bz), v=(h,z)eV.

Notice that S € £ (V) and the process wS (1) := (w2(@), wB()), r >01is an S-
Wiener process. Next, we let P(V) be the set of predictable processes in L?(2 x
[0, T]; V). For every fixed M > 0, we define

SM o 2 . ./T 2
Vyi=luer20.7:v): [ |uts)]}ds <M},
0

and
PYV):={peP(V):peSY(V),P-as.)

For any ¢(t) = (o (1), 9z()) € PM(V), we denote by uz'? the unique mild
solution of the controlled stochastic PDE,
(3.7

du(t, &) =e " Aut, &) + f(t, &, u(t,&))

+j%g(”g’”“’f))[@w(f@+ Y ©3wl (1, 8)],
§€0,
2—3@5) = %U(t,é)[\/ﬁ(pz(t,g) L fr@mten]  £cao.

u(0,8) = x(8), £€0,
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where y(¢) is the function defined in (3.6). Moreover, we denote by u*? the
unique solution of the random ODE,

du - 1 - ;o
a8 dr Flt,u®) + —-— - ﬁG(z, u(®))[VOpu )] + T SO[VBoz (0],

u(0) = (x, w).

We will prove the well-posedness of both of these equations in the next section. In
what follows, we denote

Gs(x, ) :=u"*|15,17.

THEOREM 3.2. Foranyx € H,0<8 <T andu € C([8,T]; Hy), let

A 1 (T 2
(3.9) Fow = inf = [ |o@s)|>ds.
>r 0eL?20,7;v) 2 Jo el
Gs(x,@)=u

Suppose that the following conditions hold:
(1) If B C H is a closed and bounded set, then for every M < oo the set
Fyp:={u=Gs(x,9), 0S¥ (V) xeB},

is compact in C([8,T]; Hy,).

(i) If {@e}e=0 C PM(V) is any family that converges in distribution, as & —
0, to some ¢ € PM (V) with respect to the weak topology of L*(0,T; V), and if
{xc}e=0 C H is any family that converges weakly in H, as ¢ — 0, to some x € H,
then the family {uz*'%* )¢~ converges in distribution, as ¢ — 0, to u**% in the space
C([8,T]; H,), endowed with the strong topology.

(iii) For every u € C([8,T; Hy,l), the mapping x +— I}‘,T(u) is weakly lower
semicontinuous from H into [0, +00].

Then the family {L(u})}¢>0 satisfies a Laplace principle in C([8, T1; Hy,), with
speed y (¢) and action functional fg‘ r» uniformly in x on any closed, bounded
subset of H. Moreover, for any closed bounded set B C H and any s > 0, the set

Agpi=J{ueC(8, T Hy): [ 1 (u) < s}

X€B

is compact in C([8,T1]; Hy).

REMARK 3.3. In the theorem above, we allow the uniformity of the Laplace
principle for initial conditions x in closed and bounded sets B C H (rather than
compact sets). This is possible by simply changing the topology of H to the weak
topology. Specifically, we require that the mapping x IA,g,T(u) is weakly lower
semicontinuous and that condition (ii) must hold for any sequence {x.}.~o con-
verging weakly to x. The reason why we can prove this stronger form of condition
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(ii) is because the limiting equation (3.1) is finite dimensional. If, for example, the
averaging were only to occur in some but not all of the coordinates, then we would
not have this property and condition (ii) would certainly fail for x, converging to
x only weakly.

4. Proof of Theorem 3.1.
4.1. Well-posedness of the skeleton equations.

PROPOSITION 4.1. Assume that Hypotheses 2 and 3 hold, and fix any e, M >
0 and p > 1. Then for any ¢ = (¢py,¢z) € PM(V) and x € H, equation (3.7)
has a unique adapted mild solution, uz'¥ € LP(Q2; C([0, T1; H)). Furthermore, if
(3.2) holds, we have

4.1) sup E sup [ul?@0)|5 <cprm(1+|x15).
e€(0,1] 0=<t<T

PROOF. The well-posedness of equation (3.7) follows from a fixed-point
argument in the space of adapted processes in LP(2; C([0,T]; H)). For u €
LP(Q; C([0,T]; H)), we define

A ! A
Keu(t):=e'sx + /0 U= F(s,u(s))ds + a(e)wy o) (®) + ple)wy p(t)

e
Vv (©) Jo
Bl
NG)

We show that C; is Lipschitz continuous from L”(2; C([0, T]; H)) into itself,
with Lipschitz constant going to 0 as 7 — 0. This clearly implies the well-
posedness of equation (3.7) in L?(2; C([0, T']; H)).

Thanks to (2.9), (2.10) and (2.11), since F(t,-) : H — H is Lipschitz-
continuous, it suffices to show that the mapping I',, defined by

! A
UG (s, u(s))[VQou(s)]ds

t
+ (8o — A)/0 e(’_s)%N(go[Z(s)«/Egoz(s)] ds.

Fe)(®) = S [* 0092 G (s, u(s)) /O (5) ds
Vv Jo
B(¢) _ ! (-4
o= ) fo =% Ny [S(5)v Bz (s)] ds,
maps L”(Q2; C([0, T]; H)) into itself and is Lipschitz continuous with Lipschitz

constant going to 0 as T — 0. To this purpose, we define ¢ = %, where p < %

satisfies (2.5), and we take u,v € LP(R2; C([0, T']; H)). Thanks to Lemma A.1,
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we have
t B P
sup / e(t_s)?(G(s,u(s))—G(s,v(s)))[\/awH(s)]ds
0<t<T1J/0 H
t _d P
<c sup (/ (((t —5)/e)" 2% + 1)|u(s) — v(s)|H|<pH(s)|Hds)
4.2) 0=r=T 0

p T 5
< cp(Tg + T(l_%)f)[(/o |‘/’H(S)|ilds> ’ OsupT|u(s) — v(s)|2]

=I=

<cpm1 sup |uls) —v(s)|f,
0<t<T

2

where, in the last step, we used the fact that |¢H|L2(O,T;H) < |(p|i2(O’T;V) <M,

P-a.s.
To conclude our proof of the well-posedness, we show that the second term in
e isin LP(2; C([0, T]; H)). Due to (2.7) and (2.2), the operator

4.3) S, = (80— A) 7 Ny,

belongs to L(Z, H), for any p > 0. Therefore, for any ¢ > 0, we have
(4.4) (S0 — A)e' Ny, = €34 (89 — A) T ¢34,

and

‘(50 —A) /t e(’—s)?N&,[z(s)«/Egoz(s)] ds
0 H

t
5/ =95 (8 — A) T U3 §,[S(5)V Bz ()], ds
0

+p

t 1
< c/o [(1+@—5)" 4 Jlpz(s)|, ds.

Thus, by taking the pth moment and choosing p < 1, we get

sup
0<t<T

; o 3

(4.5) <c sup (f [1+s_l+Tp]ds)2(/ ](pz(s)|22ds)2
0<t<T \JO 0

I’(lgl)))‘

Next, we prove that estimate (4.1) holds. To this purpose, we first remark that
due to (3.2)

(8o — A) fot 9% N5, [ (s)v/Boz(s)] ds

p
H

<c,M3(T5 4T

a6y tm2 1 oo im B P o
e=>0/y(e) 1+p e=>0/y(e) 1+p
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In particular, both a(¢)/+/y(¢) and B/+/y(e) remain uniformly bounded, with
respect to € € (0, 1].
Thus, by proceeding as in the proof of (4.5), due to (2.9) and (2.10), we have

E sup |ul?()|? §cp(1+|x|z)+cp,M,T<1+E sup |uf§"/’(t)\€1),
0<t<T 0<t<T

e e (0,1],
for some constant ¢, p7,7 > 0 such that ¢;, p,7 — 0, as T — 0. This means that
there exists 7y > 0 such that

sup E sup |ul? )| <2c,(1+|xl%).
e€(0,1] 0<t<Ty

By a bootstrap argument, this yields (4.1). U

PROPOSITION 4.2. Assume that Hypothesis 2 hold, and fix any M > 0. Then,
for any ¢ = (¢pu,¢z) € PM(V), the random differential equation (3.8) has a
unique adapted solution, u*% € L?(2; C([0, T]; R)), forany T > 0 and p > 1.

PROOF. As before, existence and uniqueness follows from the Lipschitz con-
tinuity of the mapping C : LP(2; C([0, T]; R)) — LP(2; C([0, T]; R)), defined
by

Ku@) = {x,n)+ /Ol F(s,u(s))ds

1 t 0 t_
+Tﬁ/o G(s,u(s))[v Qou(s)]ds + m/o (1) [vVBoz(s)]ds.
Let u,v € LP(; C([0, T1; R)). Due to (2.14) and the fact that ¢ € PM(V), we
have

p
E sup
0<t<T

t p
<cE sup (/(; lQr ()| y|uls) —v(s)| ds)

0<t<T

/OI(G(S, u(s)) — G(s, v(s))) [V Qpu (s)]ds

<c,TTMZE sup |u(t) —v(n)]|P.
0<t<T

Moreover, due to (2.7), £ maps Z into R a bounded linear operator and

ft f)(t)[\/g(pz(s)]ds g <cE sup (/t]goz(s)lzds)p < cTTM?%.
0 0

0<t<T

E sup

0<t<T

Since F(¢,-) : R — R is Lipschitz continuous, we conclude that K is Lipschitz
continuous from L7 (2; C([0, T]; R) into itself, and the well-posedness of equa-
tion (3.8) follows. [
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4.2. Convergence. Due to Skorokhod’s theorem, Condition (ii) in Theo-
rem 3.2 follows from the following convergence result. Moreover, Condition (i)

in Theorem 3.2 will follow from an easier version of the proposition below, with

Xe,
uz> % replaced by u¥e¥.

PROPOSITION 4.3. Assume that Hypotheses 1, 2 and 3 hold. Moreover, as-
sume that (3.2) holds. Suppose that {x.}.~0 C H converges weakly to x € H, as
& — 0, and suppose that {¢c}e~0 C PM (V) converges weakly in L%(0,T; V) to ®,
as € > 0, P-a.s. Then for any § > 0 and p > 1,

4.7) limE sup [ufe% —u®?|F =0.
e—0 s<t<T H

PROOF. We denote ¢, = (¢, ¢5) and ¢ = (¢, ¢z). We first write

u % (t) —ut (1) = (et%xe — (x, 1) +a@)wy o(uz?)@) + ple)wj p)

t t
(1_5)% Xe, Qe _ I X,
+ (/(; e F(s,ui*%(s))ds /0 F(s,u (s))ds)

4 e
vy (e Jo
1 r_
_ N
1+/3/0 G(s,u™?(9)[VQpnr(s)]ds
IO
Vv (©)

P
_Tﬁ/o $(s)[VBoz(s)]ds.

Thanks to estimates (2.9), (2.10) and (4.1), as well as Lemmas A.2, A.3 and A.4
(where a-priori bounds for the terms /() are proven), there exists some nonneg-
ative function rr ,(¢) converging to 0, as ¢ — 0, such that

LG s, () [V Oy ()] ds

t A
Go=A) [ Ny [E6)VB()]ds

E sup [uf¥ (1) —u" ()7,

8<t<T
(4.8) < sup [e'Fxe = (x5, + 17 p(e)
: s<t<T "
T 2
ter | E sup fugs " (s) —ut(s)|y -
8 s<s<t K
We have

A 2 1A 2 2
sup ’e £ Xe — <xnu>|1.1ﬂ <2 sup }e £ Xe — (xs»:u)’HH +2‘<xe _x’/-’L>|
6=<t<T 8<t<T

_s 2
<2ce” ¢ |xelh, +2|(xe —x, )|
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Therefore, since the sequence {x;}.~( converges weakly to x in H,,, we have

2

1 £ X — (X, =0.
52%821£)T|e oo M>|H’*

This fact, together with (4.8) and Gronwall’s lemma, allows us to conclude that

(4.7) holds for p = 2. To obtain the result for p > 2, we use estimate (4.1) and the
dominated convergence theorem. [

In the next section, we show that for every u € C([§, T]; H,) the mapping
xeHw I ({T(u) € [0, +o00] is weakly lower semicontinuous. According to The-
orem 3.2, due to the convergence result proved in Proposition 4.3 this implies that
the family {u}}.-0 satisfies a uniform Laplace principle in C([§, T']; H,), with
speed y (¢) and action functional I ({ T

4.3. Conclusion. In this section, we first show that under Hypothesis 4, we
have I s 7 =I5 ; where I ;. is the action functional defined in (3.3). Then we show
that the action functionals / 5.7 satisfy the properties required to extend the uniform
Laplace principle into a uniform large deviation principle (see Proposition 2.7). In
particular, the mapping x I 5.7 () € [0, +00] is weakly lower semicontinuous,
for every u € C([0, T']; H,). This will conclude the proof of Theorem 3.1.

LEMMA 4.4. Forevery 0 <a < b and u : [a, b] — R absolutely continuous,
let us define

1w’ (0) — F(t, w()]?
la.pw) = 5/ e wo) "
Then we have
(4.9) ) =1 1w = inf lo.7(w).

weC([0,T;R)
w(0)=(x, ), w|s,71=u

PROOF. In view of (3.9) and the fact that G5 € C([§, T]; R), we immediately
have that I 7 (u) = oo, if u(z,£) is any function depending on the spatial vari-

able £. Next, we notice that I 5 7 (u) can be rewritten as

I¥ - (u) = inf / s\ ds,
ST = Bl R)(peLz(OT V)2 ey
wl[s,71=u S =w

because the condition Gs(x, ¢) = u does not constrain the values of ¢ on the in-
terval (0, §). We suppose now that w = u™*¥, for some x € H and ¢ = (¢, ¢z) €
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L0, T; V). Then, recalling that u has a density m € L°°(0), we have
1
1+p

1
14
+ pdolez (1), VB[Z(t)Njm]) |

lw' (1) — F(t, w(t))| = G (1, w®)) [V Qo] + M) [VBoz(1)]]

lor (). VO[G (1, w@)m])y

1
< m(!w(rw@[(}(n w(®)m]|
+,550\902(1)12!@[E(I)Ngomnz)
1
< m|(ﬂ(t)|v(|\/§[G(t’ w(t))m]ﬁ{

+ p%83|VB[2 ()N m]|7)"?

= o]y Hs(t, w(®).

On the other hand, equality is achieved with the choice,

1 w' (@) — F(w@®)

Y = w()

(VO[G(t, w(®)m], pSo/ B[ (t)N; m]).

Notice that ¢ is well-defined due to the nondegeneracy condition in Hypothesis 4.
Moreover, it is easy to see that w solves equation (3.8) with the control ¢, so that
u™¥ = w. This minimizing choice of ¢ = ¢ gives rise to the action functional I3 ;.

g

Alternatively, if we define

Js(x,u) = Iy s (w),

inf
weC([0,6];R)
w(0)=({x,u), w(d)=u(d)

we can write the action functional as
(4.10) I5 7 (u) = Js(x, u) + I5 7 (u).

Js(x, u) depends only on the initial condition x € H and the value of the path u at
t =48, while Is5 7 (#) only depends on the path u.

LEMMA 4.5. Assume H is endowed with the weak topology. Then, for every
0<d < T, the mapping Js : H x C([0, T]; R) — [0, 400) is continuous.
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PROOF. Forevery x € H,u € C([0, T]; R) and n > 0, we denote by w;, (x, u)
a path in C([0, T]; R) such that

wy (x, 1) (0) = (x, u), wy (x, u)(8) = u(d),

Js(x,u) > Io.s (wy (x, w)) — g.

Moreover, for every y € H, v,w € C([0,8];R) and 8’ € (0, 8), we denote by
s’ (v, v, w) the path in C([0, T']; R) defined by

Py (y, v, w)(7)
(8" —1)/8" (v, u) +1/8w(8), 1€]0,8],
={w(), rels, 848,
S—0)/8w@E—8)+(—(8-25))/8v(©), re[s—4,4].
This path agrees with w except near the endpoints + = 0 and ¢ = §, where it is

linearly interpolated to match the given values (y, u) and v(§). Since pg (y, v, w)
and w coincide in the interval [§’, § — §’], we have

[o,5(ps' (v, v, w)) — Io,s(w)|
(4.11) < o, (05 (v, v, w)) | + [Is—s .5 (p5 (v, v, w))|
+ [Ho.or (W) | + | Is_s 5 ().

Now, let us fix x € H, u € C([0, T]; R) and n > 0. Let {x,},>1 C H be a se-
quence weakly convergent to x and let {u,} C C([0, T]; R) be a sequence conver-
gent to u. For every n € N and 8’ € (0, §), we have

Js Cens un) < To,5(05 (X, ttn, wy(x, u)))
(4.12) < Io.s(ps (xn, tn, wy(x, u)))
— Io,s(wy(x, w)) + Js(x, u) +n/4.

Since the sequences {x,},>1 and {u,},>1 are bounded and Hypothesis 4 holds true,
we have

| 10,6 (057 (X, un, wy(x, u)))|
8wy (x, u)(8") — (X, 1) 1 2
(4.13) 50/0 ( ! 5 +1> dt

§C<|wn(X,u)(5/) ;wn(X,u)(O)lz_i_ | (X —;,WH/)'
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Analogously,

‘13_5/,5()05/()@1’ Up, wr](x’ M)))‘

8

(4.14) » S
< c<|w"(x’ u)(é — 8/;/_ wy (x, 1) ()] v |un(8) (; u(8)|? n 5/)‘

Therefore, since wy,(x, u) € w12(0, 8), we know that w;, is absolutely continuous
and

1 &
sup 1, 1)(0) = wy v, ) O < [ |} (e
t€[0,8'1 1 0
But this implies that
.1 2
51,11)n0 y{wn(x, u)(8") — wy (x, u)(0)|~ =0,

so that the right hand-sides of (4.13) and (4.14) are continuous in §’. Therefore, we
can find 8] > 0 such that

0,5 (05 (Xn» ttn, wy (x, 1)) | + | Is—s57 5 (08 (Xn» U, wy(x, )| < n/4, 8 <4
Moreover, as I s(wy(x, u)) < 0o, we can find 6’2 > 0 such that

[Ho,5 (wn (x, )| + [Is—s s (wy (x, u))| < n/4, §'< 8.
Thus, if we pick 8’ = min(8/, 8), thanks to (4.11) we conclude that

. 3
limsup| 1o s (05 (xn, un, wy(x, 1)) — Io.s(wy(x, u))| < i
n—oo

Thanks to (4.12), this implies that there exists n}] € N such that

1

(4.15) Js(n,un) < Js(x,u)+n,  nz=n,.

Next, we want to prove that there exists n% € N such that

(4.16) Js(ons un) = Js(xou) —=n, o zng.

The proof of the inequality above follows the same line of the proof of inequality
(4.15). Actually, as in (4.12) we have
Js(x,u) < |IO,8(/06’(X» u, wy (xn, Mn))) - IO,S(wn (xn, un))| — Jo,5(xn, un) +n/4.

Then, by using the same arguments used above, we can find a sequence {§),},>1 C
(0, 8) such that

. 3

lim Sup|10,8(/08,’1 (x’ u, wn(xna un))) - IO,B(wn(xn, un))| < ZTI,

n—oo

and (4.16) follows. [
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The continuity above is strictly due to the fact that § > 0. If § = O then certainly
the mapping x — I*(u) is not continuous, since I*(u) is finite only if u(0) = x.
However, the lemma above easily implies the following weaker condition, which
is also true in the § = O case.

LEMMA 4.6. For every sequence {x,},>1 C H, weakly convergent to some x,
and foreveryu e {p € C([6, T]; R) : I(;T((p) < s}, there exists a sequence {u,},>1
such that u,, — u in C([8, T]; H) and

4.17) lim sup Ig’”T (uy) <s.

n—oo

When § > 0, this is trivially satisfied by the sequence u, = u by the previous
lemma. This condition can be used along with the following lemma to prove that
the conditions of Proposition 2.7 is satisfied in the model we are studying.

LEMMA 4.7. Forany$>0,T >0,s >0 and x € H, we define the set

5 7(s):={p e C([8, T R) : I§ r(9) <s}.
Then, for any bounded set B C H, we have
lim sup A(®j 7(s), @5 7 (s +r)) =0.
B

r—0t ¢

PROOF. Fix an ¢ > 0 and s > 0. We will show that there exist » > 0 small
enough that for any x € B and u € ®5 1 (s +r), there exists z, € @ 7 (s) such that

lu — zulc@s, TiiR) < €-

Fix an r > 0. First, we consider the case of x € B and u € <I>§’T(s + r) such
that Is 7(u) > r. For such a path u, we may consider the continuous path z, €
C([4, T]; R) defined by
u(t), ifr e[8, T*],

WO =100 %), e [17,7)

where
T*=T*(u,r):=inf{t € [8, T]: I, 7 (u) <r}.

Hence, z, € CI>§,T(s). Moreover, since W2([8, T]) — C([8, T]; R), it is easy to
see that

sup  sup  |ulcs.TIiR) < OO.
XEB uedy ;(s+r)

Thanks to the Lipschitz condition on g, this implies that

sup  sup  [H ()| s, rym) < OO
xX€eB ue'ZDg,T(.H—r)
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Next, for any ¢ € [T*, T'] we have that

lu(r) = 24 (1))

t _ to_ _ 2
< (f lu'(s) — F(s,u(s))|ds +f |F(s,u(s)) — F(s, zu(s))| ds)
T. Ty

t
<eult—17) (s + [ )~ 2,0 ds ).
T
so that, thanks to the Gronwall lemma,

lu(t) — 2 < cr.plr. 7 (W).

Now, if we fix r < (sc;IB)l/z, then we have |u — z,|c((s5,7]:R) < €. Since the con-

stant c7, p is independent of x, this proves the result.

Next, we consider the case where u € d>j§,T(s + r), but Isr(u) <r. Let
w € C([0,d]; R) be a path such that w(0) = (x, u), w(d) = u(d) and Ip s(w) <
Jo.s(x, u) 4 r. Then similar to before we may define the path z,, € C([, T']; R) by

@ =uT(—T*),  tels TI,
where
T* =T*(w,r) :=inf{t € [0, 8]: I; s5(w) < 2r}.
This implies that
15 7 (zu) = Jo,5(x, 2u) < lo,7+(w)
= los(w) — I+ 5(w) < Jos(x,u) —r < Iy () —r.

Therefore, z,, € CDfSC’T(s). Finally, if we consider the path u(t) := w(#)I[7+ 5)(t) +
u(t)ls,71(t), then I+ 7 () < 3r. Thus by the same calculation as before we obtain

ju = zulcqs.rimy < i = w0 (=T cre rypy < 817 (@),

which completes the proof upon taking » small enough. [

LEMMA 4.8. Suppose x,, — x in H. Then forany 8, T > 0 and s > 0, we have

lim sup dist(u, CDj;flT (s)) =0,

— 00
" ued} 1 (s)
and

lim  sup dist(u, @3 7(s)) =0.

n— 00 ¥
uetbsf}(s)

In particular, the requirements of Proposition 2.7 are satisfied.
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PROOF. For fixed u € C([0, T]; R), the mapping x +—> I({T(u) is lower semi-
continuous. Condition (i) of Proposition 2.7 then follows from Condition (i) in
Theorem 3.2 (see the proof of Theorem 5 in [2]).

To show the first limit, it suffices to prove that for any {u,}>° , C QDfSC’T(s) we
have

(4.18) liminf dist(u,, "7 (5)) =0.

Since Ij ; is a good rate function, we may assume by taking a subsequence, if
necessary, that u, — u € <I>§’T(s). By (4.17), we may also find a sequence {z,,},2 ;
such that z,, — u and

lim sup I;nT(Zn) <s.
n— 00 ’
Then, for any r > 0 we have that
diSt(unv q)gsz (S)) <|un— Zn|C([8,T];R) + diSt(Zn: (Dg?]“(s + I’))
+ dist(deSCf’T (s+r), CIDjSCf‘T (s))
= |un — zZulc@s, T1;R) + dist(d>f§j’T(S +7r), begcf’T (s)).
Therefore, due to the previous lemma, for every ¢ > 0 we can find r, > 0 such that
dist(un, P5"7(5)) < lun — znleqs.T1:R) + & n>0,

and this implies (4.18).
To show the second limit, it suffices to prove that for any {u,};2 ;, C C([é, T]; R)
such that u, € ®";(s), we have

llilrgiéljfdist(un, ®;5 7(s)) =0.

By condition (i), we may assume, by taking a subsequence if necessary, that u,, —
u. Then, thanks to Lemma 4.5, we obtain

liminf Ig"T (uy) = liminf Jo 5(x,, ) + liminf Is, 7 (u,)
n—00 ’ n—oo n—oo
> Jo,s(x, u) + I (u) = I 7 ().
In particular, this implies that /§ 7 (u) <'s so that u € ®j (s)). Therefore,

distc s, 71;R) (U, P37 (5)) < | — unlc s, 11:R).

which concludes the proof. [

REMARK 4.9. In Proposition 4.3, we have proven that u;:*% converges to
u*? in C([6,T]; H,), P-as., for every 0 < § < T. The reason we do not have
convergence (and hence a large deviation principle) in C([0, T']; H,,) is because
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e’ %x does not converge to (x, u) uniformly on ¢ € [0, T'] as ¢ — 0. On the other
hand, for any k > 1, due to (2.4) we have

T, L T
[t x = ety dr e [ el dr < celely,

This implies that uz*'¥* converges to u*?, as ¢ — 0, in the space L?($2; L¥(0, T;
H,)) for any p,k > 1. Consequently, the family {L£(u})}se(0,17 satisfies a large

deviation principle in L*(0, T'; Hy,).

REMARK 4.10. The action functional 18 7 1s the same action functional
that governs the 1arge deviation principle in C ([8, T); R) satisfied by the family
{L(v})}e>0, where v} is the solution to the one-dimensional SDE,

@.19)  dv(t) = F(u(@)dt +/y©H(t,v(0)dB(1),  v(0)=(x, ).

The law of the solutions to (4.19) is equal to the law of the solutions to the SDE,

@a0) WO=Flum)de 1:( ) (Gt u) dw@(o) + 5O dw (1),
u(0) = (x, pu).

Now, in view of equation (2.16), we see that (4.20) is precisely the limiting equa-
tion of (2.6) if the coefficients «(¢) and B(e) are held fixed, while only the ¢ terms
with the diffusion A are taken to 0. Therefore, the large deviation principle would
not be affected if we were to take the spatial averaging limit to completion before
allowing the noises to decay.

5. Applications to the exit problem. In this section, we consider the problem
of the exit of the process u}, the solution of equation (2.6), from a bounded domain
D C H,. With this in mind, we make the following assumptions on the domain D
and the coefficients f, g and o.

HYPOTHESIS 5.

(i) The coefficients f, g and o are all independent of ¢. In addition,

sup |g(&,r)| < o0.
(£,r)€OXR

(ii) For any x € D, the unique solution u#* of the one-dimensional ODE
du
dr

satisfies u*(t) € D, for any ¢t > 0. Moreover, for every c1, ¢ > 0 there exists T =
T (c1, ¢c2) > 0 such that

F(u(), u(0) = (x, u),

X, <2 = | Oy, <c1, t>T.
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(iii) The domain D C H,, is an open, bounded, connected set that contains x =
0. In addition, D is invariant under the semigroup ¢'4 and (x, 1) € D, for each
x € D.

REMARK 5.1. The invariance of D under ¢’4 will be necessary in order to
prove a lower bound on the exit time of the process u; from the domain D. This is
because when ¢ is small, equation (2.6) behaves likes the heat equation,

ou 1

— =—-Au,

ar ¢
for ¢ on the order of ¢. In fact, if D is not invariant under the semigroup e’4, then
for some x € D the process u; will immediately exit the domain, as ¢ — 0.

LEMMA 5.2. Assume that A is a divergence type operator and pick any func-
tion g : R — R that is of class C* and convex and has quadratic growth at infinity.
For every r € R, we define

Do(r):={xeH:G(x) <r},

where
G = [ eh@)de.  heH.

Then there exists r € R such that the domain D (r) satisfies Condition (iii) in
Hypothesis 5, for every r > r.

PROOF. First of all, since g has no more that quadratic growth at infinity, the
mapping G : H — R is well-defined. It is differentiable and G’(h) = g’ o h, for
every h € H. Moreover, since A is a divergence type operator, H = H,.

The convexity and the quadratic growth at infinity of g imply, respectively, that
Dy (r) is convex and bounded, for every r € R. Moreover, 0 € D, (r), for every
r>g0)0]|=:r.

Now, we show that D, (r) is invariant under the semigroup e’ A, Actually, if
x € H and u(t) := ¢'4x, by differentiating and integrating by parts we have

d
EG(ZA () =(G"(u®)), du))y =(g' (u@®)), Au(®)),

= —/Og”(u(l,é))(a(S)Vu(t,E),Vu(l,%‘))dé‘ =0,

last inequality following from the fact that g is convex and from (2.1). This means
that the mapping ¢ — G (u(t)) is nonincreasing, so that

x€Dy(r) = G(e''x) < G(x) <, t>0.
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Finally, we show that if x € D, (r), then (x, i) € Dg(r). We have
G (x, 1) =/Og(<x,u>)d$ = 101g(tx. ) < /Og(x@)ds —G()<r. O

We have seen that for every x € H and § > 0, the family {£(u})}.~0 satisfies
a uniform large deviation principle in C([8, T']; H,) with action functional /§ ;.
Moreover, if x is constant then {L£(u})}:~0 satisfies a large deviation principle
in C([0, T']; H,) with action functional I& 7- On the basis of this, we define the
quasipotential V : H,, — [0, +00], by

V(y):= inf{I&T(u) cueC([0,T]; Hy),u(T)=y,T > 0}.
Recalling that I& 7 18 finite only if u € C([0, T']; R), it follows that
V(y) <+00 = yisconstant.

Moreover, since we assume that D contains a ball around 0, it follows that both
D and 9D will contain some constant y € H),. In particular, there will exist paths
starting at O and ending at z € d D that only travel along the subspace {y € H, :
y is constant}. These paths will have finite values of the action functional, so that

(5.1) V(D) := inf V(y) < +o0.
yeaD

In addition, due to Condition (ii) of Hypothesis 3, the intersection of D and the sub-
space R C H), is precisely an open interval containing 0. Therefore, if we denote
the endpoints of the interval RN D by y; and y,, then V(D) = min(V (y1), V(y2)).

REMARK 5.3. Suppose g = 1, so that the noise is additive. As discussed in
Remark 4.10, I 7 is the action functional for the large deviation principle satisfied
by the family {£(v;)}, where v} is the solution of

do(t) = F(v(t))dt +,/y (e)H; dB(t), v(0) = (x, u),
with
_
(1+p)?

Therefore, due to classical results (see [9]), we will have the explicit formula,

Hp= (VQm3; + °83|V B[E Nz m]|3).
2 y _
V(y) = _7’[_,3/0 F(o)do.

In the case that the noise is multiplicative, there is no such explicit representation
of the quasipotential, but the exit results we discuss below will still hold.
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Our goal in this section is to a prove Freidlin—Wentzell-type estimates on the
exit time of u} from the domain D. With this in mind, we define the stopping
times,

=inf{r > 0:u}(t) € dD}.
The main result is the following.
THEOREM 5.4. Assume that all Hypotheses 1 to 5 are satisfied. Then for any
x € D, we have

lim y (¢) log Bt} = V(D).
e—0

The proof of Theorem 5.4 is a consequence of the following series of lemmas.
Once these lemmas are established, the proof of Theorem 5.4 proceeds as in the
finite dimensional case (see Theorem 5.7.11 of [8]). We list the lemmas below, and
postpone their proofs until Appendix B.

In what follows, we set

B, :={y€Hy:|ylu, <p}
and, for every p > 0 such that B, C D, we define the stopping times
o (p):=inf{r >0:u}(r) € B, UID}.

LEMMA 5.5. For any n > 0, there exists a T < 0o such that
liminfy (¢) log inf P, (t¥ < T) > —(V(D) + 7).
e—0 xeD

LEMMA 5.6. Let p > 0 be such that B, C D. Then
lim limsupy (¢) log sup P(o} (p) > 1) = —o0.

e—0

LEMMA 5.7. Let p > 0 be such that B, C D. Then, for any x € D,
lim P(u} (0 (p)) € By) = 1.
e—0

LEMMA 5.8. Let p > 0 be such that B, C D. Then for any n > 0, there exists
T < oo such that

limsup y (¢) log sup IP’( sup |u} (t)—x]H >3,0> < —n.

e—0 xeB, 0<t<T
LEMMA 5.9. Let p > 0 be such that B>, C D. Then, for any closed set N C
0D, we have

hrn hmsupy(e) log sup P(u;(0)(p)) €N)<-— in{lV(z).
ze

e—0 x€dBy,
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APPENDIX A: SOME LEMMAS USED IN SECTION 4

We start with a first preliminary result.

LEMMA A.1. Forevery ¢,V € H andt > 0, we have

(A.1) e oV 0P|y, <clt™ 24+1)|¢|Hﬂ|w|H

PROOF. If we set { = 2, we have 1 3 +14 2 = 1. Thus, for any ¢ > 0 and
Y € H, due to condition (2.5) and the Holder inequality we have

e oV 0|,

- ‘me, exe' (per)
k

i

=

(A2)

. _x
= (Tt ) (Slerls” A wenlly, ) i
k k

1 =2

5|w|H(Z|efA(soek><H)‘slzp(|ek| e e, )-

By Remark 2.2, the semigroup ¢’ is a contraction on H,,. Then, since ({ —2)/¢ =
2/p,
2 2 2

§=2 _ 2
(A.3) sup|ek| !eA(wek)\ < supleklod lpexly, <lolf .
k> k>0 " "

Moreover, thanks to (2.3) and the invariance of the semigroup with respect to the
measure [, we obtain

Yle ey, = fo > ke (€, e (), ex ) dpe(€) = /O ke (€, ) p() |3y (&)
k k
d d
e +1) [ o du® =7 + Digl,.
Due to (A.2) and (A.3), this implies that (A.1) holds.
Now, we are ready to state and prove all lemmas used in Section 4.

LEMMA A.2. Forevery e > 0, let us define

t r_
ING) :/ e(t_s)%F(s, uye ¥ (s)) ds — / F(s,u™%(s))ds
0 0
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as in Proposition 4.3. Then for any p > 1 and T > 0, we have

T
(A4) E sup |1} Op, <rrp@) +erp | E sup [u?(s) —u™(s)[f ds,

0<t<T 0 0<s<t

where r7 (&) is some nonnegative function such that ry ,(¢) — 0, as ¢ — 0.
PROOF. We can rewrite 7! (¢) as follows:

1) = Jf@0) + J5 )

— <]t e(t—s)éF(S % (s)) ds — /t F (s, u’ ¥ (s)) ds>
0 e 0 e
+ ( f t[F(s wy e (s)) — Fs,u™#(s))]d )
0

Concerning J{, thanks to (2.4) and the a priori estimate (4.1), we obtain

t p
8 s 31015, =<2 sp ([ 5w 6], i)
0<t<T 0<t<T \JO .

P T P
<cp<1+IE sup |u}e? (1)| % )(/0 e sds)

0<t<T

(A5)

<ePer pm(l+ |x:15) <ePer pum,

where the last inequality follows from the fact that the sequence {x.}.~¢ is weakly
convergent and hence resides in a bounded set of H. Next, concerning J5 (), we
have

E sup [J@)|P <TP~ IIE/ |F (s, ule%(s)) — F(s,u™%(s))|" ds
0<t<T

<cTP! IE sup [ufe % (s) —u™ ‘/’(s)|p dt.
0<s<t

This inequality, together with (A.5), implies (A.4). U
LEMMA A.3. Forevery e > 0, let us define

200 = [ Gl o 0)) [V @y 9]

o
- /O G (5. "¢ () [ Orr (5)] ds.

as in Proposition 4.3. Then, for every p > 1 and T > 0, the following estimate
holds:
T
E sup |I? (t)|H <rrpe)+crp | E sup |ufe?(s) —u® ‘/’(s)|H dt,
0<t<T 0 0<s<t

where rr ,(¢) is some nonnegative function such that rr ,(¢) — 0, as ¢ — 0.
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PROOF. We can rewrite Igz(t) as follows:
4 A
12(r) = </ U™ G (s, u™ ¥ (5))[v/ QoS (5)] ds
0
r_
— / G (s, u™ % ())[V/ Op% (5)] ds)
([ 6w o)V 6) — ots)]ds
< (s, uXe % (s)) — G(s,u™ ‘D(s)))[\/@gofi(s)] ds)
3
Z £ ().
Step 1. We first show that for any p > 1,

(A.6) hmE sup |Jf (t)|

0<t<T

Due to the invariance of the semigroup with respect to u and (2.4), we have

4 A
[TF O]y, < VO EG (s, uv (5)) [V Oy ] ds
! A
_/(; <e(l—s)ﬂG(s’uifs’(ﬁs(s))[\/a(pil(s)],u)ds

Hy,

t (r s)
< [ e G ) [V Qe )], ds:

Note that d < 1 since p < % Then, by applying inequality (A.1) with 6 =
g(s, - ust o (s, -)) we conclude that

5Oy, e [ e (@ =9)/6) T + 1][gls. 29 ) g, iy 0)]  ds

§c(/0T [(t/e) ¢+ > </ |<pH(s)|Hds>

(1 + sup w3 % (s)|y )

O<s<t

SCMS%(l + sup |up % ()| )

0<s<t

In view of estimate (4.1), since sup,¢ (g, 171X |1, < 00, we obtain (A.6) upon taking
the pth moment.
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Step 2. We show that for any p > 1,
(A7) limE sup |J5(@)|” =0.
&

-0 o<s<T

For every ¢ € L2(0, T; H), we define

r_
Ay (1) :=/0 G(s, u™?())[V OV (s)]ds, te[0,T].

First, we show that the family { A(p% }ee(0,1] 18 equi-continuous and equibounded in
[0, T'], P-a.s. Actually, we have

t+h _
|A¢;{ (t+h) — Ay, 0| = ‘/t G(s, u™?(s)) [V Q% (s)] ds

SC( [ - |, |g(3,57Mx’w(s))|2dﬂ($)ds)l/2

x (ffh/O|¢%(s,é)|2du<5)ds)l/2

t+h i ) 2
SC(/t (1+[u"¥(s)| )ds) 05| 1200.7: 1)
Then, since u*% € C([0, T]; R), P-a.s., we have that

(A.8) sup  sup |Age (1 +h) — Ay ()] < e, P-as.,
ec(0,110<t<T " "

for some random variable cj; € L2(Q2). Next, we observe that for each fixed ¢ €
[0, T'] the linear functional ¥ € L%(0,T; H) — Ay () € R is bounded. Therefore,
by the weak convergence of the sequence {¢},} to ¢z, we may conclude that

t_
lim Ay, (0 = Ay, (1) = fo G(s. ™) [VOon(s)]ds,  P-as.,

and estimate (A.8) implies that this convergence is uniform with respect to ¢ €
[0, T']. Finally, noting that J5 (t) = A(pg (t) — Ay (1), we conclude that (A.7) holds
from the dominated convergence theorem.

Step 3. Using the Lipschitz continuity of g, we have

1 2

P = ([ [ 66w = 6w )V o)) due) ds)
Xe\ 0 0|2 2
< cfuz® _”x¢|L2(O,T;HM)’¢§{|L2(O,T;HM)

T
<cuy sup |ufe % (s) — ux"/’(s)ﬁ{ dt.
0 0<s<t "

This, together with (A.6) and (A.7), concludes the proof. [
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LEMMA A.4. Forevery e > 0, let us define
12(t) = (80 — A) /Ot ™% Ny, [ (s)VBoS (s)] ds
— 8o AI(NSO[Z(S)ﬁwz(S)], p)ds,
as in Proposition 4.3. Then for any p > 1,
R g e Ol =0

PROOF. We can rewrite I as follows:

20 = (60— ) [ Ny [£6)V B 0)]ds
t
—80'/0 (NSO[E(s)x/Ew%(s)],,u)ds)

t
+ 80 /0 (N3, [SVB(95(s) — 02())]. ) ds = JE @) + T (0.

Concerning J{, the invariance of  gives

TF Oy, = ‘ /0 L (5 — A)e )% N5, [ (5)VBo (s)] ds
t A
- fo (60 = M VE Ny [£5)V B 5)] )|

t (t—s)
50/0 e \(80—A)e(’_s)%N(gO[E(s)\/Ego%(s)]|HMds.

Then, thanks to (4.4) and the boundedness of the operator S, defined in (4.3), for
any p > 0, we have

I+p
4

_OA —
|80 — A)e" % N5y [E()VBeG (]|, < c[1+ (= 9)/)" + 1o,
Hence, if p < 1, we obtain

E sup |JE(@®)|? <c(/Te‘y5[(t/e)‘17’+1]dS>gE|<p8|g
(A.9) ozr=r =" \Uo 21L20.1:2)

[S3S]

<cpmEe-z.

To estimate J5 (¢), we proceed as in Lemma A.3 and for every ¢ € L%(0,T: Z)
we define

t
Ay (1) = 5()]0 (Nso [Z()VBY ()], ) ds.
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Then the family {Aw% }ee(0,1] 1s uniformly equicontinuous in [0, 7], since

| Ags (2 +h) = Ags (1))

t+h
5 /t (Nso[S)VB@S ()], ) ds

t+h 1/2
sam([ [, |N50[E<s>ﬁ¢§<s)]<s>\2du(&)ds)

< CSO\/E}NSO[Z(')w%”]ﬂ(O,T;HH) <cuvh,

where the last inequality holds P-a.s., for some random variable ¢y € L'(). In
addition, for fixed ¢ € [0, T'], the linear functional ¥ € L2(0, T; Z) — Ay (t) e R
is bounded. Hence by the weak convergence of the sequence {¢%} to ¢z, we have

t
lim A g (1) = Ay, (1) = 30/ (N5, [Z(5)VBoz(s)], u)ds.
e—0 0
Moreover, this convergence is uniform in ¢ € [0, T'], so that
ImE sup [J5(@)|" =1m sup |Age (t) — Ay, (1)|" =0
e=>0  o<r<T e=>00< <7 7

from the dominated convergence theorem. This, together with (A.9), concludes the
proof. [J

APPENDIX B: PROOFS OF LEMMAS IN SECTION 5

PROOF OF LEMMA 5.5. Fix n > 0. We first construct a collection of paths
{z"}xep C C([0, T]; R) that leave the domain with a close to minimal energy.

Let p > 0 such that B, C D. Due to Condition (ii) in Hypothesis 5, we can fix
Ty large enough that u* (T1) € B,, for any x € D, where u” is the solution of (3.1).
Thus, we set z¥(¢) = u*(¢) on the interval [0, T;]. Next, we set

@) =u"(T)(T1 +1—1), ift e[T1,Th + 1],

so that z*(T7 + 1) = 0. Now, due to (5.1), there exists some 75 > 0 and some path
v(t) € C([0, T2], R) such that v(0) =0, v(T) ¢ D and I§ 1, (v) < V(D) + n/4.
We then set z*(r+ — (T1 + 1)) = v(¢) for ¢t € [T} + 1, T»]. Hence, upon defining
T* =T, + T, + 1, we have

Iy (&) = Ig 7, (") + 1y 141 () + I(T)1+1,T* (")

ni+l / o 2 >
§c/ 12 (1) — F(5 ()| di + (V(D) + n/4)

T

<cp”+ (V(D) +n/4).
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Thus, taking p small enough, we obtain Ig’T(zx) <V(D)+n /2. We note that all
of these paths {z*};ep agree on the interval [T] + 1, T*] and exit the domain on
this time interval. Let us now denote

h:= sup disty, (z* (1), D) > 0.
T1+1<t<T*
To prove the lemma, we pick any 0 < § < 71 + 1 and define the open set
v=J{uec(s T Hy): sup [u@) — 0], <h}.
xeD b<t=T* .

Then, thanks to Theorem 3.1 and bound (2.17), there exists &y > 0 such that for
any € < &g,

1
inf P(z < T*) > inf P(u EV) > exp(——[sup inf 1§ 7+ () + 2:|>

xeD xe Y (&) Lyepve¥
>exp<—L[sup I3 7 (25015 T*])+E“
Y(€) Lyep © ’ 2
zexp{—L(V(D)Jrn))-
y(e) O

PROOF OF LEMMA 5.6. In this lemma, the behavior of the process near t = 0
is not a concern and so the same proof as in Lemma 5.7.19 in [8] holds. [J

PROOF OF LEMMA 5.7. Fix some x € D and let p > 0 be such that B, C D.
If x € By, there nothing to prove. Thus, we can assume that x ¢ B),.

We denote T, :=inf{r > 0:u"(¢) € By2} and A, :=inf;>¢ distHH (u*(t),0D).
We clearly have T, > 0 and, due to Condition (iii) of Hypothesis 5, we have A, >
0. Moreover, again thanks to Condition (iii) of Hypothesis 5, we have

NI Pr 1A
dy = tlgngStHﬂ (¢"*x,0D) > 0.

This implies that for every 0 < § < T
P(u}(of(p)) € D)

<P( sup |u (t)—eax > dy
(B-l) (0<128| |H )

+P( sup [uf () —u )]y, > AcAp/2).
0<t<Ty

Now, thanks to (2.9) and (2.10) and Lemma A.2, for every T > 0 there exists some
function rr (&) going to 0, as € — 0, such that

E sup |u}(t) —u® (t)|H <ce” |x|HM+rT(8)
0<t<T

+cr E sup |uf(s) —u® (s)]H dt.
§

S<s<t
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Then, using Gronwall’s lemma, we have
- crT
(B.2) E sup |u} —u |H <cle™ % |xlg, +rr(e))eT”.
8<t<T
Meanwhile, we can estimate the second term in (B.1) by using the bounds (2.9),

(2.10) and (4.1) to obtain

E sup |uf(t) —é' fx|H
0<r<$

(B.3) <cy/y()+E sup

0<t<$§

t
/ 9% F(s,ul(s))ds
0

Hy,

< C(%"‘ 8(1+Elugleo,5:m,)) <y (&) +9).

This, together with (B.1) and (B.2), implies that for every 6 € (0, T)
)
P(ul (0 (p)) € D) < cr (¥ (&) + 8 +rr(e) + e |xln,).

Thus, by taking § = ¢" for some 0 < r < 1, we get

P(u} (o7 (p)) € dD) =0. O

PROOF OF LEMMA 5.8. We have
t
ur(t) —x = etx —x+ /(; e(z_s)%F(s, uy(s))ds
+a(e)wy o(uz) @) + ple)wly ().

. . . A
Since the semigroup e’4 acts as a contraction on H,,, we have that |¢' x — x| H, <
2|x |H, - Next we observe that, for t € [0, T'],

/ (t=)g e F(s, ui(s)) ds
0

/ |F(s, ux(s))|H ds

<cT(1+ sup |u} (s)|H)

0<s<t

<cT(1+|x|H + sup |ug(s) —x|y )

0<s<T
Therefore, if x € B,, we can find a T), > 0 small enough that

Tp
sup |u} (t)—x|H <?+a(£) sup |w o(u )(t)|H#

0<t<T 0=<t=<T,

+ B(e) sup |wAB(t)|H

0=<t<T,
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Hence,
P(juy — x|C([O,T];HM) >3p)
= P(a(8)|wi,Q(u§)|C([0,T];HM) >p/3)+ P(ﬂ(8)|w1€4,B|C([O,T];HM) > p/3).

Thanks to Condition (i) of Hypothesis 5, the integrand of w2 (u}) is bounded, so
that we can use the exponential estimates for the stochastic convolution (see [15]).
In particular, for every T > 0 we have

IP’(su lwh o))y > i ><cex (— o’ )<cex <— r )
omrer AN = 30 e) ) = TP\ B erate) ) = TP\ ae))

where cr is a constant going to 0, as 7 — 0. We obtain a similar estimate for
w;’ 5> With a(¢) replaced by B(¢). All together, for every T < T, we have

2

0
v (¢)log sup ]P( sup |ul(t) —x|H > 3p> <cy(e) — —
xeB, 0<t<T cr

Upon taking 7 small enough, this gives us the desired result. [J
PROOF OF LEMMA 5.9. We modify the proof of Lemma 5.7.21 in [8] to ac-

count for the behavior of u} () near t = 0. Let N C 9D be a closed set. Define the
closed set

Ws 7(N):={ueC([0,T]; H,) : 3t € [8, T] such that u(r) € N}.
Then, forany 7 > 0and 6 < T,
B.4)  P(ui(of(p)) e N)<P(z <8)+P(o)(p) >T)+Pu; € ¥s7(N)).
To bound the first term from above, we notice that

sup P(zf <8) < sup IP’( sup |u} (t)—x|H > disty, (x, 8D))

X€0By, x€dBy, 0<t<$§

Now, let p > 0 be small enough that inf,¢j B, dist(x, D) > 6p. Then, by Lemma
5.8, the inequality above implies that for any 7 > O there exists § > 0 small enough
that

(B.5) limsupy(¢)log sup P(rf <§) <-—n.

e—0 x€dBy,
Next, thanks to Lemma 5.6, we can find 7 > 0 large enough that
(B.6) limsupy(¢)log sup P(o)(p) >T) < —n.

e—0 x€dBy,

Since the set Ws 7(N) is closed, we can use the large deviation principle and equa-
tion (2.18) to obtain that

(B.7)  limsupy(e)log sup P(uj € ¥sr(N)) <— 1nf 13 (s, 7(N)).

e—0 x€dBy,
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On the other hand, for fixed x, we have that

I(SX’T(\I—’a,T(N))=¢ inf Ig‘,T((p)z(pe inf

Iy (@),
€Ws.r(N) Gorv) 0T

because every path hitting N in the interval [§, T] has an extension to a path on
[0, T'] starting at x.
Next, we notice that for any x € 9B,

Vx)+ inf I > inf V(2),
(x) Uo7 (N) o,T(w)_ZGN (2)

since any path on the left-hand side is also considered in the infima on the right-
hand side. Now, due to Hypotheses 35, it is clear that lim,_,o V (x) = 0. Hence, for
any y > 0, if we choose p > 0 small enough then, thanks to (B.7), we have

(B.8) limsupy(e)log sup P(uf € s (N)) <y — in}\c, V(2).
ze

e—>0 x€dBy,

Due to (B.4), (B.5), (B.6), (B.8) and the arbitrariness of y, the result then follows
by picking n > inf,ey V(z). O
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